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Mass distributions for induced fission of different Hg isotopes

A. V. Andreev, G. G. Adamian, and N. V. Antonenko
Joint Institute for Nuclear Research, 141980 Dubna, Russia

(Received 20 June 2012; revised manuscript received 6 September 2012; published 11 October 2012)

With the improved scission-point model mass distributions are calculated for induced fission of different Hg
isotopes with even mass numbers A = 180, 184, 188, 192, 196, and 198. The calculated mass distribution and
mean total kinetic energy of fission fragments are in good agreement with the existing experimental data. The
asymmetric mass distribution of fission fragments of 180Hg observed in the recent experiment is explained. The
change in the shape of the mass distribution from asymmetric to more symmetric is revealed with increasing A

of the fissioning AHg nucleus, and reactions are proposed to verify this prediction experimentally.
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Since the discovery of nuclear fission this phenomenon has
been intensively investigated. The mass distributions in the
low-energy fission of actinides have been explored in detail.
The asymmetric shape of the mass distribution is well known
in the spontaneous, neutron-induced, and β-delayed fission of
most actinide isotopes. Such an asymmetric shape was theoret-
ically explained by taking into account the shell structure of the
fragments [1–5]. During the past few decades new experimen-
tal techniques were developed to investigate the low-energy fis-
sion of lighter isotopes. Studies of the Coulomb-excited fission
of radioactive nuclei revealed the predominance of symmetric
fission in the light thorium to astatine region [6]. In the fission
of stable targets with mass numbers A = 185–210 induced
by protons and 3,4He the mass distribution was also found to
be symmetric in most cases [7]. However, for several nuclei
with A ≈ 200 the mass distribution looks symmetric but with
a small dip on the top at small excitation energies [7]. Based
on most of the experimental data, one could conclude that
the asymmetric shape of the mass distribution in low-energy
fission changes to a symmetric one with decreasing mass
number of the fissioning nucleus. It was unexpected that in the
recent experiment [8] on β-delayed fission of 180Tl the shape of
the mass distribution was found to be clearly asymmetric. The
explanation of this interesting result is a challenge for nuclear
theory and a good test for the existing models of nuclear fission.

As shown with the stochastic approach of Ref. [9], the mass-
asymmetry distribution reflects the detailed structure of the
potential-energy surface in the scission region. The statistical
scission-point model of Ref. [1] just relies on the assumption
that statistical equilibrium is established at scission and the
observable characteristics of the fission process are formed
near the prescission configurations of the fissioning nucleus.
With the modified scission-point model [10] we can describe
the experimental data on fission of actinides: mass, charge,
and kinetic energy distributions and neutron multiplicity dis-
tributions. With this model a new explanation of a bimodality
effect in the fission of heavy actinides and the fine structure of
the mass-energy distribution in the fission of 236U have been
proposed. The model has been also extended to the description
of ternary fission [11]. The advantage of our model is that it
allows us to describe a large variety of experimental data with
a fixed set of parameters and assumptions. The wide range
of described fission observables and effects demonstrates the

predictive power of the model. In the present work we apply
our model to the fission of lighter nuclei for describing the
new experimental data [8] on asymmetric fission of 180Hg.

Here, we give a short description of the model; the details
can be found in Refs. [10,11]. The fissioning nucleus at the
scission point is modeled by two nearly touching coaxial
spheroids—fragments of a dinuclear system with masses
(charges) AL (ZL) and AH (ZH ) of the light (L) and heavy (H )
fragments, respectively. A = AL + AH (Z = ZL + ZH ) is the
mass (charge) number of the fissioning nucleus. By taking
into account volume conservation, the shape of the system is
defined by the mass and charge numbers of the fragments,
deformation parameters of the fragments, βi (i = L,H ), and
the interfragment distance R. The deformation parameter of
each fragment is the ratio of the major and minor semi-axes of
the spheroid, βi = ci/ai . Here and further i denotes the light
or heavy fragment of the dinuclear system. The case βi = 1
corresponds to a spherical shape for the fragment. For small
values of βi − 1, the following equality is valid: βi ≈ β2i + 1,
where β2i is the parameter of quadrupole deformation of the
ith fragment in the multiple expansion of the fragment shape.

The potential energy of the system,

U (Ai, Zi, βi, R, l)

= Umacro(Ai, Zi, βi, R, l) + δU shell(Ai, Zi, βi),

Umacro(Ai, Zi, βi, R, l)

= ULD
L (AL,ZL, βL) + ULD

H (AH,ZH , βH )

+V C(Ai, Zi, βi, R) + V N (Ai, Zi, βi, R) (1)

+V rot(Ai, Zi, βi, R, l) + Uzpv(Ai, Zi),

δU shell(Ai, Zi, βi)

= δU shell
L (AL,ZL, βL) + δU shell

H (AH,ZH , βH ),

is the sum of the liquid-drop energies ULD
i of each frag-

ment, the energy of interaction of the fragments, V C + V N ,
the rotational energy V rot, the energy Uzpv of zero-point
vibrations, and the shell-correction terms δU shell

i . The shell
corrections are calculated with the Strutinsky method and
the two-center shell model [12]; the damping of the shell
corrections with excitation energy and angular momentum l is
introduced in our model. The interaction energy consists of the
Coulomb interaction V C of two uniformly charged spheroids
and nuclear interaction V N in the form of a double folding of
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nuclear densities and density-dependent Skyrme-type
nucleon-nucleon forces [13]. For β-delayed and induced
fission, we use zero and nonzero angular momenta l,
respectively (see below). We related the energy Uzpv =
E2+

i coth[E2+
i /T (l)] of zero-point vibrations with the energies

E2+
i of the first 2+ excited states of the fragments from

Ref. [14]. The definition of the temperature T (l) is given below.
Here, we use a simplification that for all deformations the zero-
point vibration energies at zero temperature are equal to the
E2+

i energy at the ground-state deformation. However, our cal-
culations show that the nucleus being stiffer in the ground state
in comparison to the neighboring nuclei remains to be stiffer at
large deformations. The shape dependence of zero-point vibra-
tions of the nascent fragments is taken effectively into account
through the shape-dependent temperature or excitation energy.
At high excitation energy Uzpv = T (l) for all fragments.

All terms in Eq. (1) except for Uzpv depend on deformations
of the fragments. For given deformations of the fragments the
interaction potential has a potential minimum (pocket) as a
function of the interfragment distance R. For calculation of the
potential energy we take the value of the interfragment distance
R = Rm corresponding to this minimum [U (Ai, Zi, βi, l) ≡
U (Ai, Zi, βi, Rm, l)]. Depending on the masses of the frag-
ments and their deformations the calculated distance between
the tips of the spheroids is 0.5–1 fm.

Because thermodynamic equilibrium is postulated at the
scission point, the excitation energy of the nuclear system at
scission is calculated as a difference between the potential
energy UCN (A,Z, β, l) of the compound nucleus (fission-
ing nucleus) and the potential energy U (Ai, Zi, βi, l) of
the dinuclear system at the scission point plus the initial
excitation energy E∗

CN (l) of the compound nucleus: E∗(l) =
UCN (A,Z, β, l) − U (Ai, Zi, βi, l) + E∗

CN (l). The tempera-
ture is calculated as T (l) = √

E∗(l)/a, where a = A/12 is
the level density parameter in the Fermi-gas model. The yield
of a particular scission configuration with given mass and
charge numbers and deformation parameters of the fragments
is proportional to the exponential Boltzmann factor:

Y (Ai, Zi, βi, l) ∼ exp

{
−U (Ai, Zi, βi, l)

T (l)

}
. (2)

For given mass and charge split, the potential energy of the
dinuclear system at the scission point is a function of defor-
mations of the fragments [the potential energy surface (PES)].
Due to the Coulomb interaction between the fragments, the
deformation parameters corresponding to the minimum in
PES are larger than in the ground states of nuclei fragments,
which indicates that the fragments at the scission point are
significantly deformed. To obtain the relative mass distribution
as a function of the mass number of one of the fragments in the
fission of a compound nucleus with mass and charge numbers
A and Z, one should integrate expression (2) over ZL, βL, and
βH , sum over l, and take into account that AH = A − AL and
ZH = Z − ZL:

Y (AL)=
∑lmax

l=0(2l + 1)
∫

exp
{−U (Ai,Zi ,βi ,l)

T (l)

}
dZLdβLdβH∑lmax

l=0(2l +1)
∫

exp
{−U (Ai,Zi ,βi ,l)

T (l)

}
dALdZLdβLdβH

.

(3)

The distribution (3) is normalized to unity. The value
of the angular momentum l is limited by either the ki-
netic angular momentum h̄lkin = Rb

√
2μ(Ec.m. − Vb) [where

R = Rb is the position of the Coulomb barrier with
height Vb = V C(Ai, Zi, βi = 0, R = Rb) + V N (Ai, Zi, βi =
0, R = Rb) in the entrance channel, μ = m0ALAH/(AL +
AH ) is the reduced mass parameter, and m0 is the nucleon
mass] or by the calculated critical angular momentum lcr in
the entrance channel, depending on which one is smaller:
lmax = min{lkin, lcr}.

The scission-point model is also suitable for describing
the total kinetic energy (TKE) of the fission fragments.
We calculate the TKE by supposing that all interaction
energy at the scission point transforms after fission into the
kinetic energy of the fission fragments. Therefore, the value
of the TKE strongly depends on the deformations of the
fragments at the scission point. The smaller the deformations
of the fragments and the larger the Coulomb repulsion,
the larger the TKE will be. The mean value of the total
kinetic energy for a particular binary splitting is calculated
by averaging over deformations of the fragments on the
PES:

〈TKE〉(Ai, Zi) =
∑lmax

l=0(2l + 1)
∫

TKE(Ai, Zi, βi, l) exp
{−U (Ai,Zi ,βi ,l)

T (l)

}
dβLdβH∑lmax

l=0(2l + 1)
∫

exp
{−U (Ai,Zi ,βi ,l)

T (l)

}
dβLdβH

, (4)

where

TKE(Ai, Zi, βi, l) = V C(Ai, Zi, βi, Rb) + V N (Ai, Zi, βi, Rb)

+V rot
rel (Ai, Zi, βi, l), (5)

V rot
rel (Ai, Zi, βi, l) = h̄2f l(f l + 1)

2μR2
b

, (6)

f = μR2
m

	L + 	H + μR2
m

. (7)

Here, 	L and 	H denote the moments of inertia of the
fragments.

The average value of the TKE of the fission fragments can
be found from 〈TKE 〉(Ai, Zi) by averaging over all binary
systems:

TKE =
∫

〈TKE〉(Ai, Zi)Y (Ai, Zi)dALdZL, (8)
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FIG. 1. Calculated (solid line) mass distribution of fission frag-
ments in comparison with the experimental data [7] (points) for
induced fission of 198Hg in the reaction 197Au(p, f) at Ep = 22.4
MeV (a) and in the reaction 194Pt(α, f) at Eα = 50.4 MeV (b).

where

Y (Ai, Zi)

=
∑lmax

l=0(2l + 1)
∫

exp
{
−U (Ai,Zi ,βi ,l)

T

}
dβLdβH

∑lmax
l=0(2l + 1)

∫
exp

{
−U (Ai,Zi ,βi ,l)

T

}
dALdZLdβLdβH

.

(9)

We performed calculations of mass distributions for iso-
topes of Hg with mass numbers A = 180, 184, 188, 192, 196,
and 198. As a first step, the calculations were restricted only
to even-even fission fragments, which mainly define the shape
of the mass distribution. The inclusion of the odd-even and
odd-odd fission fragments can only smooth out a little the
distribution but cannot appreciably change its shape. In order
to obtain a smooth curve and to simulate the experimental
uncertainty of the extraction of the fission-fragment mass
number, each calculated yield was smeared by a Gaussian
with width σAL

= 1.5 amu.
To test our fission model in the mass region under

consideration, we calculated the mass distribution for the
reactions 197Au(p, f) at the energy of a proton of 22.4 MeV and
194Pt(α, f) at the energy of an α particle of 50.4 MeV [where
the fissioning compound nucleus is 198Hg with E∗

CN (l =
0) = 29.4 MeV and E∗

CN (l = 0) = 49.0 MeV, respectively].
Figure 1 shows a comparison of our calculations with the
experimental data [7]. The calculated and experimental distri-
butions have a similar shape with a dip at the top for the reaction
197Au(p, f), the maxima almost coincide, but the calculated
distribution is slightly narrower than the experimental one.

FIG. 2. Calculated mass distribution of fission fragments for β-
delayed fission of 180Tl (with the fissioning nucleus being 180Hg).

For the reaction 194Pt(α, f) this dip almost disappears due to
the larger excitation energy, which is in agreement with the
experimental data. These examples demonstrate the validity of
our treatment of the excitation-energy-dependent shell effects.

For β-delayed fission of 180Tl [8], the excitation energy
E∗

CN (l = 0) of the fissioning nucleus 180Hg does not exceed
10.44 MeV. The mass distribution of fission fragments is
presented in Fig. 2. We obtained a clearly asymmetric
mass distribution with average masses of the light and heavy
fragments of about 80 and 100, respectively, which is in agree-
ment with the experimental data [8]. The calculated TKE =
136 MeV is also in good agreement with the experiment [8].

It is convenient to analyze the obtained results for fission
of 180Hg by comparison of the PES of different mass/charge
splits (Fig. 3). If one excludes the shell-correction terms from
Eq. (1) the PES will have a minimum at deformations of the
fragments of about βi = 1.6. These βi are larger than the
ground-state deformations of the corresponding nuclei because
of polarization. In the fission of 180Hg the symmetric scission
configuration is 90Zr + 90Zr. The shell correction for 90Zr has
a negative value, δU shell

i ≈ −2 MeV, near βi = 0; at larger
deformations it becomes positive; at βi = 1.6 it is equal to
δU shell

i ≈ 1 MeV, then it grows further, and at βi = 1.85 it
reaches δU shell

i ≈ 4 MeV. In contrast, the shell corrections for
nonmagic nuclei in the scission configurations Kr + Ru and
Se + Pd are usually positive at small deformations (δU shell

L ≈
2.5 MeV and δU shell

H ≈ 1.5 MeV) and have zero or slightly
negative values in the region around βi = 1.6. Because of
these shell effects, the minimum is narrow for 90Zr + 90Zr,
while for 76Se + 104Pd, where the shell effects are weaker, it
is wide (see Fig. 3).

Figure 4 demonstrates the change of potential energy of
the binary systems 90Zr + 90Zr and 76Se + 104Pd along the
trajectory on the PES over the local minima starting from the
point βL = βH = 1. Here, β denotes the deviation from the
point βL = βH = 1 along this trajectory on the plane (βL,βH ).
Due to the influence of the term Uzpv (high value of E2+

L,H for
90Zr), the Umacro energy at the minimum has a smaller value
for the asymmetric split 76Se + 104Pd than for the symmetric
split 90Zr + 90Zr. Since at the deformations of the minima the
shell corrections are comparable for the splits 90Zr + 90Zr and
76Se + 104Pd, this leads to a larger yield of the split Se + Pd.
In addition, the difference in the widths of the minima for
90Zr + 90Zr and 76Se + 104Pd strengthens the difference in the
yields of these splits. Due to the integration in Eq. (3), the
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FIG. 3. Calculated potential energy at the scission point as a
function of deformations of the fragments in the binary systems
90Zr + 90Zr (a) and 76Se + 104Pd (b). The energy is given in MeV
relative to the energy of the fissioning nucleus 180Hg. (c) The potential
energy calculated without the shell-correction terms in Eq. (1) for the
binary system 90Zr + 90Zr.

wide minimum for 76Se + 104Pd results in a larger yield of
corresponding fragments.

Figure 5 shows a change in the shape of the mass distri-
bution from asymmetric to more symmetric with increasing
mass number A of the fissioning nucleus AHg. While the
mass distribution is quite asymmetric for 180Hg and 184Hg, for
188Hg the asymmetry is less pronounced, and for 192Hg and
196Hg the mass distribution looks more symmetric but with a
dip on the top similar to that observed experimentally in the

FIG. 4. The calculated energies (in MeV) Umacro [(a) and (d)],
δU shell [(b) and (e)], and U [(c) and (f)] along the local minima on
the PES as functions of deviation from the point βL = βH = 1 on the
plane (βL, βH ) for the binary systems 90Zr + 90Zr [(a), (b), and (c)]
and 76Se + 104Pd [(d), (e), and (f)] formed at the scission point during
the β-delayed fission of 180Tl.

fission of 198Hg [7] (Fig. 5). This result slightly differs from
the results of Ref. [15], where the mass distribution was found
to be asymmetric for 180–188Hg with the asymmetry increasing
with increasing mass number of the fissioning Hg isotope.
In our model, with increasing mass of the fissioning nucleus,
the fragments of symmetric scission configurations deviate
from the magic 90Zr, and the role of strong shell effects at
symmetric splits decreases. Thereby, in the heavy isotopes of
Hg the shape of the mass distribution is generally defined by the
liquid-drop part of the energy, and we obtain more symmetric
mass distributions. For instance, let us compare the symmetric
and asymmetric fragmentations in the fission of 180Hg (Fig. 4)
and 198Hg (Fig. 6). In the case of 198Hg the energies Umacro

and δU shell (Umacro 
 |δU shell|) in the deformation minimum
for the symmetric split Zr + Zr are smaller than the ones for
the asymmetric split Se + Pd. In the case of 180Hg one can see
the opposite behavior.

Figure 5 demonstrates the influence of the excitation energy
of the fissioning nucleus AHg on the shape of the mass
distribution. The excitation energy reduces the shell effects and
smooths out the shape of the mass distribution. However, for
some isotopes the influence of the excitation energy is rather
weak. For example, in the case of 180Hg the mass distribution
has a pronounced asymmetric shape even at the excitation
energy E∗

CN = 64.2 MeV [8].
Figure 7 demonstrates the calculated dependence of

〈TKE〉(Zi) =
∫

〈TKE〉(Ai, Zi)Y (Ai, Zi)dAL (10)

on the atomic mass number of the light fission fragment for the
induced fission of nuclei 180,196Hg at a bombarding energy 10
MeV above the Coulomb barrier (Ec.m. = Vb + 10 MeV). The
curve rises fast for 180Hg due to its approaching the compact
symmetric scission configuration 90Zr + 90Zr, while for 196Hg
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FIG. 5. Calculated mass distributions of fission fragments for
induced fission of 180,184,188,192,196Hg with impact energies of 10 MeV
[solid lines, E∗

CN (l = 0) = 44.2, 43.9, 49.7, 62.4, and 56.0 MeV for
180,184,188,192,196Hg, respectively] and 30 MeV [dashed lines, E∗

CN (l =
0) = 64.2, 63.9, 69.7, 82.4, and 76.0 MeV for 180,184,188,192,196Hg,
respectively] above the corresponding Coulomb barriers for sperical
nuclei (see text).

the curve is almost horizontal because the symmetric configu-
ration 98Zr + 98Zr contains the nonmagic nuclei. The value of
〈TKE〉 is generally defined by the position of the minimum of
the PES. Because of shell effects, the minimum of the potential
energy of the scission configuration 90Zr + 90Zr is shifted from
the liquid-drop minimum βi = 1.6 to smaller deformations
βi = 1.5, which leads to the gain in 〈TKE〉. In the scission
configurations consisting of nonmagic nuclei the minimum of

FIG. 6. The same as in Fig. 4, but for the binary systems 98Zr +
100Zr [(a), (b), and (c)] and 84Se + 114Pd [(d), (e), and (f)] formed
at the scission point during proton-induced fission of 197Au at Ep =
22.4 MeV.

the potential energy corresponds to a liquid-drop minimum
with deformations around βi = 1.6–1.65.

To study the fission properties of all considered isotopes
180Hg, 184Hg, 188Hg, 192Hg, and 196Hg (Fig. 5), we propose in-
duced fission reactions at bombarding energies 10 and 30 MeV
above the corresponding Coulomb barriers Vb for spherical
nuclei: 36Ar + 144Sm → 180Hg (Vb = 126.2 MeV, lmax = 44
and 61), 40Ar + 144Sm → 184Hg (Vb = 124.55 MeV, lmax =
46 and 71), 40Ar + 148Sm → 188Hg (Vb = 123.9 MeV, lmax =
46 and 66), 32S + 160Gd → 192Hg (Vb = 114.4 MeV, lmax =
42 and 63), and 36S + 160Gd → 196Hg (Vb = 112.8 MeV,
lmax = 45 and 70).

Our model gives a good description of the reactions
197Au(p, f), 194Pt(α, f), and of the recent experiment [8] where
the asymmetric mass distribution in the fission of 180Hg was
observed. The latter unexpected effect required a theoretical
explanation and the present work provides it. The results of our
calculations confirm the importance of the shell structure and,
correspondingly, deformation effects in the fission process.

FIG. 7. 〈TKE〉(Zi) for the induced fission of 180Hg and 196Hg as
functions of the atomic mass number of the light fragment.
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The account of different fragment deformations at the scission
point is necessary for the correct description of the mass
distributions and kinetic energy of the fission fragments.
We made a prediction of the change in the shape of the
mass distribution from asymmetric to more symmetric with
increasing mass number of the fissioning Hg isotope from

A = 180 to A = 196, and we proposed the reactions to verify
this prediction experimentally.
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