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Isospin symmetry violation in mirror E1 transitions: Coherent contributions from the giant
isovector monopole resonance in the 67As-67Se doublet
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The assumption of an exact isospin symmetry would imply equal strengths for mirror E1 transitions (at least,
in the long-wavelength limit). Actually, large violations of this symmetry rule have been indicated by a number
of experimental results, the last of which is the 67As-67Se doublet investigated at GAMMASPHERE. Here, we
examine in detail various possible origins of the observed asymmetry. The coherent effect of Coulomb-induced
mixing with the high-lying giant isovector monopole resonance is proposed as the most probable process to
produce a large asymmetry in the E1 transitions, with comparatively small effect on the other properties of the
parent and daughter levels.
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I. INTRODUCTION

The presence of symmetries in physical laws in most
cases greatly enhances our understanding of their nature and
consequences. Symmetries, either exact or only approximate,
have a particular importance in the fields of elementary particle
and nuclear physics. The approximate charge independence of
nuclear forces, ultimately related to the near degeneracy of up
and down quarks [1], permits us to treat protons and neutrons
as different states of the same particle (the nucleon) and to
classify nuclear states according to the different representation
of a symmetry group, the isospin SU(2). In this scheme,
protons and neutrons are characterized by the isospin quantum
number T = 1/2, with a third component T3 = +1/2 and
−1/2, respectively. States of nuclei with the same mass
number A can be grouped, according to the value of the
isospin T , in isospin multiplets of 2T + 1 states belonging to
the different nuclei, distinguished by the value of T3 = (Z −
N )/2. Isospin symmetry is violated by the electromagnetic
interaction (mostly due to Coulomb forces among protons)
and, to a lesser extent, also by nuclear forces. However, the
most important part of the Coulomb interactions is diagonal
with respect to T3 and mainly contributes to the mass difference
among various members of the isospin multiplet. Finer effects
of the symmetry-breaking forces can be investigated by
measuring the so-called mirror energy differences [2] or, more
generally, differences in excitation energies among members
of a multiplet. In recent years, this field has become the object
of a considerable number of experimental and theoretical
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studies, as the level schemes of nuclei with T3 = +1/2 (i.e.,
Z = N + 1) could be measured for increasingly larger values
of A. Furthermore, when transition probabilities could be
determined, their comparison between mirror nuclei opened
an important window to investigate the amount and the origin
of isospin violation.

Here, we limit our discussion to the relatively simple case
of E1 transitions [3]. The E1 transition operator is expected
to be pure isovector, at least in the limit of long wavelengths,
where Siegert’s theorem [4] holds. This fact implies that (1) E1
transitions with �T = 0 in nuclei with Z = N are forbidden
and that (2) corresponding E1 transitions in mirror nuclei have
equal reduced strength. Both rules are to some extent violated
by isospin-non-conserving (mainly, Coulomb) interactions.
In the Z = N case, these violations appear as second-order
effects, while in mirror nuclei the effect is of first order. The
difference is due to the interference between the irregular
amplitude (symmetric with respect to the exchange of the two
nuclei in the doublet) with the regular amplitude (which is
isovector antisymmetric with respect to the exchange).

In the following, we discuss the relative importance
of different possible sources of asymmetry in mirror E1
transitions. As a simple example, we consider in particular
those nuclei which can be described by the nuclear shell
model in a limited Hilbert space, containing a full major
shell and the unique-parity intruder from the next major shell.
Although the particle-hole excitations involving all states of
the higher shell must be considered for a reliable description
of the E1 transitions, we assume that the largest part of the
E1 amplitudes only involves the intruder orbital jI and, as a
consequence, only the largest-j orbital, jN = jI − 1, of the
lower major shell. It is important to note that the inclusion
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FIG. 1. Partial level scheme of 67Se and 67As, showing the decay
of the lowest 9/2+ state. Energy labels are in keV. (Adapted from
Ref. [6].)

of more orbitals in the calculation, briefly discussed in
Appendix C, does not change substantially most of the results.

Actually, strong asymmetries in B(E1) values have been
observed in several mirror transitions, e.g., pairs of mirror
nuclei of the sd and pf major shells [5,6]. The clearest
examples, however, were found in light N � Z nuclei, such
as 17O and 17F. Such nuclei often exhibit large differences
in the neutron and proton binding energies, and coupling to
the continuum needs to be taken into account. The present
discussion is limited instead to heavier mirror nuclei, in which
the smaller binding energy of the proton is compensated by
the larger coulomb barrier.

As a typical example (“benchmark” in this work), we
consider the mirror pair 67As-67Se, whose structure involves
the pf shell plus the g9/2 intruder orbital. This doublet has been
investigated in a recent experiment at GAMMASPHERE [6].
Two pairs of mirror transitions with a sizable E1 component
have been observed, connecting the lowest 9/2+ state to lower-
lying 7/2− levels (Fig. 1). The measured E1 strengths and the
absolute value of the corresponding E1 matrix elements are
reported in Table I. The 9/2+ state has presumably a rather
pure g9/2 character, while the daughter states have a complex
structure and contain only a small component that can be
reached by the E1 transition. As a consequence, the observed
values of B(E1) are very small.

All numerical results reported in the following will refer
to this particular pair of nuclei. The radial integrals have been
obtained with single-particle wave functions in a Woods-Saxon
potential with spin-orbit interaction, as specified in Ref. [8].
These integrals change slowly with the atomic number, and
for the f7/2 → d5/2 transitions in the middle of the sd shell
they would give results very close to those of the g9/2 → f7/2

transitions in mass A = 67.
In Sec. II, we derive the expression of the E1 transition

amplitude from the intruder state a (Ja = jI ) to one of the

TABLE I. Values of B(E1) for the transitions proceeding from
the lowest 9/2+ state in 67Se and 67As, as deduced from lifetimes and
M2/E1 ratios, determined in Ref. [6].

Nucleus Eγ B(E1) |( 9
2

+||M(E1)|| 7
2

−
)|

(keV) (e2 fm2) (e fm)

67As 725 1.4 ± 0.4 × 10−6 3.7 ± 0.5 × 10−3

67Se 717 0.4 ± 0.4 × 10−6 2.0 ± 2.0 × 10−3

67As 319 8.3 ± 2.5 × 10−6 9.1 ± 1.3 × 10−3

67Se 303 <1.4(9) × 10−6 <3.7(11) × 10−3

normal-parity states b (Jb). No specific assumptions are made
on the structure of these states, apart from the fact that orbits
of the higher major shell, different from the intruder, give
negligible contribution.

In the following sections, we discuss the different processes
that can lead to the presence of an (induced) isoscalar E1
transition amplitude, in addition to the main isovector term.
In Sec. III we consider the effect of higher-order terms in
the nucleonic current, in addition to those considered in the
Siegert theorem, which are increasingly important when the
long-wavelength assumption fails.

In Sec. IV we discuss several simple effects related to the
mixing of wave functions: Coulomb mixing between neigh-
boring states (Sec. IV A) and between states of very similar
structure, such as analog-antianalog mixing (Sec. IV B). None
of the processes considered up to this point seems able to justify
the observed asymmetry. We can conclude that the difference
in the wave functions of the two mirror nuclei involves mainly
(weak) mixing with a large number of states, possibly lying
rather far in energy from the levels considered. There are two
different approaches to consider this situation. In the most
direct treatment, the residual interactions in the two mirror
nuclei are assumed from the start to be different and to include
the Coulomb interaction (as well as other possible isospin
violating terms). It is well known that most of the E1 strength
is shifted to higher-lying collective states, while the low-lying
E1 transitions remain substantially hindered, due to the
destructive interference among the individual contributions. If
the residual interactions are not identical in the two mirror
nuclei, the negative interference can amplify substantially
these differences in the resulting B(E1). This mechanism is
easy to understand, but even if a shell-model calculation in
this necessarily huge Hilbert space were to become possible,
the results would scarcely be transparent with respect to
the nature of the processes involved. One could consider,
however, the same problem from a different point of view.
Namely, let one suppose that a zeroth-order calculation were
performed with isospin-conserving residual interaction. As a
next approximation, Coulomb interactions could be included
to evaluate, to first order, the mixing among zeroth-order states.
As in the former approach, one should expect that coherent
contributions from collective states play a significant role in
producing the E1 asymmetry, and the concentration of the
E1 strength in the collective states has a role in depleting
the E1 strengths of low-lying transitions. The advantage of
this approach is that it can give semiquantitative predictions
on the B(E1) asymmetries, even without knowledge of their
absolute value. Furthermore, it would elucidate the principal
process (or processes) responsible for the largest part of the
observed effects. This kind of process, which could in principle
account for the magnitude of the observed effects (namely, the
coherent contribution of states belonging to the giant isovector
monopole resonance), is discussed in detail in Sec. IV C.

II. ISOVECTOR AND ISOSCALAR CONTRIBUTIONS

In the following calculations, the E1 transition is assumed
to take place from an intruder single-particle orbital jI to a
normal-party orbital jN = jI − 1 (or vice versa). The parent
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state a will be the lowest intruder, with Ja = jI and parity
π̄ . A possible daughter state b must have Jb = Ja ± 1 or Ja

and parity π = −π̄ . Its wave function can contain pairs inside
intruder orbitals coupled to zero: in this case, the transition
could proceed from a jN orbital present in a to a jI orbital in b.

If we expand the wave functions of states a and b in terms
of products of the one-body wave function times the core wave

function (with the proper fractional parentage coefficients
Cfp) the only terms of the expansion that contribute to the
transition are those having a common core state (of isospin
Tc = 0 or 1) for both states a and b and the single-particle
orbit changing from jI to jN (with a core state J+

μ of
positive parity) or vice versa (with a core state J−

μ of negative
parity):

|a; Ja,Ma; 1/2, T3〉 =
∑

μ

Cfp(a|jI ; μ, J+
μ , Tc)[φ(jI ) ⊗ �(μ, J+

μ , Tc)](Ja,1/2)
Ma,T3

+
∑

μ

Cfp(a|jN ; μ, J−
μ , Tc)[φ(jN ) ⊗ �(μ, J−

μ , Tc)](Ja,1/2)
Ma,T3

+ · · · , (1)

|b; Jb,Mb; 1/2, T3〉 =
∑

μ

Cfp(b|jN ; μ, J+
μ , Tc)[φ(jN ) ⊗ �(μ, J+

μ , Tc)](Jb,1/2)
Mb,T3

+
∑

μ

Cfp(b|jI ; μ, J−
μ , Tc)[φ(jI ) ⊗ �(μ, J−

μ , Tc)](Jb,1/2)
Mb,T3

+ · · · . (2)

Taking into account the relation, to be used both in ordinary space and in isospin space,

([j1 ⊗ j2]J ||U (K)(1)||[j ′
1 ⊗ j2]J ′) = (−1)j1+j2+J ′+K

√
(2J + 1)(2J ′ + 1)

{
j1 J j2

J ′ j ′
1 K

}
(j1||U (K)||j ′

1), (3)

where U (K) is a tensor operator of rank K acting only on the subspace “1,” we obtain for the reduced matrix element between
states a and b(

b, Jb, Tb

∣∣∣∣∣∣M(1K)
E

∣∣∣∣∣∣a, Ja, Ta

)
=
∑
Tc

(−1)Tc+K+1T̂aT̂b

{
1/2 Tb Tc

Ta 1/2 K

} [∑
μ

(−1)Ja+jN +J+
μ +1 ĴaĴb

{
jN Jb J+

μ

Ja jI 1

}
× n Cfp(a|jI ; μ, J+

μ , Tc) Cfp(b|jN ; μ, J+
μ , Tc)

(
jN

∣∣∣∣∣∣M(1K)
E

∣∣∣∣∣∣jI

)
+
∑

μ

(−1)Ja+jI +J−
μ +1 ĴaĴb

{
jI Jb J−

μ

Ja jN 1

}
n Cfp(a|jN ; μ, J−

μ , Tc) Cfp(b|jI ; μ, J−
μ , Tc)

(
jI

∣∣∣∣∣∣M(1K)
E

∣∣∣∣∣∣jN

) ]
, (4)

where n is the number of active nucleons, Ĵ ≡ √
2J + 1, and the triple bars indicate a reduced matrix element with respect to

ordinary space and to isospin space (with Ta = Tb = 1/2). The operator M(1K)
E is now a tensor of rank 1 in ordinary space and

K = 1 or 0 in isospin space.
Now, (

jN

∣∣∣∣∣∣M(1K)
E

∣∣∣∣∣∣jI

) = (−1)jI −jN
(
jI

∣∣∣∣∣∣M(1K)
E

∣∣∣∣∣∣jN

) = +(jI

∣∣∣∣∣∣M(1K)
E

∣∣∣∣∣∣jN

)
. (5)

Here, jI − jN = 1, both single-particle states have isospin 1/2, and the E1 operator is odd under time reversal. We obtain
therefore for the reduced matrix element in ordinary space(
b, Jb; Tb, T3

∣∣∣∣M(1K)
E

∣∣∣∣a, Ja; Ta, T3
) = (−1)1/2−T3

(
Tb K Ta

−T3 0 T3

) (
jN

∣∣∣∣∣∣M(1K)
E

∣∣∣∣∣∣jI

)
(−1)K

∑
Tc=0,1

A(Tc)

{
1/2 Tb Tc

Ta 1/2 K

}
, (6)

where M(11) ≡ D
(1)
IV 	τ and M(10) ≡ D

(1)
IS are the isovector and isoscalar parts of the single-particle electric dipole

operator: (
jN

∣∣∣∣∣∣M(10)
E

∣∣∣∣∣∣jI

) = (
jN

∣∣∣∣D(1)
IS

∣∣∣∣jI

)
(1/2||1||1/2),

(
jN

∣∣∣∣∣∣M(11)
E

∣∣∣∣∣∣jI

) = (
jN

∣∣∣∣D(1)
IV

∣∣∣∣jI

)
(1/2||	τ ||1/2) (7)

and the core-isospin-dependent coefficients A(Tc) (Tc = 0 or 1) are

A(Tc) = (−1)Tc 2ĴaĴb

[∑
μ

(−1)J
+
μ +Ja+jN

{
jN Jb J+

μ

Ja jI 1

}
nCfp(a|jI ; μ, J+

μ , Tc) × Cfp(b|jN ; μ, J+
μ , Tc)

+
∑

μ

(−1)J
−
μ +Jb+JI

{
jI Jb J−

μ

Ja jN 1

}
nCfp(a|jN ; μ, J−

μ , Tc) × Cfp(b|jI ; μ, J−
μ , Tc)

]
. (8)
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With Ta = Tb = 1/2 and Tc = 0 or 1, by inserting the
numerical values of the coefficients1 one obtains(

b, Jb; 1/2, T3

∣∣∣∣M(11)
E

∣∣∣∣a, Ja; 1/2, T3
)

= (−1)1/2+T3

6
[A(1) + 3A(0)]

(
jI

∣∣∣∣D(1)
IV

∣∣∣∣jN

)
, (9)(

b, Jb; 1/2, T3

∣∣∣∣M(10)
E

∣∣∣∣a, Ja; 1/2, T3
)

= 1
2

[
A(1) − A(0)

](
jI

∣∣∣∣D(1)
IS

∣∣∣∣jN

)
. (10)

The leading isovector term in the single-particle operator is, in
our case,(

jI

∣∣∣∣D(1)
IV

∣∣∣∣jN

) = e

2
〈jI |r|jN 〉 (jI ||Y (1)||jN ), (11)

where Y (1) is the spherical harmonic for � = 1.
The different forms of possible isoscalar contributions are

discussed in the following sections.

III. HIGHER-ORDER TERMS AFTER SIEGERT

It is well known that the usual expression of electric
transition amplitudes, deduced from Siegert’s theorem, is only
valid in the long-wavelength limit. The complete expression
for the electric transition amplitude, in which relativistic
corrections are also taken into account, is given by Friar and
Fallieros [7] as

T (E,LM) = kL−1

(2L + 1)!!

×
∫

dr3

[
i

√
L + 1

L
ρ̇(	r)rLY

(L)
M (r̂)gL(kr)

+ 2k2r

L + 2
	μ(	r) · 	Y (L,1)L

M (r̂)hL(kr)

]
, (12)

where 	Y (L,1)L
M is the vector spherical harmonic and

gL(z) ≈ 1 − Lz2

2(L + 2)(2L + 3)
+ · · · ,

hL(z) = −L + 2

Lz

d

dz

{
z−2L d

dz
[z2L+1gL(z)]

}
≈ 1 + · · · .

(13)

For our purposes, it will be sufficient to consider only the
first term after the Siegert limit, as given in Eqs. (13). We
will consider first the part of the integral (12) containing the
time derivative of the charge density ρ = ρ0(	r) exp(−ikct),
approximating the nucleus to an ensemble of pointlike
nucleons:

ρ̇ = −ikcρ(	r) ≈ −ikc
∑ 1 + τ3(i)

2
e δ(	r − 	ri). (14)

1Namely, (1/2||1||1/2) = √
2; (1/2||	τ ||1/2) = √

6; ( 1/2 K 1/2
−T3 0 T3

) =
(−1)1/2−T3/

√
2 for K = 0 and = 1/

√
6 for K = 1; { 1/2 K Tc

1/2 1/2 K
} =

1/6 for K = Tc = 1 and = (−1)Tc−1/2 for all other cases.

The isovector part of the E1 transition operator is, for a single-
particle transition,

DIV (E1)τ3 =
√

2

3

e

2
kc rY (1)(r̂)τ3. (15)

To a first approximation, the isoscalar part of the transition
amplitude only comes from the second term of the series
expansion of gL(kr). As we have to deal with a one-body
operator, we can easily obtain the amount of this correction
with respect to the main (Siegert) term, for each single-particle
transition:〈

�1, j1

∣∣∣∣DE
IS(E1)

∣∣∣∣�2, j2
〉

〈�1, j1||DIV (E1)||�2, j2〉 = − k2

30

〈�1, j1|r3|�2, j2〉
〈�1, j1|r|�2, j2〉 . (16)

Now we can estimate the numerical value of this ratio for the
case of the A = 67 doublet [6] chosen as a suitable benchmark,
and for a g9/2 → f7/2 transition. With Woods-Saxon radial
wave functions one obtains

〈f7/2|(r/R0)3|g9/2〉
〈f7/2|r/R0|g9/2〉 = 0.834. (17)

Assuming R0 = 1.27A1/3 fm = 5.158 fm, one obtains

k2

30

〈f7/2|r3|g9/2〉
〈f7/2|r|g9/2〉 = 1

30
(kR0)2 〈f7/2|(r/R0)3|g9/2〉

〈f7/2|r/R0|g9/2〉
= 1.90 × 10−5(Eγ [MeV])2. (18)

The evaluation of the second part of Eq. (12) can be easily
performed if we substitute the continuous magnetic density
	μ(	r) with that of an ensemble of pointlike nucleons with
spin:

	μ(	r) = μn

∑
i

{
1+τ3(i)

2
[	�i+gp	si]+1−τ3(i)

2
gn	si

}
δ(	r−	ri)

= μn

2

∑
{[ 	ji + (gp − 1 + gn)	si]

+ [ 	ji + (gp − 1 − gn)	si]τ3(i)}, (19)

where μn = eh̄/(2Mp) is the nuclear magneton (and Mp is the
proton mass). On the basis of Eq. (18), we can observe that
the magnitude of this term in comparison to the first term of
Eq. (12) is given by

k2μn

kec
= h̄kc

2Mpc2
≈ 0.53 10−3Eγ [MeV]. (20)

Here, we are only interested in the isoscalar part, where the
contribution of the term 	s is hindered due to the numerical
factor gp − 1 + gn ≈ 0.76. The evaluation of the matrix
elements of 	s · 	Y (L,1)L

M and 	j · 	Y (L,1)L
M is performed in detail

in Appendix A. For our benchmark, corresponding to a
g9/2 → f7/2 single-particle transition, one obtains(

g9/2

∣∣∣∣DM
IS

∣∣∣∣f7/2
)

(g9/2||DIV ||f7/2)
≈ −2

√
2

3

kμn

ec

[
(gp − 1 + gn)√

6
− 1√

2

]
≈ 2 × 10−4 (Eγ [MeV]) (21)

if we assume that the above description of the magnetic density
is approximately correct.

044311-4



ISOSPIN SYMMETRY VIOLATION IN MIRROR E1 . . . PHYSICAL REVIEW C 86, 044311 (2012)

For γ -ray energies around 1 MeV, both correction terms are
far too small to justify the observed asymmetries in A = 67.

IV. THE COULOMB MIXING OF WAVE FUNCTIONS

If one takes into account the level mixing due to the
Coulomb interaction Vc, the wave function of a pure eigenstate
|a0〉 of the charge-invariant Hamiltonian is changed into a new
one, |a′〉. To first order,

|a′〉 = |a0〉 +
∑

k

〈ak|Vc|a0〉
E(a0) − E(ak)

|ak〉, (22)

where the sum is extended over all states |ak〉 having the same
Jπ as |a0〉, and which may or may not have the same isospin.
The E1 transition matrix element between the modified states
a′ and b′ is, again to first order,

〈b′|M(E1)|a′〉 = 〈b0|M(E1)|a0〉
+
∑ 〈ak|Vc|a0〉

E(a0) − E(ak)
〈b0|M(E1)|ak〉

+
∑ 〈b0|Vc|bk〉

E(b0) − E(bk)
〈bk|M(E1)|a0〉

≡ 〈b0|M(E1)|a0〉 + 〈b0|M̃(E1)|a0〉. (23)

It was assumed, here, that the M(E1) operator is pure
isovector. The ensemble of first-order corrections [indicated as
〈b0|M̃(E1)|a0〉] transforms as an even tensor in isospin space.
In the T = 1/2 or T = 0 subspaces, it can be considered as an
induced isoscalar amplitude.

If T3 = 0 and the unperturbed states a0 and b0 have the
same isospin, the first term of the sum (23) vanishes and only
the induced part contributes. Instead, if T3 = ±1/2, the first
term is the leading one and the other two are only first-order
corrections.

The Coulomb potential can be written as the sum of
isoscalar, isovector, and rank-2 isotensor terms:

Vc = 1

2

∑
i

∑
j �=i

e2

rij

1 + τ3(i)

2

1 + τ3(j )

2

= 1

8

∑
i

∑
j �=i

e2

rij

[
1 + 1

3
[τ (i) · τ (j )]

]

+
∑

i

e

2
τ3(i)

∑
j �=i

e

2

1

rij

+1

8

∑
i

∑
j �=i

e2

rij

[
τ3(i)τ3(j ) − 1

3
[τ (i) · τ (j )]

]
. (24)

The isoscalar part can be included in the charge-invariant
Hamiltonian. The matrix elements of the isotensor term vanish
in the T = 1/2 subspace. They could contribute to the mixing
with a T = 3/2 state but would produce, in any case, equal
effects in two mirror nuclei.

Therefore, any difference between mirror nuclei has to be
attributed to the mixing induced by the isovector term V (1)

c :

V (1)
c =

∑
i

e

2
τ3(i)

∑
j �=i

e

2

1

rij

, (25)

where V (1)
c is, obviously, a two-body operator. It is possible,

however, to approximate its matrix elements with those of a
suitable one-body operator (see [8], Eqs. (2)–(104). Actually,
the second sum in Eq. (25) corresponds to the Coulomb
potential of a system of A − 1 pointlike charges e/2 associated
with all nucleons j different from the nucleon i, and we can
approximate it with the electrostatic potential of a uniformly
charged sphere of radius R, i.e., for r < R

ϕc(r) ≡ e(A − 1)

2R
fc(r/R) ≈ e(A − 1)

2R

3R2 − r2

2R2
. (26)

(Slightly different forms of the function fc will be considered
in the following.) With these approximations,

V (1)
c ≈

∑
i

e

2
τ3(i)ϕc(ri)

= eT3ϕc(0) −
∑

i

e

2
τ3(i)[ϕc(0) − ϕc(r)]

≡ eT3ϕc(0) + Ṽ (1)
c (27)

and, for the potential ϕc of a uniformly charged sphere,

Ṽ (1)
c = −e(A − 1)

R3

∑
i

er2
i τ3(i)

8
. (28)

The first term of Eq. (27) is diagonal and does not contribute
to the mixing. The second term is proportional to the isovector
monopole operator

M(1)(E0) =
∑

i

e r2
i τ3(i)

2
. (29)

This result will be exploited again in Sec. IV C.
Actually, the use of a constant charge density inside a

sphere to evaluate the electrostatic potential ϕc is somewhat
inconsistent with the Woods-Saxon distribution of matter
density assumed to calculate the radial wave functions.
Moreover, the tails of these wave functions extend outside the
nuclear radius, in a region where ϕc would decrease as 1/r .
Calculations of the electrostatic potential for a Woods-Saxon
density of charge are given in Appendix B. For small values
of r—i.e., as long as the charge density of the Woods-Saxon
distribution is substantially constant and equal to that of the
sphere—the values of Ṽ (1)

c are equal in the two cases, and
the differences in the calculated integral are always rather
small. To obtain the same charge density at the center, the
radius R of the uniformly charged sphere must take a slightly
different value from the parameter R0 of the Woods-Saxon
distribution. Adopting for the Woods-Saxon parameters the
values suggested by Bohr and Mottelson [8], R0 = 1.27A1/3

fm and a = 0.67 fm, for A = 67 one obtains R0 = 5.158 fm
and R = 5.430 fm.

The matrix elements of Ṽ (1)
c are in any case very small.

To produce a sizable mixing of states, it is necessary that the
effect be amplified due to some particular conditions. This can
happen, in particular, when (i) two levels with equal Jπ are
very close in energy or (ii) have very similar wave functions
or (iii) when many different levels contribute coherently to the
mixing. We will consider these three cases in the following
sections.
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A. Close-lying states

The simplest possible case is the mixing of two states
which lie close in energy. As an example, we can consider
the E1 decay of a given state a (of spin Ja) toward two states
b1 and b2 of equal angular momentum Jb, and rather close
in energy. In this case, taking into account only the Coulomb
mixing between b1 and b2 (and neglecting small isoscalar
terms in the E1 operator) we obtain up to first order

(b′
1, Jb||M(E1)||a, Ja)

= (b1, Jb||M(E1)||a, Ja) + αT3(b2, Jb||M(E1)||a, Ja)

(30)
(b′

2, Jb||M(E1)||a, Ja)

= (b2, Jb||M(E1)||a, Ja) − αT3(b1, Jb||M(E1)||a, Ja)

(31)
with

αT3 = 〈b1|Ṽ (1)
c |b2〉/[E(b1) − E(b2)]. (32)

In fact, as a consequence of the Wigner-Eckart theorem, the

matrix element of Ṽ (1)
c must be proportional to that of T3.

The reduced transition probabilities become, up to first
order,

B(E1; a → b′
1) = 1

2Ja + 1
[(b1, Jb||M(E1)||a, Ja)2

+ 2αT3(b1, Jb||M(E1)||a, Ja)

× (b2, Jb||M(E1)||a, Ja)] (33)

B(E1; a → b′
2) = 1

2Ja + 1
[(b2, Jb||M(E1)||a, Ja)2

− 2αT3(b2, Jb||M(E1)||a, Ja)

× (b1, Jb |M(E1)||a, Ja)]. (34)

Hence, the sum of the two reduced strengths,

B(E1; a → b′
1) + B(E1; a → b′

2)

= 1

2Ja + 1
[(b1, Jb||M(E1)||a, Ja)2

+ (b2, Jb||M(E1)||a, Ja)2], (35)

is independent of T3 and consequently identical in the two
mirror nuclei. If one of the two unperturbed transition
strengths (either for a → b1 or a → b2) is much smaller than
the other, a large percentage difference between mirror values
can be found, but only for the weaker transition.

B. Analog-antianalog mixing

A second interesting case concerns the mixing between two
very similar wave functions, as for a pair of analog-antianalog
states (which would be a very favorable case of the mixing of
T = 1/2 and T = 3/2 states discussed in Ref. [9]). Let us
consider, as a simple example, the state obtained with the
coupling of a jI = 9/2 nucleon to the lowest state φ0 (Jπ =
0+, T = 1) of the isospin triplet A = 66. Isospin 3/2 states are
obtained in the two |T3| = 3/2 nuclei. In the |T3| = 1/2 nuclei
67As and 67Se two independent wave functions will result from
the coupling, and two pure isospin states can be constructed

by proper linear combinations: a T = 3/2 state |a3〉, which
is the isospin analog of those in the |T3| = 3/2 nuclei, and a
T = 1/2 state |a1〉, sometime referred to as the antianalog of
them. Here we will give the results for the T3 = +1/2 nucleus
(from which, those for T3 = −1/2 can be easily deduced by
means of the Wigner-Eckart theorem):

|a3〉 = |[φj (T = 1/2) ⊗ �0(Tc = 1)]j, T = 3/2〉
= c1|φπ (g9/2) �0(T3 = 0)〉 + c2|φν(g9/2) �0(T3 = 1)〉,

(36)

|a1〉 = |[φj (T = 1/2) ⊗ �0(Tc = 1)]j, T = 1/2〉
= c2|φπ (g9/2) �0(T3 = 0)〉 − c1|φν(g9/2) �0(T3 = 1)〉,

(37)

where, for T3 = +1/2,

c1 = (1/2, 1/2, 1, 0 | 3/2, 1/2)

= −(1/2,−1/2, 1, 1 | 1/2, 1/2) =
√

2/3 (38)

and

c2 = (1/2,−1/2, 1, 1 | 3/2, 1/2)

= (1/2, 1/2, 1, 0 | 1/2, 1/2) =
√

1/3. (39)

We now use Eqs. (27) and (28) to approximate the nondiagonal
part of the isovector Coulomb interaction V

(1)
C with a one-

body operator Ṽ
(1)
C , whose matrix element between analog

and antianalog states is, for T3 = +1/2,

〈a3|Ṽ (1)
C |a1〉 = c1c2〈φπ�0(1, 0)|Ṽ (1)

C |φπ�0(1, 0)〉
− c2c1〈φν�0(1, 1)|Ṽ (1)

C |φν�0(1, 1)〉
= c1c2

[〈φ|Ṽ (1)
C (π )|φ〉 − 〈φ|Ṽ (1)

C (ν)|φ〉
− 〈�0(1, 1)|Ṽ (1)

C |�0(1, 1)〉]. (40)

The diagonal matrix element of the isovector operator Ṽ
(1)
C

over the core state T = 1, T3 = 0 is zero.
Starting from Eq. (40) and assuming an energy spacing

E(a3) − E(a1) = �E, we can now estimate at least the order
of magnitude of the mixing coefficient. For T3 = +1/2,

α = 〈a3|Ṽ (1)
C |a1〉

(−�E)
= c1c2

(A − 1)e2

8R �E

[
2〈g9/2| r2

R2
|g9/2〉

− 〈�0(1, 1)|
∑

i

τ3(i)
r2
i

R2
|�0(1, 1)〉

]
. (41)

In the second term, the contributions of a proton and of a
neutron in the same orbit cancel one another, due to the
opposite eigenvalue of τ3. There are, however, two excess
protons in the T3 = 1 core state. If all the radial wave functions
of active nucleons in the core were equivalent to that of the jI

orbit, the second term in the sum of Eq. (41) would exactly
cancel the first one. We can expect, therefore, a resulting
matrix element substantially smaller than the first term alone,
due to the effect of the core term. However, the expectation
value of r2/R2 in the jI = g9/2 orbit is certainly larger than
those for the lower orbits in the core. For A = 67, and with
Woods-Saxon wave functions, the radial integral of (r/R)2 in
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the 0g9/2 orbit is 0.7495, while in the normal-party orbits 0f7/2.
0f5/2, 1p3/2, and 1p1/2 it is, respectively, 0.6251, 0.5922,
0.6251, and 0.6359. In Eq. (41), we will use the average of
these values, 〈r2/R2〉 = 0.6119, and the above estimate
of the matrix element in the g9/2 orbit, to evaluate an order
of magnitude for the analog-antianalog mixing.2 Numerically,
with c1c2 = √

2/3, A = 67, and R = 5.43 fm and assuming
�E ≈ 4 MeV as in 59Cu [10], we obtain α ≈ 0.071. As the
matrix element of the isovector interaction Ṽ

(1)
C between a state

of isospin 3/2 and a state of isospin 1/2 is

〈3/2, T3|Ṽ (1)
C |1/2, T3〉 = (−1)3/2−T3

(
3/2 1 1/2
−T3 0 T3

)
× (

3/2
∣∣∣∣Ṽ (1)

C

∣∣∣∣1/2
)

(42)

the value of α has equal sign in both nuclei of the doublet.
The E1 transition matrix element from the state |a′

1〉 to a
given state |b〉 will be, at first order,

〈b||M(E1)||a′
1〉 = 〈b||M(E1)||a1〉 + α〈b||M(E1)||a3〉. (43)

We assume, for sake of simplicity, that state b has pure isospin
1/2. If, as we have supposed, the E1 transition proceeds from
a jI = 9/2 to a jN = 7/2 single-particle state, we can use
for state |b〉 a fractional parentage expansion in the style of
the first line of Eq. (2). But only the terms corresponding to
the coupling of a nucleon in the state jN = 7/2 to the core
configuration �0 with J = 0, T = 1 can be reached by the
E1 transition. We can write the (presumably small) part of the
wave function of state b which is relevant for the E1 transition
in the form of Eq. (37):

|b〉 = |[φj (T = 1/2) ⊗ �0(Tc = 1)]j, T = 1/2〉 + · · ·
= c2|φπ (f7/2) �0(T3 = 0)〉

− c1|φν(f7/2) �0(T3 = 1)〉 + · · · . (44)

Taking into account the effective charges for the E1 transition,
επ = 1/2 and εν = −1/2, from Eq. (43) we obtain

(b||M(E1)||a′
1) = [(|c2|2επ + |c1|2εν) + αc1c2(επ − εν)]

× (f7/2||erY (1)||g9/2)

= −1 + 2
√

2 α

6
(f7/2||erY (1)||g9/2).

For T3 = ±1/2, using Eq. (42) we obtain the numerical
coefficient (∓1 + 2

√
2 α)/6. In conclusion, the E1 strength in

the two mirror transitions is proportional to (∓1 + 2
√

2α)2.
The mirror asymmetry in the E1 strength is therefore,
approximately,

B(E1, As) − B(E1, Se)

B(E1, As) + B(E1, Se)
= 4

√
2 α

1 + 8α2
≈ 0.386, (45)

and the ratio B(E1, As)/B(E1, Se) ≈ 2.26. We note, however,
that such a large asymmetry has been obtained for a pure
configuration of the analog and antianalog states, while the
antianalog strength is usually spread over a number of final

2See Table II in Appendix B. With a Woods-Saxon charge
distribution, the estimate does not change by more than a few percent.

states [11], a situation which will strongly reduce the mirror
asymmetry in the E1 strength. A detailed shell-model investi-
gation would possibly elucidate the role of analog-antianalog
mixing in the E1 asymmetry between mirror nuclei, as the
analog and the antianalog states can be described in the same
shell-model space.

C. Coherent enhancement of induced isoscalar E1

The Coulomb mixing discussed in the previous sections
involves states belonging to the same set of shell-model
orbits necessary for the (unperturbed) parent and daughter
state of the E1 transitions (presumably limited to two major
shells). However, it is well known that a comparatively large
contribution to the isospin mixing comes from states outside
this model space, such as those belonging to the giant isovector
monopole resonance [12]. Obviously, the mixing with any
of these higher-lying states, induced by the isovector part
of the Coulomb interaction, is expected to be very small.
The combined effect of many higher-lying states on the E1
transition amplitude can however become appreciable if their
individual contributions combine coherently. We shall see how
this can be the case.

We have seen [Eqs. (27) and (28)] that the nondiagonal
isovector part of the Coulomb interaction Vc can be approxi-
mated with a one-body operator Ṽ

(1)
C , having the same form of

the isovector monopole operator M(1)(E0). Therefore, it is a
sensible approximation [13,14] to consider in the ensemble of
states ak , bk (with k �= 0) of Eqs. (22) and (23) only those of
the isovector monopole resonances built over a0 and b0, and
to use the mean excitation energy �Ea (or �Eb) of the giant
resonance over the state a0 (or b0) in the place of those of
individual states. In this case, Eq. (23) becomes

〈b′|M(E1)|a′〉 = 〈b0|M(E1)|a0〉 + 〈b0|M̃(E1)|a0〉, (46)

where

〈b0|M̃(E1)|a0〉 ≈ −1

�Ea

∑
〈b0|M(E1)|ak〉〈ak|Vc|a0〉

+ −1

�Eb

∑
〈b0|Vc|bk〉〈bk|M(E1)|a0〉.

(47)

We are only interested in the isoscalar part of M̃(E1), which
results from the isovector part V (1)

c of the Coulomb interaction.
By approximating the nondiagonal part of V (1)

c with the one-
body potential of Eq. (28), the closure approximation gives

∑
〈b0|Ṽ (1)

c |bk〉〈bk|M(E1)|a0〉 ≈ 〈b0|Ṽ (1)
c M(E1)|a0〉,∑

〈b0|M(E1)|ak〉〈ak|Ṽ (1)
c |a0〉 ≈ 〈b0|M(E1) Ṽ (1)

c |a0〉,
(48)

and therefore [as M(E1) and Ṽ (1)
c commute]

〈b0|M̃(0)(E1)|a0〉 ≈ 2
〈b0|M(E1)Ṽ (1)

c |a0〉
(−�E0)

, (49)
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where we have assumed �Ea ≈ �Eb ⇒ �E0, and so

〈b0|M̃(0)(E1)V (1)
c |a0〉 ≈ 2

(−�E0)
〈b0|

∑
i

e

2
riY

(1)(r̂i)τ3(i)

×
∑

j

e

2
[ϕc(rj ) − ϕc(0)]τ3(j )|a0〉

≡ 〈b0|M̃(0)
1−b + M̃(0)

2−b|a0〉, (50)

where M̃(0)
1−b is the one-body operator resulting from the term

with j = i in the second sum, andM̃(0)
2−b is a two-body operator

resulting from all other terms. As τ 2
3 = 1, the first term is

M̃(0)
1−b = 1

�E0

∑
i

e[ϕc(0) − ϕc(ri)]
e

2
riY

(1)(r̂i). (51)

With the expression of ϕc corresponding to the uniformly
charged sphere, given in Eq. (26) (and extrapolated also for
r > R), one obtains for the one-body operator

M̃(0)
1−b ≡ C

∑
i

r3
i

R2

e

2
Y (1)(r̂i), (52)

which has the same structure as the one coming from the
second-order term in the series expansion of Eq. (12), with a
different coefficient,

C = +(A − 1)e2/(8R�E0). (53)

An alternative calculation using a Woods-Saxon charge distri-
bution is reported in Appendix B.

As the one-body operator (49) is isoscalar, its ma-
trix elements can be expressed in the form anticipated
in Eq. (10):

(
b, Jb;

1

2
, T3

∣∣∣∣∣
∣∣∣∣∣∑

i

e

2

r2
i

R3
riY

(1)(r̂i)

∣∣∣∣∣
∣∣∣∣∣ a, Ja;

1

2
, T3

)

= 1

2
[A(1) − A(0)]

e

2
(jN ||r Y (1)(r̂)||jI )

〈jN |(r/R)3|jI 〉
〈jN |(r/R)|jI 〉 .

(54)

Again, we can evaluate the numerical results for our bench-
mark doublet. For A = 67, we assume R = 5.30 fm. The
energy difference is �E0 ≈ 20 MeV in 60Ni (according
to [15]). As �E0 is expected to scale as A−1/3 [12], we
assume �E0 ≈ 19.3 MeV for A = 67. With these assump-
tions, the numerical value of the adimensional coefficient C

in Eq. (53) is C = 0.116. For the ratio of radial integrals
[the last factor of Eq. (54)], with the radial wave functions
corresponding to the Woods-Saxon potential one obtains
〈g9/2|(r/R)3|f7/2〉/〈g9/2|r/R|f7/2〉 = 0.752.

It remains to considerd the two-body term [the second
term of Eq. (50)]. Again, we can use the fractional parentage
expansion of Eqs. (1) and (2). Here, however, the tensor
operator is the product of two factors: a vector isovector
term acting on the single-particle state and a scalar isovector
one acting on the core state. The product τ3(i)τ3(j ) contains
isoscalar and isotensor parts:

τ3(i)τ3(j ) = [
τ3(i)τ3(j ) − 1

3 (	τ (i) · 	τ (j ))
]+ 1

3 (	τ (i) · 	τ (j )),

(55)

but only the isoscalar is effective if the states a0 and b0

have T = 1/2. To evaluate the reduced matrix element for
the isoscalar part of the two-body operator

M̃(0)
2−b = e2

6�E0

∑
i

riY
(1)(r̂i)

×
(

	τ (i) ·
∑
j �=i

	τ (j )[ϕ(0) − ϕc(rj )]

)
(56)

we can use the standard relations of tensor algebra for the
matrix elements of tensor products to obtain the reduced matrix
element (in ordinary space):3

3In fact, 〈1/2, T3; 1/2, T3|(	τ (i) · 	τ (j )|1/2, T ′
c ; 1/2, T3〉 =

(−1)Tc+1
{

1/2 Tc 1/2
T ′

c 1/2 1

}
(1/2||	τ (i)||1/2)(Tc||	τ (i)||T ′

c ) and (jN , Jμ, Jb||

riY
(1)(i)(rj /R)2)||jI .Jμ, Ja) = Ĵa Ĵb ×

{
jN Jμ Jb

jI Jμ Ja

1 0 1

}
(jN ||riY

(1)(i)||jI )

(Jμ||(rj /R)2||Jμ).

(
b0; Jb; 1/2, T3

∣∣∣∣M̃(0)
2−b

∣∣∣∣a0; Ja, 1/2, T3
)

= e

2
(jN ||rY (1)(r̂)||jI )

C√
3

∑
Tc,T ′

c

(−1)Tc+1

{
1/2 Tc 1/2
T ′

c 1/2 1

}[∑
μ,μ′

(−1)jN+Ja+J+
μ +1 ĴaĴb

Ĵ+
μ

{
Jb jN J+

μ

jI Ja 1

}
Cfp(a|jI ; μ, J+

μ , Tc)

×Cfp(b|jN ; μ′, J+
μ , T ′

c )

(
μ, J+

μ , Tc

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑ r2

j

R2
	τ (j )

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣μ′, J+

μ , T ′
c

)
+
∑
μ,μ′

(−1)jI +Ja+J−
μ +1 ĴaĴb

Ĵ−
μ

{
Jb jI J−

μ

jN Ja 1

}

×Cfp(a|jN ; μ, J−
μ , Tc)Cfp(b|jI ; μ′, J−

c , T ′
c )

(
μ, J−

μ , Tc

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑ r2

j

R2
	τ (j )

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣μ′, J−

μ , T ′
c

) ]
(57)

as Jμ′ = Jμ. As the M̃(0)
2−b operator transforms as a scalar in isospin space, its matrix elements have the same sign in both nuclei

of the isospin doublet.
The parent state can have T = 0 or 1, and in principle we have to consider both diagonal and nondiagonal matrix elements

(in the parent-state variables) of the isovector operator
∑

(r2
j /R2) 	τ (j ). Obviously, its matrix elements vanish when T or T ′ is

equal to zero. Otherwise, we can use again a fractional parentage expansion. Only terms having the same parent can contribute to
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the matrix element and, in addition, the one-body operator has
nondiagonal terms only between single-particle states (with
equal jπ ) differing by at least two units of the principal
quantum number: i.e., it does not possess nondiagonal matrix
elements inside our model space. As for the diagonal ones,
shells (or subshells) completely filled with protons and
neutrons do not contribute to the sum, as they necessarily have
T = 0. If the valence nucleons are all in the same subshell
[or, approximately, in subshells with similar 〈(rj /R)2〉 ≈
〈(r/R)2〉v], the integral over the radial coordinates can be
factorized,

∑ 	τ (i) = 2 	T , and only the diagonal terms with
μ′ = μ survive. Therefore, the matrix element takes the form⎛⎝μ, Jμ, Tc

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑

j

(
r2
j

/
R2
)	τ (j )

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣μ′, Jμ, T ′

c

⎞⎠
≈ 〈(r/R)2〉v(Jμ||1||Jμ)(Tc||2 	T ||T ′

c ) δμ,μ′, (58)

where 〈(r/R)2〉v is the average over active valence nu-
cleons, and (Jμ||1||Jμ) = Ĵμ. For Tc = T ′

c = 1, (Tc|| 	T ||Tc) =√
Tc(Tc + 1)(2Tc + 1) = √

6. By comparing the result with
Eq. (8), we obtain approximately [as the first 6-J coefficient of
Eq. (57) has the value −1/3]:(

b0; Jb; 1/2, T3

∣∣∣∣M̃(0)
2−b

∣∣∣∣a0; Ja, 1/2, T3
)

≈ −C
2

3
A(1)

e

2
(jN ||rY (1)(r̂)||jI )〈(r/R)2〉v. (59)

Actually, the expectation values of r2/R2 for the different
orbitals of the pf shell (estimated with Woods-Saxon wave
functions) do not differ by more than 3% from their average
value 0.615, as we obtain in Appendix B. By using this average
value, one obtains for the numerical coefficient of the two-body
term (2/3)〈(r/R)2〉v = 0.410. As this value is not negligible
in comparison to that of the one-body term (0.752), a sizable
quenching of the isoscalar transition amplitude corresponding
to the one-body term results from the negative interference
of the two-body term. A similar effect is found for the E1
transitions with �T = 0 in the N = Z nuclei [13]. However,
in the present case the quenching only concerns the parent
T = 1 term. As the parent T = 0 term of Eq. (54) has no
counterpart in the two-body matrix element, its contribution
remains unaltered.

If we assume that the most important contribution to
the asymmetry is due to the effect of coherent mixing, as
approximated in this paragraph, we obtain

ε(T3) ≡
(
b, 7/2−; 1/2, T3

∣∣∣∣M̃(10)
E

∣∣∣∣a, 9/2+; 1/2, T3
)(

b, 7/2−; 1/2, T3

∣∣∣∣M(11)
E

∣∣∣∣a, 9/2+; 1/2, T3
)

= (−1)1/2+T3 3C
〈jN |(r/R)3|jI 〉
〈jN |r/R|jI 〉 × ηA(1) − A(0)

A(1) + 3A(0)
,

(60)

where the quenching factor η takes into account the negative
interference with the two-body term of Eq. (50).

Equation (60) only gives an approximate estimate of the
effect, due to the many simplifying assumptions (notably, the
closure approximation) that have been introduced to obtain
this result. Moreover, inclusion in the model space of other

orbitals of the upper major shell (as discussed in Appendix
C) would somewhat alter this result. However, it could be
instructive to evaluate some numerical results, also in the
limited space considered, to show that the coherent mixing
with the isovector giant monopole resonance can explain the
large values of the E1 asymmetries observed in our example
of the A = 67 doublet, while the simplest processes discussed
in the previous sections were unable to do.

With the above estimate, η = (0.752 − 0.410)/0.752 =
0.458 and the asymmetry ratio for the mirror E1 strengths
is

R ≡ B(E1, T3 = −1/2)

B(E1, T3 = +1/2)
=
[

1 + ε−

1 − ε−

]2

, (61)

where we have put ε− ≡ ε(−1/2) = −ε(+1/2). Now, to
obtain a more accurate estimate one should know the ratio
A(0)/A(1), which in turn depends on the Cfp coefficients.

The relative sign ofA(0) andA(1) depends on the combined
effect of all terms in the sum of Eq. (8). However, we can notice
that each of them contains a factor (−1)T . If any of these terms
dominates, the relative sign of A(0) and A(1) is well defined
and negative. Actually, this is very probably the case also under
somewhat broader conditions. Most probably, the second line
of Eq. (8) (corresponding to negative-parity parents) is only a
small correction in comparison to the first one. Let us consider,
from now on, the numerical values corresponding to the A =
67 doublet. We can note that the expression

(−1)J
{

9/2 9/2 J

7/2 7/2 1

}
has always the same (negative) sign for all J values (from
0 to 7) and its value changes very slowly as long as J �
3. Therefore, unless the parentage coefficients have a very
singular behavior, the relative sign is determined only by the
factor (−1)Tc [see also Eq. (4)].

To obtain just an order-of-magnitude estimate of the
expected effect, we could evaluate the asymmetry in
the A = 67 doublet, for two limiting cases in which one of
the two coefficients A(1) and A(0) is negligible in comparison
to the other. Neglecting A(1) one obtains ε− ≈ −0.753C ≈
−0.0872 and the asymmetry ratio R ≈ 0.705.

Taking into account also A(1) would bring smaller asym-
metry (largerR) ifA(1) andA(0) have the same sign, but it can
also result in a larger asymmetry if—as is most probable—they
have opposite sign. If, instead,A(0) is negligible in comparison
to A(1), ε− is positive and its value depends on the coefficient
η, which takes into account the negative interference of
the core terms. With η = 0.458, for A0 � A1 one obtains
ε− ≈ +0.120 and R ≈ 1.62. Again, a larger asymmetry could
be obtained if also a contribution from A0 (having opposite
sign) is included.

These results do not change appreciably if one assumes a
charge distribution of Woods-Saxon shape (Appendix B): one
obtains η = 0.445; for A1 � A0, ε− ≈ −0.0852 and R ≈
0.710; for A1 � A0, ε− ≈ +0.116 and R ≈ 1.58.

A last comment concerns the expected sign of ε−. If the
dominant term in Eq. (60) is the one with the T = 1 parent,
ε− > 0 and the reduced strength should be larger in the nucleus
with N = Z + 1, for all transitions between g9/2 and f7/2.
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The opposite is true if the T = 0 parent dominates. Again,
qualitative considerations can help in predicting the relative
importance of the two terms. It is likely, in fact, that one
of the most important parents be the lowest J = 0. Now, if
A = 4n + 1, the lowest J = 0 parent state is the ground state
of the even-even self-conjugate nucleus with A − 1 nucleons.
Instead, if A = 4n − 1 (as in the case 67As-67Se), the self-
conjugate parent nucleus is odd-odd and the lowest J = 0
parent has T = 1. If this consideration is correct, the predicted
sign of the asymmetry is consistent with the experimental
results in the A = 67 mirror pair.

V. CONCLUSIONS

It seems worth summarizing the results obtained for the
different processes which could, in principle, produce an
asymmetry in the E1 transition strength, as observed in the
case of the 67As-67Se mirror pair. Higher-order terms, either
of “electric” or “magnetic” origin, usually excluded from
calculations by the approximation linked to Siegert’s theorem,
in the case considered are three orders of magnitude lower
than the leading one. We note that these corrections apply to
the transition operator and not to the level wave functions.
Therefore, as long as—as was assumed here—most of the
shell-model terms contributing to the E1 transition involve
the same pair of single-particle states, the same combination
of fractional parentage coefficients is involved for both the
isoscalar and the isovector terms. Thus if the isovector term is
hindered as a consequence of accidental cancellation, a similar
hindrance factor can be expected also for the isoscalar term,
leaving the ratio almost unchanged. Only meson currents,
neglected in our approximate estimation of the magnetic term,
could break, to some extent, the above conclusion.

The Coulomb interaction, mixing in a different way the
level wave functions in the two mirror nuclei, is presumably
at the origin of the observed asymmetries. Its effect could
be enhanced when a pair of levels having equal Jπ lie,
accidentally, close together. For example, this could have
been the case for the two 7/2− levels lying between 640
and 1100 keV in 67As and 67Se. However, if the asymmetry
originated uniquely from the mixing between the two daughter
levels, the total sum of the reduced strengths of the E1
transitions feeding these levels ought to be equal in the mirror
nuclei, in contrast with the experimental evidence.

The Coulomb mixing could also be enhanced if it took
place between states with two “very similar” wave functions.
In Sec. IV B we considered a hypothetical mixing between
an “isospin analog” state and its corresponding “antianalog.”
In the case of mass A = 67, this mixing would lead to an
asymmetry similar in size to the observed effect. It would
also give the right sign for the asymmetries. However, this
would only happen if our T = 1/2, J π = 9/2+ state would
be the exact antianalog of the lowest T = 3/2 state with the
same Jπ , while some spread of the antianalog strength among
different levels is expected also in this region of nuclei [16,17].

The effects of Coulomb mixing considered thus far only
involved states in the same Hilbert subspace needed to describe
the parent and daughter states of the E1 transition: in the
simplest case, a full major shell and at least one particle-hole

excitation to the next major shell. A shell-model calculation
in this Hilbert space could treat, on the same footing, both
the regular (isovector) part of the E1 transition amplitude and
the “induced-isoscalar” term originating from the mixing. In
such a calculation, the isovector part of the two-body Coulomb
interaction could be added to the empirical residual interac-
tions, which could also include the symmetry-violating part
necessary to account for the Coulomb energy differences [18].

Finally, we have considered the possible effect of mixing
with states outside the truncated shell-model space, such as
those belonging to the giant isovector monopole resonance.
With the approximations discussed in Sec. IV C, this effect
could also be expressed in a form that could be treated in the
truncated space, if the mean excitation energy of the monopole
resonance were at least approximately known.

A shell-model calculation in such a restricted basis could
therefore be able to identify the origin of the observed
asymmetry in E1 transition strengths. At the moment, the
coherent contribution of states belonging to the giant isovector
monopole resonance appears as the most probable candidate.
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APPENDIX A: EVALUATION OF THE REDUCED MATRIX
ELEMENTS FOR THE MAGNETIC TERM

Here we evaluate the reduced matrix elements of the
operators entering in the second line of Eq. (12), between
single-particle states �1, j1 and �2, j2. For this purpose, the
following property [19] of vector spherical harmonics is
exploited:

	Y (L,1)J
M · 	v = [Y (L) ⊗ v(1)](J )

M , (A1)

where 	v is a generic vector. Here the cases 	v = 	s and 	v = 	j
are considered.

In the first case, the reduced matrix element of the tensor
product can be obtained easily, because s and Y (L) operate on
different Hilbert spaces

(�1, J1||[Y (L) ⊗ s(1)](J )||�2, J2)

= Ĵ1Ĵ Ĵ2

⎧⎨⎩ �1 1/2 J1

�2 1/2 J2

L 1 J

⎫⎬⎭ (�1||Y (L)||�2)(1/2||s(1)||1/2),

(A2)

where J = L and (1/2||s(1)||1/2) = √
3/2. The relation

(�1, J1||Y (L)||�2, J2)

= (−1)J2+�1+L+1/2

√
3

2
Ĵ1Ĵ2

{
J1 J2 L

�2 �1 1/2

}
(�1||Y (L)||�2)

(A3)
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can be exploited to express the result as a function of
(�1, J1||Y (L)||�2, J2) as in Eq. (11):

(�1, J1||[Y (L) ⊗ s(1)](L)||�2, J2)

= (−1)J2+�1+L+1/2
√

2 L̂

⎧⎨⎩ �1 1/2 J1

�2 1/2 J2

L 1 L

⎫⎬⎭
×
{

J1 J2 L

�2 �1 1/2

}−1

(�1, J1||Y (L)||�2, J2). (A4)

The second case is not so simple, because the operators j

and Y (L) do not commute, so that the symmetrized form of
the operator must be employed. Furthermore, they operate on
the same Hilbert space, but one can exploit the fact that 	j has
no matrix elements between different single-particle states to
obtain

1

2
(�1, J1||[Y (L) ⊗ j (1)](J ) + [j (1) ⊗ Y (L)](J )||�2, J2)

= 1

2
(�1, J1||Y (L)||�2, J2) (−1)J1+J+J2 Ĵ

×
[{

1 L J

J2 J1 J2

}
(J2||j (1)||J2)

+
{

L 1 J

J1 J2 J1

}
(J1||j (1)||J1)

]
, (A5)

where (j ||j (1)||j ) = √
j (j + 1)(2j + 1).

In the present case, L = J = 1, �1 = 4, J1 = 9/2, �2 = 3,
and J2 = 7/2. With these numerical values, the coefficients of
the reduced matrix element of Y (L) in Eqs. (A4) and (A5) are,
respectively,

√
1/6 and −√

1/2.

APPENDIX B: RADIAL WAVE FUNCTIONS AND
COULOMB POTENTIAL WITH A WOODS-SAXON

DISTRIBUTION

The radial wave functions have been calculated by assuming
a Woods-Saxon potential plus spin-orbit part:

V (r) =
[
V0 + Vs

	� · 	s r2
0

r

d

dr

]
1

1 + e(r−R0)/a
, (B1)

with the values of the constants consistent with those of
Bohr and Mottelson [8]: V0 = −51 MeV, Vs = 22 MeV,
R0 = r0A

(1/3), r0 = 1.27 fm, and a = 0.67 fm.
For a consistent evaluation of Coulomb interactions, one

needs the average electrostatic potential ϕc(r) of a distribution
of A − 1 point charges e/2, which will be approximated with a
continuous charge distribution having a Woods-Saxon shape:

ρe(r) = ρ0

1 + e
r−R0

a

, (B2)

where

ρ0 = (A − 1)
e

2

[∫
1

1 + e
r−R0

a

4πr2dr

]−1

. (B3)

(a)

(b)

r [fm]1050

r [fm]1050

ϕc(r)
[e fm−1]

u (r)
[fm−3/2]

0

5

10

0

0.5

-0.5

FIG. 2. (Color online) (a) Electrostatic potential for a uniformly
charged sphere (dashed curve) and with a Woods-Saxon charge
distribution for A = 67 (continuous curve). The dotted curve shows
the continuation outside the sphere of the expression for the uniform
distribution (dashed curve) in the internal region. (b) Examples of
radial wave functions for the Woods-Saxon potential (+ spin orbit)
with the parameters suggested in Ref. [8]: 0g9/2 (continuous curve),
0f5/2 (dashed curve), and 1p1/2 (dotted curve). The vertical dotted
line corresponds to the value of the nuclear radius R.

With the condition that ϕc(r) → 0 for r → ∞, we obtain

ϕc(r) =
∫ ∞

r

dy

y2

∫ y

0

ρ0

1 + e
x−R0

a

x2 dx. (B4)

This integral has been evaluated numerically, for A = 67, with
the parameter values suggested in Ref. [8]. In Fig. 2 , the result
is compared with the potential of a uniformly charged sphere
of charge density equal to ρ0 and total charge (A − 1)e/2. The
radius R of the sphere is determined by the condition

4π

3
R3 = (A − 1)e

2ρ0
=
∫ ∞

0

1

1 + e
r−R

a

4πr2dr. (B5)

To simplify the comparison of the results, ϕc(r) is expressed
in terms of the adimensional function fc(r/R):

ϕc(r) ≡ (A − 1)e

4R
fc(r/R), (B6)

and we define �fc(r) = fc(0) − fc(r). For the (extrapolated)
potential of the uniformly charged sphere, one obtains
�fc(r) = (r/R)2. One must now calculate the matrix elements
of the operators M̃(0)

1−b and M̃(0)
2−b defined in Sec. IV C. For

the one-body term, we consider the ratio

〈f7/2|(r/R)fc(r/R)|g9/2〉
〈f7/2|r/R|g9/2〉 , (B7)
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TABLE II. Values of radial integrals for different assumptions on
the Coulomb potential. In all cases, 〈f7/2|r/R|g9/2〉 = 0.8285.

Constant ρc Woods-Saxon
sphere extrapol. distribution

〈f7/2|r�fc |g9/2〉
〈f7/2|r|g9/2〉 0.700 0.752 0.739

〈g9/2|�fc|g9/2〉 0.697 0.749 0.735
〈f7/2|�fc|f7/2〉 0.594 0.625 0.620
〈f5/2|�fc|f5/2〉 0.564 0.592 0.587
〈p3/2|�fc|p3/2〉 0.572 0.625 0.608
〈p1/2|�fc|p1/2〉 0.580 0.636 0.617

while for the two-body term (and also for the calculations
of Sec. IV B), it is sufficient to evaluate the diagonal matrix
elements of fc(r/R).

By numerical integration, with the parameters of Ref. [8]
one obtains the values of the necessary integrals reported in the

last column of Table II. In the other columns, the corresponding
values are calculated, with the Woods-Saxon wave functions,
for the potential of the uniformly charged sphere and for the
extrapolation of the inner potential outside the sphere [dotted
line in Fig. 2(a)].

APPENDIX C: EFFECT OF THE INCLUSION
OF MORE ORBITALS

Until now, we have assumed that only the intruder orbit
g9/2 is significant for the description of the relevant states.
As a consequence, only the transitions between g9/2 and f7/2

contribute to E1. If other orbitals of the upper major shell (e.g.,
1d5/2) are taken into account, other orbitals of the lower major
shell can be involved in the E1 transitions. We consider now
the changes that must be introduced in our calculations as a
consequence of the inclusion in the model space of the two
complete major shells.

Equation (1) must be modified as follows:

|a; Ja,Ma; 1/2, T3〉 =
∑
jI

∑
μ

Cfp(a|jI ; μ, J+
μ , Tc)[φ(jI ) ⊗ �(μ, J+

μ , Tc)](Ja,1/2)
Ma,T3

+
∑
jN

∑
μ

Cfp(a|jN ; μ, J−
μ , Tc)[φ(jN ) ⊗ �(μ, J−

μ , Tc)](Ja,1/2)
Ma,T3

(C1)

and similarly for Eq. (2). Equation (6) becomes(
b, Jb; Tb, T3

∣∣∣∣M(1K)
E

∣∣∣∣a, Ja; Ta, T3
)

= (−1)1/2−T3

(
Tb K Ta

−T3 0 T3

)∑
jI ,jN

(
jN

∣∣∣∣∣∣M(1K)
E

∣∣∣∣∣∣jI

)
(−1)K

∑
Tc=0,1

AjI ,jN
(Tc)

{
1/2 Tb Tc

Ta 1/2 K

}
, (C2)

with AjI ,jN
(Tc) given by Eq. (8). Finally, Eqs. (9) and (10)

become(
b, Jb; 1/2, T3

∣∣∣∣M(11)
E

∣∣∣∣a, Ja ; 1/2, T3
)

= (−1)1/2+T3

6

∑
jI ,jN

[AjI ,jN
(1) + 3AjI ,jN

(0)]
(
jI

∣∣∣∣D(1)
IV

∣∣∣∣jN

)
,

(C3)(
b, Jb; 1/2, T3

∣∣∣∣M(10)
E

∣∣∣∣a, Ja ; 1/2, T3
)

= 1

2

∑
jI ,jN

[AjI ,jN
(1) − AjI ,jN

(0)]
(
jI

∣∣∣∣D(1)
IS

∣∣∣∣jN

)
(C4)

With these modifications the possible consequences of the
inclusion of more orbitals on the results of the different sections
can now be considered.

Section III only concerns the form of the E1 operator, and
it does not depend on the assumed form of the wave functions.

Section IV A also is completely valid, as the considerations
reported there do not depend on the details of the wave
functions.

Section IV B depends on the assumed structure of the ana-
log and anti-analog states. The choice given there presumably

corresponds to an upper limit of the mixing. For example, in
Eq. (41), the choice of a pure g9/2 orbit corresponds to the
maximum possible value of the expectation value of r2/R2.
Our conclusion, i.e., that this process is not able to explain the
observed effect, is therefore even stronger if other orbitals are
considered.

It remains to consider Sec. IV C. The sum on jI , jN must
be included in Eqs. (54) and (59) to obtain the one-body and
the two-body contributions to the induced isoscalar E1:(

b, Jb;
1

2
, T3

∣∣∣∣M̃(0)
1−b

∣∣∣∣a, Ja ;
1

2
, T3

)
= 1

2

∑
jI ,jN

[AjI ,jN
(1) − AjI ,jN

(0)]
e

2
(jN ||r Y (1)(r̂)||jI )

× 〈jN |(r/R)3|jI 〉
〈jN |(r/R)|jI 〉 (C5)

and(
b0; Jb; 1/2, T3

∣∣∣∣M̃(0)
2−b

∣∣∣∣a0; Ja, 1/2, T3
)

≈ −C
2

3

∑
jI ,jN

AjI ,jN
(1)

e

2
(jN ||rY (1)(r̂)||jI )〈(r/R)2〉v. (C6)
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We obtain therefore

ε(T3) ≡
(
b, 7/2−; 1/2, T3

∣∣∣∣M̃(10)
E

∣∣∣∣a, 9/2+; 1/2, T3
)(

b, 7/2−; 1/2, T3

∣∣∣∣M(11)
E

∣∣∣∣a, 9/2+; 1/2, T3
)

= (−1)1/2+T3 3C

∑
jI ,jN

〈jN |(r/R)3|jI 〉[ηjI ,jN
AjI ,jN

(1) − AjI ,jN
(0)]∑

jI ,jN
〈jN |r/R|jI 〉[AjI ,jN

(1) + 3A|I ,|N (0)]
, (C7)

where ηjI ,jN
has the same meaning as in Eq. (60).
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