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The formalism of the linear response for the Skyrme energy density functional including tensor terms derived
in Refs. [1,2] for nuclear matter is applied here to the case of pure neutron matter. As in Ref. [2] we present
analytical results for the response function in all channels, the Landau parameters, and the odd-power sum rules.
Special emphasis is given to the inverse energy weighted sum rule because it can be used to detect nonphysical
instabilities. Typical examples are discussed and numerical results shown. Moreover, as a direct application,
neutrino propagation in neutron matter is investigated through its neutrino mean-free path at zero temperature.
This quantity turns out to be very sensitive to the tensor terms of the Skyrme energy density functional.
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I. INTRODUCTION

In a recent series of articles [1,2], hereafter denoted
respectively article I and II, the contribution of the zero-range
tensor terms in the Skyrme effective interaction has been
analyzed in the context of the linear response theory. The
first result from these articles is that the tensor terms have very
sizable effects on the response functions. Another important
result is that the inverse energy weighted sum rule can be used
as a tool of diagnosis for instabilities. These two articles were
devoted to symmetric nuclear matter (SNM) only. Since the
construction of an energy density functional (EDF) reliable for
both symmetric matter and neutron matter is of fundamental
importance [3,4], we present here the response functions and
some associated sum rules for pure neutron matter (PNM)
with the same approach. The interest of the present study
is related to spin susceptibilities and ferromagnetic finite
size instabilities in neutron matter [5–21]. Moreover, we use
these results to study the impact of the tensor terms on the
determination of the neutrino mean-free path in PNM. This
is a quantity of intrinsic importance since the cooling of a
neutron star core in its first moments is governed by neutrino
emission and therefore by their mean-free path through dense
matter. Some previous studies using nonrelativistic approaches
[22–27] have revealed some very interesting features of the
mean-free-path properties but they usually neglected the possi-
ble tensor contribution. Since the neutrino mean-free path is
directly related to the response functions which are themselves
affected by the tensor, it is worthwhile to determine precisely
the induced modifications [28,29].

The article is organized as follows: in the first part
devoted to the linear response theory approach, we present
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explicit expressions for the spin response functions, the
Landau parameters, and the sum rules M1, M3, M−1. Since
the technical approach follows closely that of the previous
articles, this part mainly contains figures and discussion; the
formulas are written in the appendices. The second part deals
with the problem of the neutrino mean-free path. We first
give an explicit expression of this quantity in the presence
of tensor interactions, then we show the influence of the
parametrizations of the Skyrme functional.

II. LINEAR RESPONSE APPROACH TO NEUTRON
MATTER

A. Response function

Following article II, the starting point for the determination
of the response functions is the Skyrme energy functional.
Since in neutron matter the isospin is no longer a relevant
quantum number and isovector and isoscalar densities are
equal, it is convenient to define new coupling constants
Cx = Cx

0 + Cx
1 , where x = ρ, τ , �ρ, . . . in such a way that

the energy density functional can be written as

E =
∫

Ed3r, (1)

with

E = Cρ [ρ] ρ2 + C�ρρ�ρ + Cτ (ρτ − j2)

+Cs [ρ] s2 + C∇s (∇ · s)2 + C�ss · �s

+CT

(
s · T −

z∑
μν=x

JμνJμν

)

+CF

[
s · F − 1

2

( z∑
μ=x

Jμμ

)2

− 1

2

z∑
μν=x

JμνJνμ

]
+C∇J [ρ∇ · J + s · (∇ × j)] . (2)

The expressions of the coupling constants as functions of
the parameters of the Skyrme interaction can be found in
article I. From this expression, it is straightforward to obtain
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the residual interaction (see table in Appendix A) by taking
the second derivative of the EDF with respect to the density.

The random phase approximation (RPA) response function
in each channel (α) = (S,M) ≡ (spin, projection of the spin)
(see Appendix B) is then obtained by solving the Bethe-
Salpeter equations for the correlated Green functions G

(α)
RPA.

Finally, from this residual interaction, we can easily obtain
the Landau parameters (see Appendix C). The quantities of
interest are not directly the RPA propagators themselves,
but merely the response functions S(α)(q, ω), also called the
dynamical structure functions by some authors, which are
defined at zero temperature by

S(α) (q, ω) = − 1

π
Imχ (α) (q, ω) . (3)

From now on we choose the direction of q along the z

axis, as done in articles I and II. We show this function in
Fig. 1 for two different values of the transferred momentum
(q = 0.05 fm−1 and q = 0.5 fm−1) and two different densities
(ρ = 0.08 fm−3 and ρ = 0.16 fm−3) as a function of the
energy ω. As in articles I and II we use a system of natural units
so that h̄ = c = 1. We consider one interaction without tensor,
(i.e., SLy5) and one with tensor, T16 (see the article of Lesinski
et al. [30] for the definition of the TIJ parametrizations).
Among the several TIJ possibilities the choice of T16 is
motivated by the study of the neutrino mean-free path (see
below). In order to illustrate the effect of the interaction and of
the RPA correlations we plot in each panel the corresponding
Fermi gas (FG) and Hartree-Fock results (i.e., uncorrelated
response functions). A first effect of the interaction clearly
appears at the Hartree-Fock level where the mean field is
responsible for the dressing of the bare neutron mass giving a
density-dependent effective one. The difference between the
Fermi gas and the Hartree-Fock structure functions increases
with the density. With the RPA correlations, the difference
between the S = 0 and S = 1 channel of the p-h interaction are
reflected in the corresponding response functions. Let us focus
on the S = 1 channel, particularly important for the neutrino
mean-free path. The (S = 1, M = 0) and (S = 1, M = 1)
structure functions practically coincide, as it is expected for the
SLy5 force, while they clearly differ in the presence of tensor
interaction. The small difference between the (S = 1, M = 0)
and (S = 1, M = 1) structure functions in the case of SLy5
is only due to the spin-orbit contribution and according to
Eqs. (B5) and (B8) given in Appendix B, their contribution is
proportional to the factor q4 and thus is less important for low
transfer momenta. Concerning S = 1 for low q (as illustrated
in the figure for q = 0.05 fm−1), a spin zero-sound mode
appears. It stands out above the p-h continuum. The existence
of this spin collective mode, called magnon, makes the
excitation of the system more difficult; hence, correspondingly
the p-h continuum response is depleted. This antiferromagnetic
behavior disappears when q increases. For high q another
kind of divergence may appear. As illustrated in Fig. 2, the
enhancement of the response function may become dramatic
and show a pole at ω = 0. In this case the homogeneous
Hartree-Fock ground state becomes unstable. For lower values
of q the same kind of instability appears at higher density,
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FIG. 1. (Color online) For the three PNM channels, we show the
response functions S(α)(q, ω) for the interaction SLy5 and T16. The
vertical lines represent the position of the eventual zero-sound mode.
For each force we plot as a reference the Fermi gas response function
(dashed line) and the uncorrelated response function (dash-dotted
line).

called the critical density ρc, as illustrated in the next
section.

B. Sum rules and moments of strength function

Following the notations of article II, we can calculate the
most relevant odd-power sum rules for PNM, in particular the
M1 energy-weighted sum rule (EWSR), the M3 cubic energy-
weighted sum rule (CEWSR) and the M−1 inverse energy-
weighted sum rule (IEWSR) defined as

M
(α)
k (q) =

∫ ∞

0
dωωkS(α)(q, ω). (4)

As stated previously, all the expressions given below are
derived for the general Skyrme EDF given by Eq. (2) in which
all the coupling constants could be considered as independent

044308-2



NUCLEAR RESPONSE . . . . III. NEUTRON MATTER ... PHYSICAL REVIEW C 86, 044308 (2012)

from the others. We refer to article II for a detailed discussion
on their derivation.

The EWSR in each channel reads

M
(0,0)
1 = q2

2m∗
(
1 − W

(0)
2 m∗ρ

)
, (5)

M
(1,0)
1 = q2

2m∗
[
1 − (

W
(1)
2 + 2CF

)
m∗ρ

]
, (6)

M
(1,±1)
1 = q2

2m∗
(
1 − W

(1)
2 m∗ρ

)
. (7)

Taking into account the W
(0)
2 value as well as the neutron

effective mass m∗, defined as
m

m∗ = 1 + 2m
(
Cτ

0 + Cτ
1

)
ρ, (8)

the M
(0,0)
1 EWSR reduces to the free value q2/(2m), as it

should. As in article II for the case of a Skyrme force, these
M1 moments can be obtained from the double commutator
method [39,40].

For the CEWSR we have

M
(0,0)
3 = q4 k2

F

2m∗3

[
1 − m∗ρW

(0)
2

]2
{

3

5
+ k2 + k2m∗ρW

(0)
2 + m∗ρ

2k2
F

[
W

(0)
1 + 2k2

F W
(0)
2

]}
, (9)

M
(1,0)
3 = q4ρ2[CF ]2 k2

F

5tm∗
{
2m∗ρ

[
W

(1)
2 + 2CF

] − 1
} + q4 k2

F

2m∗3

{
m∗ρ

[
W

(1)
2 + 2CF

] − 1
}2

×
{

3

5
+ k2 + 6

5
m∗ρCF + k2m∗ρW

(1)
2 + m∗ρ

2k2
F

[
W

(1)
1 + 4q2C∇s + 2k2

F W
(1)
2

]}
, (10)

M
(1,±1)
3 = q4ρ2[CF ]2 k2

F

10m∗
{
2m∗ρW

(1)
2 − 1

} + q4 k2
F

2m∗3

[
m∗ρW

(1)
2 − 1

]2

×
{

3

5
+ k2 + 2

5
m∗ρCF + k2m∗ρW

(1)
2 + 1

2

m∗ρ
k2
F

[
W

(1)
1 + 2k2

F W
(1)
2

]}
. (11)

And finally for the IEWSR we have

M
(0,0)
−1 = f (k)

3m∗

2k2
F

{
−24k2[m∗ρC∇J ]2 f (k)[1 − 3(k2 − 1)f (k)]

4 − m∗ρ[1 − 3(k2 − 1)f (k)]
[
W

(1)
2 − CF

] − 3

16

[
m∗ρf (k)

(
k2 − 1

)
W

(0)
2

]2

+ f (k)

[
kF m∗

2π2
W

(0)
1 + 3

2
m∗ρ(1 − k2)W (0)

2 − 1

8
(3 + 13k2)

[
m∗ρW

(0)
2

]2
]

+
[

1 + 3

4
m∗ρW

(0)
2

]2 }−1

, (12)

M
(1,0)
−1 = f (k)

3m∗

2k2
F

{ [
1 + 1

4
m∗ρ

(
3W

(1)
2 + 4CF

)]2

− 3

16
[m∗ρf (k)(k2 − 1)]2

[
W

(1)
2

]2

+ f (k)

[
kF m∗

2π2

[
W

(1)
1 + 4q2C∇s

] − 3

2
m∗ρ

(
4k2CF + (k2 − 1)W (1)

2

)
− 1

8
m∗2ρ2

(
24(1 + k2)[CF ]2 + 12(1 + 3k2)CF W

(1)
2 + (3 + 13k2)

[
W

(1)
2

]2)]}−1

, (13)

M
(1,±1)
−1 = f (k)

3m∗

2k2
F

{
− 12[m∗ρC∇J ]2 k2f (k) [1 + 3f (k)(1 − k2)]

4 − m∗ρ[1 + 3f (k)(1 − k2)]W (0)
2

+
[

1 + 1

4
m∗ρ

(
3W

(1)
2 + CF

)]2

− 3

16
[m∗ρf (k) (1 − k2)]2

(
5[CF ]2 + 2CF W

(1)
2 + [

W
(1)
2

]2)
+ f (k)

[
kF m∗

2π2
W

(1)
1 + 3

2
m∗ρ(1 − k2)

[
W

(1)
2 + CF

]
+ 1

8
m∗2ρ2

(
[CF ]2(k2 − 9) − 8k2CF W

(1)
2 − (3 + 13k2)

[
W

(1)
2 ]2

)]}−1

, (14)

where the W
(S)
i=1,2 coefficients are given in Appendix B.
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FIG. 2. (Color online) Response functions S(α)(q, ω) calculated
for Skyrme tensor parametrization T16 [30], for channel S = 1, M =
0 only. The transfer momentum is q = 1.051 fm−1 and the density of
the system is ρ = 0.16 fm−3.

As in article II we define the function f (k) as

f (k) = 1

2

[
1 + 1

2k
(1 − k2) ln

(
k + 1

k − 1

)]
, (15)

while ρ and k are now defined for PNM with Fermi momentum
kF , hence

ρ = 1

3π2
k3
F , k = q

2kF

.

As already illustrated in the previous section, the main effect
of the tensor terms is in the S = 1 channel where one can
even observe a divergence at zero energy, but finite transferred
momentum. As explained in detail in article II, the IEWSR
M−1 can be used to detect these poles. As an example, in
Fig. 3, we plott the IEWSR for T16 obtained from the analytic
expansion of the response function [see Eqs. (12)–(14)] and
from the direct numeric integration. We observe on this figure
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FIG. 3. (Color online) IEWSR (in MeV−1) as a function of
transferred momentum q (in fm−1) for T16 tensor parametrization.
Full black line shows the result of the integral Eq. (4) while the
dashed red line shows the result of the analytical expression (12)–(14).
The results are obtained at ρ = 0.16 fm−3. The arrow indicates the
position of the instability.
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FIG. 4. (Color online) Critical densities (in fm−3) as functions
of the transferred momentum q (in fm−1) for the T16 tensor
parametrization and for SNM [panel (a)] and for PNM [panel (b)].
The horizontal dash-dotted line is placed at ρ = 0.16 fm−3 just to
guide the eye.

that, in the channels S = 1, M = 0 and S = 1, M = 1, the
IEWSR is violated. This indicates the presence of a pole in
the response function as shown for example for S(1,0)(q, ω)
in Fig. 2 for ρ = 0.16 fm−3 and transferred momentum q =
1.051 fm−1.

This connection between the pole (when it does exist)
observed in the response function and the pole observed in the
M−1 sum rule has been discussed in article II and we refer to it
for a more detailed discussion on this point. It is thus possible
to determine in a systematic way the critical density at which
a pole occurs for a given momentum q from Eqs. (12)–(14).
In Fig. 4 we display such critical densities ρc with respect to
the transferred momentum for the T16 interaction. In the left
panel we first show the position of the poles of the response
function for SNM for each (S,M, I ) channel. In the right
panel we then show the position of the poles for PNM for
each (S,M) channel.

Even if we exclude the case of spinodal instability which
is not present in PNM, one can see that the presence and the
location of the poles depends strongly on the system under
analysis: for a given interaction, the critical densities are very
different for PNM and SNM. Similarly, we show in Fig. 5 the
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FIG. 5. (Color online) For the two S = 1 channels in PNM,
critical densities (in fm−3) are plotted as functions of the transferred
momentum q (in fm−1) for the TIJ family of Skyrme forces. The
horizontal dash-dotted line is placed at ρ = 0.16 fm−3 just to guide
the eye.
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FIG. 6. (Color online) For the three PNM channels, critical
densities (in fm−3) are plotted as functions of transferred momentum
q (in fm−1) for some usual Skyrme EDF: SkP [31], SkM* [32],
SGII [33], SLy4 [34–36], BSk8 [37], and SkO [38]. The horizontal
dash-dotted line is placed at ρ = 0.16 fm−3 just to guide the eye.

critical densities for the tensor parametrizations that we use in
the following section to study the neutrino mean-free path.

Following article II, we show for completeness in Fig. 6 the
critical densities for the Skyrme EDF previously analyzed in
article II for SNM, but in this case for PNM. We observe that
SkP behaves very differently from the other Skyrme forces
presented in this article. It presents a first instability in the
S = 0 channel at ρ ≈ 0.16 fm−3 and a second one at higher
density at ρ ≈ 0.45 fm−3 due to the presence of a pole in the
effective mass defined in Eq. (8).

III. NEUTRINO MEAN-FREE PATH

The aim of this section is to investigate the effect of the
choice of the parameters of the tensor terms on the neutrino
mean-free path in neutron matter. In this article we restrict
ourselves to the academic case of neutron matter at zero
temperature (the generalization at finite temperature T is in
progress). This, of course, implies some restriction on the

application of our approach to neutron stars studies. At first
stages of the cooling process of the neutron stars, modelized
as asymmetric nuclear matter, the high temperatures involved
allow charged current reactions; then, when the temperature
decreases, neutral currents dominate. Since we consider the
case T = 0 and the pure neutron matter, we will take into
account only neutral currents for the determination of the
neutrino mean-free path. This quantity is defined as

λ = (σρ)−1 , (16)

where σ is the total cross section for the neutral current reaction
ν + n −→ ν ′ + n′. In the absence of tensor (and spin-orbit)
interaction this total cross section is obtained by integrating
the double differential cross-section per neutron

d2σ (Eν)

d�k′dω
= G2

F E′2
ν

16π2

[
(1 + cos θ ) RV (q, ω)

+ g2
A (3 − cos θ ) RA (q, ω)

]
, (17)

where GF is the weak coupling constant, gA = 1.255 [41]
is the axial charge of the nucleon, Eν and E′

ν are the
incoming and outgoing neutrino energies, respectively, θ is the
scattering angle between the incoming and outgoing neutrino
momenta, and ω = Eν − E′

ν and q = k − k′ are the energy
and momentum transfer in the reaction. The response functions
RV (q, ω) and RA(q, ω) describe the response of the system
to density fluctuations (S = 0) and spin fluctuations (S = 1)
related to the coupling of neutrino to vector and axial currents
of the neutron. These response functions are defined as

RV (q, ω) = − 1

πρ
Imχ (S=0) (q, ω) ,

(18)

RA (q, ω) = − 1

πρ
Imχ (S=1) (q, ω) .

When tensor forces are considered the spin response is
split into two components; namely, the spin longitudinal
response

RA
L (q, ω) = − 1

πρ
Imχ (S=1,M=0) (q, ω) , (19)

and the spin transverse response

RA
T (q, ω) = − 1

πρ
Imχ (S=1,M=±1) (q, ω) . (20)

These responses can be considerably different one from the
other and compared to the case without tensor interaction. This
has important consequences on the neutrino cross sections
and the neutrino mean-free path. In the presence of tensor
interaction the double differential cross-section per neutron
for neutral current reaction is given by

d2σ (Eν)

d�k′dω
= G2

F E′2
ν

16π2

{
(1 + cos θ )RV + g2

A

[
2(E′

ν cos θ − Eν)(E′
ν − Eν cos θ )

q2
+ 1 − cos θ

]
RA

L

+ g2
A2

[
EνE

′
ν

q2
sin2 θ + 1 − cos θ

]
RA

T

}
. (21)
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FIG. 7. (Color online) Relative axial spin transverse (AT), relative

axial spin longitudinal (AL), and relative vector (V) contributions to
the cross section per neutron for the reaction ν + n −→ ν ′ + n′ in
the neutron matter. Three different densities as well three different
interactions are considered. The Fermi gas result is also shown.

This expression reduces to Eq. (17) when RA
L = RA

T = RA as
one can easily observe remembering that for neutral current

q2 = (k − k′)2 = k2 + k′2 − 2k · k′

= E2
ν + E′2

ν − 2EνE
′
ν cos θ. (22)

In Eq. (21), as well as in Eq. (17), we neglect corrections of
order Eν/m from weak magnetism and other effects [42] like
the finite size of the nucleon or nucleon excitations [43]. A
generalization of Eq. (21) taking into account all these effects
can be found, for example, in Ref. [41]. As already stressed
in Ref. [41] (and illustrated in Ref. [44] for charged current
reaction) the cross section is dominated by the spin transverse
response RA

T . In Fig. 7 we present the relative axial spin
transverse, axial spin longitudinal, and vector contributions
to the neutral current cross section. We consider four different
cases. The first is the Fermi gas. In this case RA

L = RA
T = RA so

the difference between the three contributions is only due to the
kinematical factors and the coupling constants multiplying the
response functions. Second we consider the case when the re-
sponse functions are calculated with the SLy5 force. In this
case the coupling constants CF = C∇s = 0, purely related
with the tensor part of the interaction, do not contribute.
A possible difference between RA

L and RA
T is due to the

spin orbit contribution and according to Eqs. (B5) and (B8)
given in Appendix B, the q4 factor reduces these differences
at low momentum transfer. Finally, we consider the T13
and T16 parametrizations of tensor contributions. The results
for three different densities, ρ = 0.08, 0.16, and 0.24 fm−3

are also shown in Fig. 7. As clearly appears, all the cross
sections are dominated by the spin transverse response but this
contribution may vary between ∼60% and ∼90% depending
on the interactions and densities considered. It reflects possible
quenching, enhancement or divergence of the nuclear response
functions. This behavior was already illustrated in Sec. II A in
connection with Fig. 1. To complete our discussion we plot
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FIG. 8. (Color online) The response functions for the channel
S = 1, M = 1 for three different forces (T13, T43, and T63) is shown
with solid lines. On the same figure we represent the Fermi gas
(dashed line) and the uncorrelated response functions (dash dotted;
i.e., when the residual interaction is put to zero), for the interaction
T13. The uncorrelated response functions are not equivalents among
T13, T43, and T63 due to the small differences in the effective mass.

in Fig. 8 the spin transverse response for q = 0.05 fm−1 and
q = 0.5 fm−1, for ρ = 0.16 fm−3 and ρ = 0.24 fm−3 and
for the tensor forces T13, T43, and T63. A collective spin
zero sound characterizes the S = 1, M = ±1 response for
T13 at q = 0.05 fm−1 for ρ = 0.16 fm−3 and ρ = 0.24 fm−3.
A similar behavior, with the corresponding quenching of the
p-h continuum characterizes the S = 1, M = ±1 responses
for SLy5 and T16 as shown in Fig. 1 for ρ = 0.08 fm−3

and ρ = 0.16 fm−3. The T63 force on the other hand is
characterized by an enhancement of the response at low ω

for ρ = 0.16 fm−3. At q = 0.5 fm−1 this enhancement seems
to be critical. At ρ = 0.24 fm−3 the enhancement of the
T16 response no longer holds. In this case this response is
suppressed with respect to the corresponding Hartree-Fock
response. An enhancement with respect to the HF and FG case
for small ω characterizes for this density the T43 force.

These different behaviors obviously affect the neutrino
mean-free path. We have calculated it for T11-T16 and T13-
T63 chains of parametrizations of Skyrme tensor interactions
for a neutrino energy 5 MeV < Eν < 40 MeV and for three
values of densities (i.e., ρ = 0.08, 0.16, and 0.24 fm−3). Note
that when a spin zero-sound collective mode appears one
must in principle include it in the calculation of the neutrino
mean-free path. For this mode the response function reduces
to a delta distribution. Nevertheless, as already observed in
Ref. [22], the collective mode itself gives little scattering,
its contribution is negligible when calculated in the Landau
approximation. It was also observed in Ref. [24] that for all
the Skyrme forces considered, this magnon rapidly disappears
with temperature because of strong Landau damping. Hence
we do not explicitly compute the spin zero-sound contribution.
Its effect is, on the other hand, present as a suppression of the
corresponding p-h continuum and has a consequence on the
cross section.
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FIG. 9. (Color online) Neutrino mean-free path for scattering
reaction ν + n −→ ν ′ + n′ in neutron matter. The dotted lines cor-
respond to the noninteracting Fermi gas case. The dashed lines are the
interacting case with the SLy5 force. The continuous lines correspond
to several parametrizations of the tensor contribution following the
T11–T16 chain. The system densities considered in the three panels
are ρ = 0.08, 0.16, and 0.24 fm−3.

The results for the neutrino mean-free path are reported
in Fig. 9 for the T11–T16 chain and in Fig. 10 for the
T13–T63 chain. In each figure we include the Fermi gas
result and the calculation with the SLy5 force which does
not have tensor terms. From Figs. 9 and 10 clearly emerges
the crucial dependence of the neutrino mean-free path on
the parametrizations of the Skyrme tensor terms. For ρ =
0.08 fm−3 the different parametrizations give quite similar
results and higher with respect to the noninteracting case.
Already at ρ = 0.16 fm−3 the spread becomes important. For
some cases λ is higher than the Fermi gas case; for others it is
lower. In many cases it is lower than the corresponding SLy5
result. Also the behavior of λ with the density is not so trivial,
as already appears in the three panels of Figs. 9 and 10. This
is clearly shown in Fig. 11 where the ratio λ/λFG is plotted.
For example, for T13 this quantity stays quite constant with
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FIG. 10. (Color online) Same as Fig. 9 but for T13–T63 chain.
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FIG. 11. (Color online) Relative neutrino mean-free path in neu-
tron matter λ/λFG as a function of density for some parametrizations
of tensor terms. The incoming neutrino energy is Eν = 10 MeV.

density, for T15 and T53 it decreases, and for T16 and T63 it
is no longer monotonic.

IV. SUMMARY AND CONCLUSIONS

In this article we have calculated the RPA response function
for pure neutron matter considering Skyrme energy density
functionals including tensor terms. This article parallels
Refs. [1,2] where similar calculations were performed for the
symmetric nuclear matter. As in previous articles, divergences
and instabilities of the response [2,45], in particular in the
S = 1 channel, are discussed in connection with the sum rules.

We applied our results to the study of the neutrino mean-
free path. The advantage of the present framework is that it
allows us to describe nuclear (and neutron) matter equation of
state and the neutrino mean-free path simultaneously, hence in
a self-consistent way. Obviously, before achieving a reliable
description of neutrino transport phenomena in neutron stars,
the calculations performed here must be generalized to finite
temperature and for asymmetric nuclear matter. Nonetheless,
already at this oversimplified level (pure neutron matter at
zero temperature) we have shown the strong dependence of the
neutrino mean-free path on the tensor term parametrizations. It
represents an important reason, among others, for an accurate
treatment of Skyrme functionals including tensor contribution.
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TABLE I. Contribution of EDF tensor part to residual interaction in terms of Bx coupling constants. For the sake of simplicity we have
introduced Ki,j = [(k12)i(k12)j ], where (k12)(1)

M is defined in Eq. (9) of article I. The term δSS′δS1 is implicit everywhere.

M ′ = 1 M ′ = 0 M ′ = −1

M = 1 −2q2(BT + 4B�s) + 4BT K0,0 −4BF K−1,0 −4BF K−1,−1

−4(2BT + BF )K1,−1

M = 0 4BF K0,1 −2q2(BT − 4B∇s + 4B�s + BF ) 4BF K−1,0

+4(BT + BF )K0,0 − 8BT K1,−1

M = −1 −4BF K1,1 −4BF K1,0 −2q2(BT + 4B�s) + 4BT K0,0

−4(2BT + BF )K1,−1

APPENDIX A: PARTICLE-HOLE MATRIX ELEMENTS IN
PRESENCE OF A ZERO-RANGE TENSOR INTERACTION

Following the notation adopted in article I and II, we give
in Table I the values of the particle-hole residual interaction
for the tensor part of the functional in terms of the Bx , with
x = �s, F, . . . , coefficients of the functional. This particular
notation has been already discussed in article II and we refer
to it for detailed explanations.

APPENDIX B: RESPONSE FUNCTIONS

This Appendix contains the explicit expressions for the
response functions for pure neutron matter. Since the isospin is
no longer a relevant quantum number, each channel is denoted
as (1,M) for S = 1 or only (0) for S = 0.

We have

(i) for the S = 0 channel,

χHF

χ
(0,0)
RPA

= 1 − Ŵ
(0,0)
1 χ0 + W

(0)
2

(
q2

2
χ0 − 2k2

F χ2

)
+ [

W
(0)
2

]2
k4
F

[
χ2

2 − χ0χ4 +
(

m∗ω
k2
F

)2

χ2
0 − m∗

6π2kF

q2χ0

]

+ 2χ0

(
m∗ω
q

)2
W

(0)
2

1 − m∗k3
F

3π2 W
(0)
2

, (B1)

(ii) for the S = 1 channels,

χHF

χ
(1,0)
RPA

=
(

1 + k3
F m∗CF

3π2

)2

+ Ŵ
(1,0)
1 χ0 + W

(1)
2

[
q2

2

(
1 + 2CF k3

F m∗

3π2

)
χ0 − 2k2

F χ2 + 2k5
F m∗CF

3π2
(χ0 − χ2)

]

+ [
W̆

(1)
2

]2
[
k4
F χ2

2 − k4
F χ0χ4 + m∗2ω2χ2

0 − k3
F m∗q2

6π2
χ0

]
+ 2m∗2ω2

q2

(
W

(1)
2 + 2CF

)[
1 + k3

F m∗

3π2 X(1,0)
]

1 + k3
F m∗
3π2

(
X(1,0) − W

(1)
2 − 2CF

)χ0 (B2)

and

χHF

χ
(1,±1)
RPA

=
[

1 − CF m∗k3
F

6π2

]2

− Ŵ
(1,±1)
1 χ0 + [

W
(1)
2 + CF

] {
q2

2
χ0

[
1 − CF m∗k3

F

3π2

]
− 2k2

F χ2 − CF m∗k5
F

3π2
(χ0 − χ2)

}

+ [
W

(1)
2 + CF

]2
k4
F

{
χ2

2 − χ0χ4 +
(

m∗ω
k2
F

)2

χ2
0 − m∗

6π2kF

q2χ0

}
+ 2χ0

(
m∗ω
q

)2 W
(1)
2

(
1 + m∗k3

F

3π2 X(1,±1)/2
)

1 − m∗k3
F

3π2

[
W

(1)
2 − X(1,±1)/2

] .

(B3)

The coefficients W
(S)
i=1,2 are defined as

1
2W

(0)
1 = 2

(
C

ρ0
0 + C

ρ0
1

) + (2 + γ )(1 + γ )
(
C

ργ1
0 + C

ργ

1

)
ργ − (

2C
�ρ

0 + 2C
�ρ

1 + 1
2Cτ

0 + 1
2Cτ

1

)
q2,

1
2W

(1)
1 = 2

(
C

s,0
0 + C

sγ

0 ρ
γ

0 + C
s,0
1 + C

sγ

1 ρ
γ

0

) − (
2C�s

0 + 2C�s
1 + 1

2CT
0 + 1

2CT
1

)
q2,

1
2W

(0)
2 = Cτ

0 + Cτ
1 , 1

2W
(1)
2 = CT

0 + CT
1 . (B4)
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We have also defined the Ŵ
(S,M)
1 and X(1,M) coefficients as

Ŵ
(0,0)
1 = W

(0)
1 + 4q4[C∇J ]2 (β2 − β3)

1 + q2(β2 − β3)
[
W

(1)
2 − CF

] , (B5)

Ŵ
(1,0)
1 = −[

W
(1)
1 + 4q2C∇s

] + CF

[
q2 − 4

(
m∗ω
q

)2]
+ m∗ρ[CF ]2

[
2k2

F + 1

2
q2 − 2

k2
F

(
m∗ω
q

)2]
, (B6)

Ŵ
(1,±1)
1 = W

(1)
1 + 2q4[C∇J ]2 (β2 − β3)

1 + q2(β2 − β3)
[
W

(0)
2

] − 2CF

(
m∗ω
q

)2

+ [CF ]2

(
1

2
q2m∗ρ + 1

16

[
q2 − 4

(
m∗ω
q

)2]2

χ0 − 1

2
k2
F

[
q2 + 4

(
m∗ω
q

)2]
χ2 + k4

F χ4

)
, (B7)

X(1,0) = 2q2[CF ]2 (β2 − β3)

1 + q2(β2 − β3)
[
W

(1)
2 + 3CF

] , (B8)

X(1,±1) = 2q2[CF ]2 (β2 − β3)

1 + q2(β2 − β3)W (1)
2

. (B9)

APPENDIX C: LANDAU APPROXIMATION

Since we have no isospin quantum number, the p-h
interaction is reduced to three terms. As done in article II we
take the limit q → 0 and q1,2 → kF of the second functional
derivative and we obtain

V Landau
ph (kF , kF ) = 1

2
W

(0)
1,L + 1

2
W

(1)
1,Lσ a · σ b

+ 1

2

[
W

(0)
2,L + W

(1)
2,Lσ a · σ b

]
2k2

F [1 − cos θ ]

+2

3
k2
F CF [1 − cos θ ] σ a · σ b

+ k2
F

3
CF k2

12

k2
F

Sab, (C1)

where the symbols Sab has been defined in Refs. [46,47]. The
various W

(S)
i,L coefficients with i = 1, 2 can be easily calculated

from the W
(S)
i coefficients defined in Eq. (B4) taking the limit

of W
(S)
i for q → 0.

So the Landau parameters can be written as

N−1
0 F0 = 1

2W
(0)
1,L + k2

F W
(0)
2,L,

N−1
0 F1 = −k2

F W
(0)
2,L,

N−1
0 G0 = 1

2W
(1)
1,L + k2

F W
(1)
2,L + 2

3k2
F CF ,

N−1
0 G1 = −k2

F W
(1)
2,L + 2

3k2
F CF ,

N−1
0 H0 = 1

3k2
F CF ,

where N−1
0 = 2π2/(gm∗kF ) is the normalization factor and

g = 2 is the degeneracy in PNM.
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