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Unrestricted Skyrme-tensor time-dependent Hartree-Fock model
and its application to the nuclear response from spherical to triaxial nuclei
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The nuclear time-dependent Hartree-Fock model formulated in three-dimensional space, based on the full
standard Skyrme energy density functional complemented with the tensor force, is presented. Full self-consistency
is achieved by the model. The application to the isovector giant dipole resonance is discussed in the linear limit,
ranging from spherical nuclei (16O and 120Sn) to systems displaying axial or triaxial deformation (24Mg, 28Si,
178Os, 190W and 238U). Particular attention is paid to the spin-dependent terms from the central sector of the
functional, recently included together with the tensor. They turn out to be capable of producing a qualitative
change on the strength distribution in this channel. The effect on the deformation properties is also discussed.
The quantitative effects on the linear response are small and, overall, the giant dipole energy remains unaffected.
Calculations are compared to predictions from the (quasi)-particle random-phase approximation and experimental
data where available, finding good agreement.
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I. INTRODUCTION

This work presents the full implementation of the Skyrme
energy density functional (EDF) in time-dependent Hartree-
Fock (TDHF) [1], including the tensor terms. The TDHF
equations have been formulated on a three dimensional (3D)
Cartesian grid with no spatial symmetry restrictions and
include all time-odd terms. Consequently, it is possible to
study different phenomena in both intrinsically spherical and
deformed systems, in particular triaxiality, within the same
formalism and without neglecting terms in the particle-hole
(p-h) channel of the nuclear (and Coulomb) interaction. They
can range from nuclear structure features like giant resonances
(including nonlinearities and decay by particle emission) and
large amplitude dynamics like collisions of nuclei (including
fusion and fission processes). In this paper we focus on the
first application, while another one about nucleus-nucleus
collisions [2] will follow as an extension of recent related
work [3,4].

The tensor force included in the original description of
the Skyrme interaction [5] had mostly been omitted from
Hartree-Fock calculations after initial explorations [6]. It
has been the object of considerable interest in the past few
years, when particular effort has been spent to attest the real
limits of the mean-field approach. For a review of the “new
generation” of tensor studies we refer to Ref. [7], the authors
of which extensively analyzed the performance of several
Skyrme-tensor functionals on ground-state properties of spher-
ical systems. In such cases, only the so-called time-even
terms of the EDF, built on densities which maintain the
same sign under the time-reversal operation, contribute. Their
coupling constants are typically fixed through a selection of
experimental and empirical data.

A situation similar to the spherical case, although not
identical, occurs in axially deformed nuclei. The full spatial
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rotational invariance is lost in the intrinsic system of reference,
giving rise to extra contributions to the one-body potential
with respect to the spherical case [8]; however, one expects
the parity and the total angular-momentum projection along
the symmetry axis are still good quantum numbers, the time-
reversal invariance is preserved, and all the time-odd terms
of the functional vanish in the ground-state. This fact is
maintained when pairing effects are introduced, as long as
the particle-particle scattering involves pairs in time-reversal
states. In Ref. [9], the performance of time-even tensor
terms fixed on spherical systems [7] was studied against de-
formed ground-state properties. Fewer analyses are available
for triaxial ground-states (cf. Refs. [10,11] and references
therein), where the spatial symmetry properties are further
broken, but the time-reversal invariance is known to be still
preserved.

Increasing the complexity of the problem, a different
situation occurs in odd-A and odd-odd nuclei and, in general,
in the presence of cranking, when the time-reversal invariance
is broken and the Kramer’s degeneracy is removed [12–14].
In such situations, in fact, time-odd terms become active. The
effects from the time-odd terms that originate from the Skyrme
central and spin-orbit force have been studied through their
influence on rotational bands of superdeformed nuclei [15].
More recently, the full Skyrme time-odd sector, including the
tensor terms, has been taken into account, too [16].

Regarding vibrational states, on the side of the (nonrel-
ativistic) self-consistent random-phase approximation (RPA),
which does not model the pairing correlations and which corre-
sponds to the small amplitude (linear) limit of TDHF, progress
has been obtained by including the residual Skyrme-tensor
interaction in formulations on a spherical p-h configuration
basis. As known, the time-odd terms play an essential role
in explaining the nuclear response in some cases. Calcula-
tions including the tensor in both some “neutral” [17] and
charge-exchange channels [18] have been published. Similarly
to previous work, the relative contribution of the residual
two-body versus the underlying mean-field tensor effects was
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discussed by these authors, but no further considerations on
the various functional’s terms and their interplay were made.
Skyrme-tensor RPA calculations in infinite matter [19] have
been performed as well.

No self-consistent implementation of the Skyrme func-
tional complemented by the tensor interaction in a deformed
(quasi-)particle random-phase approximation [(Q)RPA] is
currently available. Our task with the more general TDHF
approach is also aimed at filling this gap, allowing more
applications on the same footing. In this TDHF model
all the Skyrme-tensor EDF terms have been derived and
implemented; the specific role played by some of them,
where the focus is on spin-dependent terms that were pre-
viously neglected, will be outlined and issues related to
self-consistency discussed. Although the comparison between
TDHF and RPA approaches is not the aim of this paper and
more can be found elsewhere, in Sec. II A1 we will recall
some (standard) terminology and elements useful to follow the
discussion.

Previous applications of TDHF to zero-temperature giant
resonances, including time-odd terms from modern Skyrme
EDFs and exploiting computational power which was not
available in the past, exist. In Ref. [20], the linear response
in some light spherical and deformed nuclei was studied
by comparing different approaches (TDHF with absorb-
ing boundary conditions and continuum RPA formulated
with the Green’s functions formalism); the terms depending
on the square of the momentum density ( j2), which affects
the effective mass, and on the square of the spin density
(S2) were discussed, while other spin-dependent terms were
omitted from those calculations. The authors of Ref. [21]
pointed out the relevance of the Skyrme time-odd spin-orbit
in suppressing spurious spin excitations in free translational
motion, associated to a nonphysical energy dissipation in
heavy-ion collisions. This was explained as a consequence of
the Galilean invariance restoration when the spin-orbit sector
of the functional is fully included.

After the formalism is introduced (Sec. II), we present
(Sec. III) the results about the isovector dipole response (IVD)
for some representative cases. It is well known that most of
the IVD transition strength is concentrated in the giant dipole
resonance (IVGDR or simply GDR), the first collective nuclear
excitation that was discovered [22–24]. Although the major
effect from the inclusion of the spin-dependent terms is not
expected in this case, we focus on it according to the tradition of
the TDHF calculations, as this is the simplest, experimentally
well known, nonspherical excitation that can be reproduced.
Many theoretical simulations are available, ranging from more
phenomenologic approaches (where the important dependence
on external input can produce accurate calculations but
drastically limits the predictive power), down to microscopic
descriptions with no ad hoc adjustable parameters, to which
group our model belongs.

In Sec. IV conclusions will be summarized. The derivation
of the tensor contribution to the Skyrme EDF is provided
in Appendix A as an extension of Ref. [25], where the
functional form of the energy density from the central and
spin-orbit part of the force was written without assuming
a time-reveral invariant system. Finally, the expressions and

possible implementations of the densities and currents of the
functional have been added in Appendix B.

II. FORMALISM

The first part of this section recalls the basic features of
the TDHF theory and the numerics adopted in this work,
while the second one focuses on the full Skyrme-tensor energy
density functional, implemented in TDHF with no symmetry
restrictions. Some of the performed verification and validation
tests will be discussed.

A. Time-dependent Hartree-Fock model

As mentioned in the Introduction, the theoretical framework
chosen to implement the unrestricted Skyrme energy density
functional, to which the following section is dedicated, is the
3D Cartesian time-dependent Hartree-Fock. In this theory [26],
with semiclassic limit given by the Vlasov equation, well
known in plasma physics and astrophysics, the interaction
among particles is modelled in terms of the interaction with
the one-body potential, which, after (or under) the action of an
external field, changes in time through the dependence on the
density itself. The master expression of the theory derives
from the von Neumann equation, the quantum-mechanical
version of the classical Liouville equation which provides
the time evolution of the A-body density matrix. Through
the constraint ρ̂2

A = ρ̂A for the full density matrix, the system
can be represented by a pure state solution of the associated
Schroedinger equation. In TDHF, the previous relation is
assumed to hold for the one-body density matrix ρ̂1 (hereafter
ρ̂), so that the A-particle wave function can be represented by
a Slater determinant at any time (the backward relation holds,
too; details can be found in Ref. [27]). As a matter of fact,
the von Neumann equation, which gives rise to the BBGKY
hierarchy for the reduced one-body, two-body, etc., densities,
now simplifies to a one-body problem

ih̄δt ρ̂ = [ĥ, ρ̂], (1)

which can be equivalently represented by the (nonlinear) set
of one-body equations

ih̄δtψ
(i)(x, t) = ĥ[ρ(t)]ψ (i)(x, t), (2)

one for each spinor ψ (i)(x, t) = ∑
ω=2ms

φ(i)(x, ω, t)ξ (ω)
identified by the index i (ω = 2ms = ±1), with initial con-
ditions given further on (the dependence of the one-body
Hamiltonian on the particle density can be generalized). A
time-dependent external field can be inserted in the previous
equation (2). In this work, it will be assumed to simply act as a
δ function in time, used to prepare the initial conditions for the
time evolution. The external field acting on the system can be
defined, in particular, as a one-body operator able to induce an
isovector response (protons and neutrons move in opposition
of phase) with no charge mixing, that is, in the form

F̂ =
∑
rs

〈s|F |r〉a†
r as, (3)

044303-2



UNRESTRICTED SKYRME-TENSOR TIME-DEPENDENT . . . PHYSICAL REVIEW C 86, 044303 (2012)

where a+
r and as are creation and annihilation operators

in the HF basis and F = ∑
i Df (xi , ωi)τz(i). This external

field transfers energy (regulated by the strength D) and a
selection of angular momentum to the nucleus, causing a
displacement of the proton and neutron centers of mass,
compatible deformation and/or spin fluctuations; in such a
way, the system is set in oscillation with all the possible
frequencies. In other words, after the external action, the
A-particle wave function is no longer an eigenstate of the static
(“unperturbed”) Hamiltonian and starts to evolve in time. In a
microscopic picture, the external kick induces p-h transitions
that are allowed by the selection rules, so, at time t = 0,
each Hartree Fock eigenstate φ

(0)
i is transformed into a wave

packet,

ψ (i)(x, t = 0) = eiF̂ φ
(0)
i (x) =

∑
l

αilφ
(0)
l (x), (4)

where the index l spans the full HF spectrum. The label (i) at
the left-hand side of the previous equation simply enumerates
the wave functions obtained by boosting the HF solution
having a set of quantum numbers i. Using (4) as initial
condition, where only the choice of the external operator
F̂ is arbitrary and (partly) defines the problem under study,
the equations (2) are solved and a new set of quasiparticles
{ψ (i)(x, t)} is given at any time. Clearly, under the action
of the one-body potential, mixings other than those initially
generated by F̂ are produced.

In practical implementations, according to long-standing
prescriptions [28], the time is discretized and the evolution
operator is implemented in a Taylor expansion. The time step
size and the order at which the expansion is arrested are two
mutually dependent parameters chosen in order to ensure the
total energy and norms are conserved in the “dynamics” within
acceptable accuracy.

The system response is analyzed by following the time
evolution of the expectation value for the one-body operator
of interest,

〈Ô〉(t) = 〈
t |Ô|
t 〉 (5)

(referred to the ground-state value). One can replace the A-
particle Slater determinant at time t (
t ) by the simple product
of the involved TDHF wave functions and recast the previous
equation as

〈Ô〉(t) =
∑

i

〈ψ (i)(x, t)|O(x)|ψ (i)(x, t)〉, (6)

which can be conveniently expressed in terms of properly
defined one-body densities. For example, the well-known
(effective) isovector dipole response along the λ direction is
based on the expectation values

〈
ÔK

1−01

〉
(t) = D̃

A

∫
λ[Zρn(x, t) − Nρp(x, t)]dx, (7)

depending on the time-dependent isovector density ρ10(x, t) =
ρn(x, t) − ρp(x, t). It is associated to the choice

f1K (x, ω) = Y1K (x)|x|Iσ (8)

for f (x, ω), where Iσ is the identity operator in the spin
space (kept implicit in what follows) and {Y1K}K=−1,0,1 =
{
√

3
4π

λ
|x| }λ=x,y,z is the set of l = 1 real spherical harmonics

written in Cartesian coordinates (D̃ = D
√

3
4π

, e = 1). The
subscript in Eq. (7) denotes the JπST quantum numbers. The
signal obtained on top of a spherical ground-state is clearly
invariant under any rotation in space of the boost direction.
The center-of-mass correction in the definition of the operator
is included in order to remove the translational zero mode from
the strength function (the boost needs proper weights as well).

Under the hypothesis Ô = F̂ , it is possible to show that the
transition strength distribution associated to Ô

SÔ(E) =
∑

ν

|〈ν|Ô|−〉|2δ(E − Eν), (9)

where ν labels the excited states in the small amplitude limit
and |−〉 is the HF vacuum, can be obtained through

SÔ(E) = − 1

π

F[〈Ô〉(t)]
F[Dg(t)]

, (10)

whereF denotes the Fourier transform operation and g(t) is the
generalization of the (factorized) time profile of the external
operator. The proof of the equivalence between Eqs. (9)
and (10) can be found in Refs. [29,30] (the rearrangement
arising from density-dependent Hamiltonian terms is usually
considered negligible).

The presence of the factor D in the denominator of Eq. (10)
guarantees that the response is kept constant for different boost
strength in the small-amplitude (RPA) regime. This rescaling
can be used as an indicator to test the validity of the assumption
of linearity. In fact, when the boost amplitude is increased
above a certain threshold, the channel for nonharmonic effects,
which, under a one-body view, accounts for 3p-1h (3h-1p)
vertices [31], is opened.

Choices differing from Ô = F̂ allow one to select the
signal of interest, like a specific multipole or spin (isospin)
component, among the various response channels which can
be opened by a given external operator and mixed up during the
dynamic evolution. For example, the 1− states are a mixture
of both non-spin-flip (S = 0, S = 1) and spin-flip (S = 1)
components, that is, in the microscopic picture of the RPA,
nucleons can also reverse the spin when undergoing particle-
hole transitions. A large fraction of the isovector S = 1
dipole strength is collected in the giant spin-dipole resonance
(IVSDR or, hereafter, SDR). Several investigations on both
the experimental and the theoretical side (see Ref. [32] and
references therein) have been dedicated to the problem of the
GDR-SDR splitting, which markedly reflects the dependence
of the effective interaction on the incident energy. A schematic
model predicts the SDR to be lower in energy than the GDR, on
the basis of a residual interaction being slightly less repulsive
in the spin-isospin (S = 1, T = 1) channel than in the isospin
(S = 0, T = 1) one [33]. From general arguments, in a limit
case one can find a highly collective 1− state exhausting the
whole sum rule for the dipole (or for the spin-dipole) operator,
so that zero transition probability associated to the other one
is left [34]. In practice, this is less likely to occur, the two
resonances overlap, and 1− states displaying non vanishing
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transition strength associated to either of the operators can
be found to be degenerate or lying close in energy (see the
examples in Ref. [35]).

As giant resonances are above threshold, particle emission
is expected and it can be modelled in TDHF [36]. A discussion
about the lifetime of the TDHF wave functions can be found,
e.g., in Ref. [37], where a comparison between the performance
of TDHF and the continuum-RPA in the matter of escaping
widths and the possibility of comparing to experimental
information was discussed.

Reference [38] presented the effect of two-body correla-
tions on the mass dispersion from giant resonances, incorpo-
rated in the standard TDHF as fluctuation of the one-body
observable of interest on the basis of the Balian-Vénéroni
approach [39], which turned out to be important. As a matter
of fact, although TDHF takes into account the coupling to
the continuum and those anharmonicities that can be captured
through one-body operators, extensions are required to fully
describe the spreading width of the resonances. Effort has been
devoted to formulate extensions of TDHF which go beyond
the mean-field approximation, capable of modeling coherent
collisional terms as well as incoherent effects, like those
leading to 2p-2h admixtures into the strength function from
nondiagonal couplings to low-lying phonons or noncollective
1p-1h bubbles [40]. We recall that couplings of 1p-1h to
high-lying 2p-2h states in spin-isospin channels are expected
to be favored by the tensor, a mechanism which, spreading
strength towards high energies, has been invoked to fully
explain the quenching of the Gamow-Teller (GTR) and the
SDR (see Ref. [33]), collective states of particular interest for
astrophysical processes and particle physics.

If the standard TDHF approach and the extensions recalled
just above describe a single path in the time domain, stochastic
formulations of the theory are available, which were shown
to be closely related to the Boltzmann-Langevin equation
(cf. Refs. [41,42] and references therein; cf. also the discussion
in Ref. [43]).

1. Comments on TDHF and RPA models

This section is not aimed at providing a complete review
of similarities and differences between the two approaches,
their various formulations, or the physics involved. Instead,
some (standard) terminology is recalled, together with a few
elements useful to better follow the discussion. Besides the fact
that TDHF is a more general theory than the RPA, it is useful
to remark on some technical differences when the former is
employed in the linear limit.

The RPA framework, first formulated for plasma physics
in 1953 [44], involves, besides the construction of the static
mean-field, the computation of the two-body matrix elements
of the residual interaction in the p-h channel. In the most
microscopic approaches, which make little use of ad hoc
adjustable parameters, they are respectively defined as the first
and second derivative of the energy density functional (given
by ansatz or built on an effective interaction like Skyrme) with
respect to the particle density fluctuation [45]. The derivation
must be performed from the most general expression of the

energy density, that is, built without the symmetry restrictions
allowed in special cases (cf. Refs. [25,46]; see also Ref. [2]).
As a matter of fact, not only are ground-state spin saturation
properties [which here means

∑
ψ∗

i (x)σ iψi(x) = 0] and
spatial symmetries usually broken when exciting the system,
but also, in some cases, the excitation is mostly driven by terms
that vanish in the Hartree-Fock approximation.

Self-consistency, as intended in the sense of the RPA (we
will not discuss the case of the various types of separable
RPAs; information can be found in Ref. [47]) means that
EDF contributions are not dropped when proceeding from the
Hartree-Fock mean-field to the computation of excited states.
Under this condition, provided the model space is complete,
it is commonly known that symmetries spontaneously broken
by the Hartree-Fock approximation are automatically restored
and spurious modes, within the limits of numerical accuracies,
become orthogonal to the physical spectrum and degenerate
with the ground-state (zero modes) [48].

Concerning the TDHF model, a full discussion about the
symmetry breaking should be provided, which is beyond
the scope of this work. We only add that, as for the RPA
approaches, numerical inaccuracies can produce spurious
mixings and alter the strength distribution. However, a lack of
“consistency” can be produced also in other ways, for example,
from an incomplete implementation of the functional at the
mean-field level with respect to the procedure adopted when
fitting its parameters, as well as any use which produces lack
or overcounting of effects.

Regarding an effective two-body force with no density-
dependent coupling constants, as for the tensor terms by
Skyrme, one can avoid working out the energy density in
order to derive the mean-field and the two-body residual
interaction, because, in the absence of rearrangement, the
latter would be identical to the starting force. However, one
would miss, in this case, the link of the interaction terms back
to the corresponding energy functional contribution, which
one usually refers to when comparing different calculations.
Although it is recognized that the globally fitted values of
the Skyrme parameters should be interpreted by looking at
the functional as a whole, it is still interesting to study
the role of the various terms by setting some coupling
constants to zero or by artificially modifying the functional
in other ways. If the consistency breakings produced in
such way are not dramatic, this operation can reveal general
features of the effective interaction and point to drawbacks
and merits of one specific parametrization. With such an
aim, the use of Skyrme-like EDFs, that is, non-two-body
interaction based EDFs, more or less rich in density-dependent
coupling constants and derivatives, has become quite widely
investigated.

In the standard TDHF theory, only the mean-field operator
is required in both the static (HF ground-state) and dynamic
(residual effects) calculations. The implementation of the
functional is, in this sense, much less involved with respect to
the RPA approach and the fulfillment of self-consistency is less
demanding, especially in comparison to RPAs formulated in
the coordinate space. Clearly, the effects corresponding to the
various terms, coupled one another through the densities, are
not expected to be simply additive. It occurs in analogy to RPA
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whenever a different matrix is diagonalized once two-body
contributions are dropped.

Concerning the microscopic understanding of the results,
in the widely employed RPA models formulated in the
configuration space, the equation of motion is reduced to the
diagonalization of a matrix built on a p-h basis; the solution
immediately provides the microscopic structure of the excited
states in terms of the simplest excitations assumed within the
theory and this repays the effort of building the two-body
matrix elements. The RPA transition strength distribution
is built up by a linear combination of the one-body p-h
transition amplitudes (OBTAs) for the given operator, with
weight depending on the expansion coefficients resulting from
the diagonalization (which reduce to 0 or 1 in the noninter-
acting limit, corresponding to the “unperturbed” response)
and interference is properly accounted for. These ingredients
provide together a useful guideline to microscopically interpret
the RPA response (at least in a weak-coupling regime).
One can understand, for example, which p-h wave function
contributes more strongly (in terms of OBTA and relative
weight) to an eigenstate displaying a relevant amount of
transition probability for the operator of interest. Moreover,
one can attest to what extent the degree of mixing among the
p-h states, the mechanism underpinning the collectivity, where
the relative importance between the strength of the residual
interaction and the unperturbed energies plays a key role, is
mainly due to one or the other term of the force. The reader
can refer to one example in Ref. [49], which shows how the
residual Skyrme spin-orbit is able to admix extra p-h config-
urations with opposite spins in the considered low-lying RPA
state.

Although less commonly studied, and also considering
some interpretation issues, microscopic information can be
extracted from TDHF simulations as well, provided the
requested operations are built in. Examples of microscopic
analyses of TDHF calculations can be found in Refs. [50,51].
Further considerations of this topic are deferred to the future.

B. Unrestricted Skyrme energy density functional

TDHF is a well-established implementation of the density
functional approach in nuclear physics [8]. The starting point
is the static (effective) Hartree-Fock energy density H(x)

EHF = 〈−|Ĥ |−〉as =
∫

H(x)dx, (11)

from which the mean-field can be derived. In our case, in the
previous equation Ĥ is the effective Skyrme Hamiltonian and
|−〉 is the Hartree-Fock ground-state. In general, a nonlocal
energy density can be defined. Due to the effective nature
of the nuclear Hamiltonian and the associated mean-field,
the Hartree-Fock (Hartree-like) equations share the same
philosophy of the electronic Kohn-Sham equations [52].

Although the Skyrme interaction is constructed as a contact
force, a fact that allows the implementation of the functional
in terms of one-body densities depending on a single point of
space, finite-range effects are simulated through the derivatives
of the wave functions. In fact, the standard Skyrme-tensor HF
energy density is expressed like a sum of terms bilinear in the

particle or spin densities

ρ(x) = ρ(x, x′)
∣∣

x=x′ =
∑

i

∑
ω

φ∗
i (x′, ω)φi(x, ω)

∣∣∣∣∣
x=x′

(12)

S(x) = S(x, x′)
∣∣

x=x′

=
∑

i

∑
ω,ω′

φ∗
i (x′, ω′)φi(x, ω)〈ω′|σ |ω〉

∣∣∣∣∣
x=x′

, (13)

and other kinds of densities defined by the up-to-second-order
derivation of these objects, before the local limit is taken (see
Ref. [53] for higher order EDFs). In the equations above, the
spin components of the spinor i are represented by |ω〉 [pre-
viously indicated by ξ (ω)] and σ are the Pauli matrices. Once
the static densities are replaced by those built on the solutions
of the time-dependent one-body equations, the total energy
density gains a time dependence [H(x) → H(x, t)], although
its functional form remains unchanged with respect to the static
case.

When only the central and spin-orbit terms of the Skyrme
force are retained, not all the combinations allowed by the sym-
metries, among those depending on the second-order deriva-
tives, appear in the corresponding functional. The tensor force
provides a richer structure, introducing, in the N -N interaction,
the dependence on the relative spin orientation according to

vτ (1, 2) = V τ
1,2(r) = 4V τ

1,2(r)

[
3

(σ 1 · r)(σ 2 · r)

r2
− σ 1 · σ 2

]
,

(14)

where r is the relative position of the two interacting particles
and V τ

12(r) is the spatial form factor that also accounts for
the isospin dependence. It is the only (local) force able
to explain the deuteron quadrupole moment, being able to
transfer to a two-particle wave function up to two units of
orbital angular momentum and active only between spin
triplet states. As a one-body potential, the tensor force is able
to mix single-particle states that differ by one or two units
of orbital angular momentum, possibly introducing a parity
mixing.

Within a meson exchange model, the form factor of Eq. (14)
is modelled as a Yukawa potential and its zero-range limit can
be parametrized in the Skyrme form

vτ (1, 2) = T

2
[(σ 1 · k′)(σ 2 · k′)δ + δ(σ 1 · k)(σ 2 · k)]

−T

6
(σ 1 · σ 2)[k′2δ + δk2]

+U

2
[(σ 1 · k′)δ(σ 2 · k) + (σ 1 · k)δ(σ 2 · k′)]

−U

6
(σ 1 · σ 2)[k′ · δk + k′δ · k], (15)

where δ denotes δ(x1 − x2) and, as usual, k = 1
2i

(∇1 − ∇2)
and k′ = − 1

2i
(∇′

1 − ∇′
2) respectively act on the right and on

the left. This fully invariant interaction term corresponds to the
original one [5] and provides the same identical contribution
to the Hartree-Fock energy density (Appendix A) as the more
compact expression often employed in literature (cf. Ref. [6]
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and more recent works). By using basic angular-momentum
algebra, the previous equation can be recast in terms of
products of tensors of rank 2 in spin and momentum (see,
e.g., Ref. [17]).

Although the tensor force is able to act between relative
L = 2 states, where the centrifugal barrier keeps the nucleons
apart, so the long-range attractive part of the N -N interaction
(r > 3 fm) is probed, there is currently no evidence that an
intra-medium finite-range tensor force performs better than a
contact, velocity-dependent, parametrization. Some remarks

about the quality of the zero-range approximation for the
tensor force were proposed by the authors of Ref. [54]. Recent
comparisons between Skyrme (SLy5 + t of Ref. [55]) and,
in particular, the GT2 Gogny force of Ref. [56] can be
found in Ref. [57]. Not many finite-range effective forces
complemented with the tensor are available and further studies
are envisaged for the future.

In the proton-neutron formalism, the contribution to the
energy density associated to the tensor force (15), once the
exchange is taken into account, reads

Htens(x) = 2B∇S∇ · Sn(x)∇ · Sp(x) + A∇S

∑
q

(∇ · Sq(x))2 + 2BJ0J
0
n (x)J 0

p (x) + AJ0

∑
q

(
J 0

q (x)
)2

+ 2BJ1 Jn(x) · Jp(x) + AJ1

∑
q

( Jq(x))2 + 2BJ2J n(x)Jp(x) + AJ2

∑
q

(J q(x))2

+BF [Sn(x) · Fp(x) + Sp(x) · Fn(x)] + AF

∑
q

Sq(x) · Fq(x) + BG[Sn(x) · Gp(x) + Sp(x) · Gn(x)]

+AG

∑
q

Sq(x) · Gq(x) + BT [Sn(x) · Tp(x) + Sp(x) · Tn(x)] + AT

∑
q

Sq(x) · T q(x)

+B�S[Sn(x) · �Sp(x) + Sp(x) · �Sn(x)] + A�S

∑
q

Sq(x) · �Sq(x). (16)

For a generic term α of the functional, the Aα and
Bα coupling constants enter the expression of the proton
or neutron mean-field, respectively felt by a particle with
the same and opposite isospin. In terms of the commonly
employed isoscalar and isovector coefficients Cα

T , they satisfy
the relations Aα = Cα

0 + Cα
1 and Bα = Cα

0 − Cα
1 . The Cα

T

coupling constants are related to the Skyrme parameters as
tabulated in Ref. [58], according to the convention for the
EDF explained below.

The most evident difference with respect to the standard
Skyrme functional, based only on the central and spin-orbit
terms of the force, is the presence of two pseudovector densities
built on the tensor product of the nabla operators,

F(x) = 1
2 {[(∇′ ⊗ ∇) + (∇ ⊗ ∇′)]S(x, x′)}x=x′ , (17)

G(x) = 1
2 {[(∇′ ⊗ ∇′) + (∇ ⊗ ∇)]S(x, x′)}x=x′ , (18)

where Fμ = 1
2

∑
ν[(∇′ ⊗ ∇) + (∇ ⊗ ∇′)]μνSν and ⊗ denotes

the usual tensor product between vectors (A ⊗ B)μν = AμBν .
The S · F and S · G terms are connected through the (∇ · S)2

term according to the equation

[F(x) + G(x)] · S(x) = − 1
2 [∇ · S(x)]2, (19)

which applies when integration is assumed. The previous
relation can be used to successfully switch from Eq. (16) to
the formulation of the EDF of Ref. [58], where the G density
was not defined and only the S · F terms appear, with proper
weights. In this paper we will work with the formulation based
on the choice CG

T = 0, too. More details can be found in
Appendix A, where the derivation of Eq. (16) is provided.
Indeed, since the terms of the functional are not independent

of each other, for example, the relation [59]

[∇ · S(x)]2 = −S(x)·�S(x) − [∇ × S(x)]2 (20)

also holds, many equivalent formulations for the energy
density can be worked out.

The S · F and S · G terms contribute to maintain the
Galilean invariant properties of the standard Skyrme functional
when the tensor is made active. In particular, they are related to
the pseudoscalar, vector, and pseudotensor densities J0, J, J

and the pseudovector spin kinetic density T . The latter is
defined by

T (x) = [∇ · ∇′S(x, x′)]x=x′ , (21)

where a generic component Tμ depends on ∇ · ∇′Sμ. The
former three objects are those that represent the trace, the
antisymmetric, and the symmetric parts [7] of the pseudotensor
spin current

↔
J (x) = 1

2i
[(∇ − ∇′) ⊗ S(x, x′)]x=x′ , (22)

which decomposes into

Jμν = 1

3
δμνJ0 + 1

2

∑
i=x,y,z

εiμν J i + Jμν, (23)

with εiμν being the Levi-Civita tensor; their square satisfies
the relations

J 2
0 =

∑
μν

JμμJνν, (24)

J2 =
∑
μν

Jμν(Jμν − Jνμ), (25)

J 2 = 1

2

∑
μν

Jμν(Jμν + Jνμ) − 1

3
J 2

0 (26)
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and simple algebra leads to
↔
J

2 = 1
3J 2

0 + 1
2 J2 + J 2; (27)

the usual definition for the scalar product between tensors
↔
A

↔
B= ∑

μν AμνBμν has been used. As long as triaxiality is

absent, J0 = Tr
↔
J is zero (in the presence of subscripts, J0

will be denoted by J (0)). In spherical symmetric nuclei, the
sum over μ, ν in Eq. (26) vanishes as well [2], so one recovers

the reduction of
↔
J 2 to 1

2 J2. The J0, J , and J densities enter the
central sector of the standard Skyrme functional with weights
that allow the replacement

C
J0,c
T

(
J

(0)
T

)2 + C
J1,c
T J2

T + C
J2,c
T J 2

T = C
J,c
T

↔
J

2
T (28)

for T = 0, 1, since C
J,c
T = 3C

J0,c
T = 2C

J1,c
T = C

J2,c
T (Cα

T =
C

α,c
T + C

α,t
T , where c = central, t = tensor). Unless the tensor

is switched on, the two implementations, in terms of
↔
J [25]

or the formulation where J0, J , and J are kept separated
[58], are interchangeable. In this case, the Galilean invariance
only relates the spin-current terms to those depending on the
spin kinetic density T (CT,c

T = −C
J2,c
T ). When the tensor is

introduced, the following relations among the parameters must
hold for the Galilean invariance to be respected

3C
J0
T + CT

T + 2
(
CF

T − CG
T

) = 0,

4C
J1
T + 2CT

T − (
CF

T − CG
T

) = 0, (29)

2C
J2
T + 2CT

T + (
CF

T − CG
T

) = 0

and 3/10C
J0,t
T = −2/5C

J1,t
T = C

J2,t
T . This is realized for the

Skyrme-tensor functional; in order to prove the invariance, it is
useful to know that under the local gauge (Galilean) operation
TG : ψi(x) → eikxψi(x), the F and G densities transform
according to

TG(Fμ(x)) = Fμ(x) + kμk · S(x) + kμJ0(x)

+
∑

ν

kνJμν(x), (30)

TG(Gμ(x)) = Gμ(x) − kμk · S(x) − kμJ0(x)

−
∑

ν

kνJμν(x). (31)

In total, the Galilean invariance imposes constraints on 8
(6 without the tensor) of the 14 time-odd coupling constants of
the whole Skyrme-tensor functional (in the isospin formalism
and in the formulation where CG

T = 0), which, in such a way,
are determined from the corresponding even partners. We refer
to Refs. [25] [notice the misprint in Eq. (4.6), where k2 has
to be replaced by k2ρ(r)] and [58] for the full set of relations
concerning the Galilean invariance properties and we proceed
with some other comments.

The inclusion of the spin-current
↔
J 2 terms, which, as

known, affect the spin-orbit splitting in the absence of spin
saturation (here in the sense that each pair of spin-orbit partners
is not fully filled up), is required in forces that took them
into account during the fit. Neglecting them leads to a break
of consistency in terms of an incomplete implementation
of the functional. For a more complete discussion, refer to

Ref. [60], where a comparison between predictions from the
SLy4 force, fitted without that contribution (“type I” force),
and the SLy5 set, which included it (“type II”), was considered;
ambiguities related to the former type of force were pointed
out. In particular, it was discussed that the contribution from

the
↔
J 2 terms in computing the excited states can be more

important than in the ground-state, with the result that standard
fitting procedures, unable to capture some physics through
the ground-state observables, can lead to poor results when
computing collective excitations. For this reason, suppressing
those terms from the residual interaction of “type I” forces can
lead to an error larger than a RPA self-consistency breaking
approach, although (unwanted) case-by-case considerations
with such parametrizations might be required.

It similarly holds for the time-odd sector of the functional.
The central S · T terms have been often suppressed in the past

together with their Galilean partners
↔
J 2 (cf. e.g., Ref. [61]).

However, the error associated to the suppression of the S · T
terms in finite systems can be large. In Ref. [60] it was then
shown that the lack of these time-odd terms can significantly
alter the energy location of the GTR, which dominates the
landscape in the (charge-exchange) 1+ channel. It also turned
out that the GTR collectivity, which, as known, experimentally
absorbs the 60% of the Ikeda-Fuji-Fujita sum rule, can be
badly affected by relatively strong (negative) values of the
CT

1 coupling constant, a fact which explained the peculiar
behavior of the SLy5 parametrization with respect to other
Skyrme forces. Also, relatively too-weak CT

T values (which
depend on the t1 and t2 Skyrme parameters) would allow a
too-strong mixing from the S2 terms (depending on t0 and t3,
mainly fixed on bulk properties), unless the proper balance,
or alternative formulations, are found. On such a basis, one
conclusion of Ref. [60] was that the spin, velocity-dependent
terms cannot simply be neglected as a rule and the parametrized
EDFs rather need improved fitting procedures to model the
dependence on the spin density, possibly including (further)
constraints from collective properties.

Among the last developments in the central spin sector,
extensions of the t0-t3 spin-dependent terms were proposed
in Ref. [62], in connection to the spin phase transitions that
are known to be predicted by effective approaches beyond the
saturation density (cf. Ref. [63] and references therein).

The last remark of this section concerns superfluidity. An
approximation still quite in use in order to include pairing cor-
relations in TDHF consists in performing a BCS calculation at
the mean-field level and evolving the dynamics on top of it. The
sums in Eqs. (12) and (13) would, consequently, span the larger
set of states that defines the pairing window, the expression of
the (“normal”) densities gain nontrivial occupation factors, and
the energy functional is complemented by terms depending on
the densities’ “anomalous” counterparts [58].

A detailed description of the nuclear response would
require a TDHFB approach. A full 3D-TDHFB is a demanding
computational task. Some of the most advanced works of this
type are represented by Refs. [64,65] and, for the Gogny case,
by Ref. [66]. A full TDHFB implementation of the Skyrme
functional, including also the tensor, is not yet available.
The approximated and not fully self-consistent treatment
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of superfluidity does not affect our conclusions on the p-h
channel, although an extension which unifies the best efforts
in both the p-h and p-p (particle-particle) channels is envisaged
for the future.

1. Parameters, numerical tests and the center-of-mass correction

In this work we use the SLy5 force [67] with tensor
parameters that were perturbatively defined in Ref. [55] and
employed in subsequent applications starting with Ref. [68]
(cf. also Ref. [69] and references therein). As known, the
Lyon forces, which, in particular, received constraints also
from microscopic calculations of the neutron matter equation
of state, were tailored to improve the isovector channel of
the effective interaction and, thus, the description of exotic
systems. Like other works, we also employ the force T44 of
Ref. [7], characterized by some different features. For example,
the central + tensor isovector coupling constant CJ1,c+t

1 of T44
vanishes and consequently, in the spherical limit, one is left
with the isoscalar tensor contribution only. Moreover, for all
the terms mentioned in the previous section (J 2

0 , J2, J 2,

S · T , S · F,
↔
J 2), the like (CT

0 + CT
1 ) and unlike (CT

0 − CT
1 )

particle tensor contributions to the mean-field operator have
the same sign, at variance with the SLy5 case, where they are
systematically opposite each other (see Table I).

The SLy5 and T44 forces have strictly negative central CT
T

coefficients, a quite common feature of the standard Skyrme
sets (cf. Table II in Ref. [70]). They are relatively strong for
both cases (with a different CT

0 /CT
1 ratio), so the effects from

some of the newly implemented terms are expected to be
emphasized with respect to other choices. With the inclusion
of the tensor, the CT

T coupling constants remain negative; the
SLy5 ones receive a large reduction (90% and 84% for CT

0
and CT

1 , respectively), while the T44 CT
0 + CT

1 and CT
0 − CT

1
combinations are both strengthened in absolute value (see
Table II of this work).

In the pairing sector, an (isovector) volume pairing force
was implemented. For 120Sn we set its (neutron-neutron)
strength to the value V0(n) = 243 MeV fm3; in such a way,

TABLE I. Central and tensor coupling constant for the J 2
0 , J2,

J 2, S · T , S · F and
↔
J 2 terms, according to the isospin formulation

for the energy density functional. All the values are in MeV fm5.

SLy5 T44

Central (c) Tensor (t) Central (c) Tensor (t)

CT
0 −15.67 14 −59.01 −24.40

CT
1 −64.53 54 −52.03 20.81

CJ
0 = CJ2

0 15.67 7 59.01 −12.20

CJ
1 = CJ2

1 64.53 27 52.03 10.41

CF
0 0 −42 0 73.19

CF
1 0 −162 0 −62.43

CJ0
0 5.22 23.33 19.67 −40.66

CJ0
1 21.51 90. 17.34 34.69

CJ1
0 7.83 −17.50 29.50 30.50

CJ1
1 32.27 −67.50 26.01 −26.01

TABLE II. AT (first line) and BT (second line) coupling constants
for the SLy5 force and, within parenthesis, T44 when the tensor is
switched off (“central”) or retained. All the values are in MeV fm5.

Central (c) Tensor (t) c + t

CT
0 + CT

1 −80.20 (−111.03) 68.0 (−3.59) −12.20 (−114.62)

CT
0 − CT

1 48.87 (−6.98) −40.0 (−45.21) 8.87(−52.19)

the SLy5 calculations including the
↔
J 2 terms well reproduce

(<1% of discrepancy) the experimental neutron pairing gap
(1.32 MeV) obtained with the standard mass formula [71].
The associated energy cutoff is such that, as rule of thumb,
only one extra major shell is included in the BCS space. In the
following, we will refer to the choice V0(p) = V0(n) = 243
MeV fm3 as “pairing set 1” in order to distinguish it from
other sets discussed later in connection to heavier nuclei. In
this work, we do not stick to the isospin invariance in the
pairing channel adopted by some of us in the past [72] and
we separately fix the proton and neutron pairing strengths.

The model space in the static calculations is a cubic box
of 243 fm3 with the commonly employed 1-fm grid step.
A one-half reduction of the grid spacing would reproduce
the HF single-particle spectrum with a better precision,
causing variations from tens to 100–200 keV on single-particle
energies in 16O (which do not affect the features of the giant
resonances we are interested in), but it would importantly
enlarge the computational time of the dynamical simulation.
We consider the standard choice of 1 fm to be a good trade-off
for our purposes. In particular, the convergence in the static
was checked, as usual, by looking at the stability of the
single-particle energies.

The dynamic calculations were performed with reflecting
boundaries over the same grid of the static case but extending
the box side parallel to the boost direction to 64 fm for
the lightest systems. In the other cases, a smaller squared
box was used to save computational time which, together
with the other model-space parameters, had been employed
in previous calculations [73]. The box size, the simulation
time length, and the boost strength, chosen small enough to
stay in the linear regime, minimizing the particle emission
but without being dominated by numerical noise, must be
considered mutually dependent parameters, properly chosen to
avoid unwanted effects from particle reflection. The choice for
the input parameters can also be tested by checking the absence
of unphysical fluctuations in the particle number or against the
stability of the response computed in a reduced volume when
rescaling the box size. The tests were successfully performed
by looking at the heaviest nuclei.

The numerical accuracy was also checked by observing
the free motion of a single ground-state nucleus on the grid,
the typical test for the Galilean invariance. The nucleus in the
starting rest condition is boosted by an external force and
simply put into translation without, ideally, internal excitation.
First, one notices that in the simple spin-saturated 16O, the

contribution to the total energy from the spin current
↔
J

is expected to be zero, the same occurring for the energy
contributions associated to the time-odd terms. Simulating the
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translation, the former quantity turns out to be of the order
of 10−4 MeV and it oscillates in time at the 10−5-MeV level,
while the HF single-particle energies change by a few tens of
keV with respect to the “basic” calculation that neglects the
↔
J 2 terms. The most important error source is due to the choice
of the grid spacing size: the accuracy improves by one order of
magnitude after a one-half reduction of this parameter. In order
for the functional to be analytically Galilean invariant, the
inclusion of the contributions associated to the pseudotensor
↔
J requires, as said, the S · T ones too, and, in the presence
of the tensor, the S · F (S · G) terms as well. In this system

all the time-odd terms vanish with accuracy higher than the
↔
J 2

terms, leaving no trace on the single-particle spectrum even at
the eV level.

The last remark concerns the center-of-mass correction
to the kinetic Hamiltonian term. In all our calculations, the
total center of mass of the system at rest is located at
zero—and it is expected to remain fixed if a purely internal
excitation is produced. The simple one-body approximation
was included when fitting the SLy5 force, so one should
keep the correction active in the static HF. Concerning the
dynamics, it is known [74,75] that conceptual problems about
the definition of the mass of the system arise in TDHF,
in relation to processes involving more than one fragment
(fusion, fission, and collisions in general). When simulating
giant resonances in TDHF, one needs to deal with the mass
dispersion which accompanies the deexcitation process. Some
other authors computing the GDR [20] choose to apply the
center-of-mass correction to the mass distribution in the whole
model space, considering the particle number as a constant in
the time-space. Other practical recipes can be tried; we ran a
few test cases in order to compare a calculation (YN) including
the center-of-mass in the static, but not in the dynamic, thus
some self-consistency breaking is introduced, a calculation
(NN) that neglects it also in the static and the one (YY)
accounting for the center of mass at both stages, with a constant
mass number equal to the corrected static one. All these cases
contain approximations, but we wanted to outline which is
the least worst choice. The outcome from this comparison
is represented in Fig. 1, where the isovector dipole response
in 16O is represented in the time (three horizontal plots) and
energy domain (big plot), with arbitrary vertical scales. The
total center-of-mass motion (obtained from the expectation
value of the lowest-order isoscalar dipole operator Ô1−00,
defined analogously to Ô1−01, but with τz replaced by Iτ , the
identity operator in the isospin space) is plotted as well (dashed
line). In the YN calculation the presence of a drift of the system
is recorded and it is possible to notice the associated spurious
concentration of strength at low energies. The difference
between the NN and the YY calculations turns out to be small
with the employed parameters in the linear regime.

III. RESULTS

As previously recalled, the isovector giant dipole resonance,
which characterizes the experimental cross section more
markedly than other vibrational states, is the first nuclear
collective excitation which was discovered in photonuclear
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FIG. 1. Isovector dipole (IVD) response in 16O in the time domain
(NN, YY, and YN panels) and after the Fourier transform (big panel).
The comparison among calculations including the center-of-mass
correction everywhere (YY), nowhere (NN), and in the mean-field,
but not in the dynamical evolution (YN), is shown. The vertical
scale is arbitrary. For each calculation, the expectation value of the
lowest-order isoscalar dipole operator is reported as well (dashed
line).

reactions in the 1940s (cf. Ref. [76]) and imagined by A.
Migdal in 1944 [77] in connection with the nuclear matter
polarizability. The microscopic interpretation in terms of the
(overall repulsive) residual effective interaction, able to explain
the collective motion as superposition of nucleons undergoing
particle-hole excitations, was achieved only 20 years later.
Since that time, many experimental data have become available
from a wide range of events, together with an extensive
theoretical investigation. Forty years after the first observation,
evidence of finite-temperature dipole modes taking place in
a compound system from a heavy-ion collision were also
found [78]. Some features of the GDR vary with temperature
(like the size of the deformation and the width), while the
centroid energies tend to remain stable.

The study of the zero temperature modes, the equivalent of
the Landau zero sound, represents a useful way to explore
the nuclear structure and also to identify features of the

044303-9



S. FRACASSO, E. B. SUCKLING, AND P. D. STEVENSON PHYSICAL REVIEW C 86, 044303 (2012)

intra-medium N -N interaction, testing how the current models
perform. The main purpose of the current work is to analyze
the effect of the Skyrme-tensor functional on (harmonic)
dipole states set on top of the ground-state, although, in the
absence of the study of the potential energy dependence on
the deformation, the static mean-field is not guaranteed to
correspond to the global minimum. In particular, in some cases,
triaxiality is forced for explorative purposes. We leave for the
future the investigation of finite-temperature events, which are
important in connection to heavy-nuclei reactions [79] and in
astrophysical environments.

In this section, the isovector dipole response from TDHF
is presented for some benchmark nuclei with a mass number
ranging from 16 to 238 having, or led to assume, different
shapes. As is well known, the IVD response in axially
deformed nuclei is characterized by a splitting related to
the anisotropy of the single-particle motion: the experimental
cross section

〈σ1−〉(E) = 1
3σ|1−,0〉(E) + 2

3σ|1−,1〉(E) (32)

is a statistical average of the |Jπ,K〉 = |1−, 0〉, |1−, 1〉 modes,
respectively associated to oscillations of protons against
neutrons along (K = 0) and perpendicularly to (K = 1) the
symmetry axis (see Fig. 2). Analogously, the cross section of
giant resonances induced in triaxial nuclei is expected to break
up into three contributions associated to the three characteristic
lenghts of the system (k). Each distribution can be fitted with
a Cauchy-Lorentz probability density function

σ (E) = σ0
�̃2

(E − E0)2 + �̃2
, (33)

where �̃ = E�, with � being the scale parameter, E0 the
peak location, and σ0 the corresponding height. From the

FIG. 2. Schematic representation of a prolate (a) and an oblate
(b) nucleus and the relative position of the GDR K = 0 and K = 1
centroid energies, with a possible appearance due to the spreading
(scales arbitrary; the height of the peak centered around ωb needs
to be doubled when comparing to the experiment). The half-axes
are labeled consistently with Eq. (34). The symmetry axis (S) points
toward the top.

TABLE III. Comparison between the empirical ratios (second
column) of the dipole K = 1 and K = 0 energies, based on Eq. (34)
and the nuclear size from the static Hartree-Fock approximation, and
the corresponding TDHF predictions (third column) from the SLy5
force, with centroids evaluated in the whole energy range.

AX (E1/E0)emp (E1/E0)th

24Mg 1.385 1.332
28Si 0.757 0.758
238U 1.244 1.240

data, one can extract information regarding the type of
deformation (triaxial or prolate, oblate shape) and its size,
respectively represented by the so-called Hill-Wheeler param-
eters γ = arctan

√
2β22/β20 and β =

√
β2

20 + 2β2
22 , built up

from the dimensionless quadrupole deformation coefficients
β2μ = 4π

5
〈Q2μ〉
A〈r2〉 . The splitting between the various k modes

can be described by the shift between the centroid energies
Ek = m1k/m0k , computed as the ratio between the energy and
non-energy-weighted sum rules (EWSR and NEWSR) for each
k component (we will denote the centroid energy of the whole
strength distribution by E). The splitting is experimentally
visible if the nucleus is far enough from the spherical shape
(β = 0) and if it is not masked by other effects [80].

A macroscopic description of the deformation splitting is
provided by the hydrodynamical model. Depicting the nucleus
as a spheroid with eccentricity a2 − b2, where the semiaxis a

is aligned with the symmetry axis, one has, in particular, the
empirical relation for the quantity E1/E0 (see Ref. [76] and
references therein)

ωb

ωa

= 0.911
a

b
+ 0.089, (34)

where ωb and ωa are the oscillation frequencies of the liquid
drop induced by an external perturbation along the given
directions. Table III compares, for 24Mg, 28Si and 238U, the
(SLy5) TDHF centroid energy ratio with the right-hand side
of Eq. (34) based on the HF geometry, with the result that the
expectation from this empirical evidence is quite well fulfilled.
Similarly, the centroid energies can be empirically described
in presence of triaxiality [81].

Figure 3 shows the comparison between the theoretical cen-
troids (for all the considered nuclei, despite the deformation)
and the predictions from empirical fits. The behavior of the
GDR energy when varying the mass number is parametrized
like h̄ω ∼ 31.2A−1/3 + 20.6A−1/6 according to the Berman-
Fultz (BF) model, which is expected to be more appropriate
for spherical light-medium nuclei (typically A < 100), where
the correction for the surface (�A−1/6) is more important,
or by h̄ω ∼ 79A−1/3 MeV from the Steinwedel-Jensen (SJ)
formula (see references in Refs. [82,83]). In particular, for each
value of the mass number the main plot displays the empirical
prediction which is closest to the performance of the SLy5
force (the full trend from both models is reported in the inset).
The BF formula turns out to be reproduced better than SJ up
to 120Sn. In any case, it is clear that the discrepancy with the
result from Skyrme is quite high in the light nuclei; although
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other sets can better perform in such cases, the simultaneous
reproduction of the GDR across different mass regions of
the periodic table is a long-standing problem [84] (see also
Ref. [75] and references therein).

As previously anticipated, in this paper various truncations
of the SLy5 and T44 Skyrme functional are considered, with
the purpose of studying how the central spin-dependent and
tensor terms manifest themselves on the nuclear response.
Relative effects from the p-h channel are, therefore, discussed.
In any case, particular attention is reserved to the definition of
the pairing force. It should be mentioned that the predictions
for the percentage of total EWSR exhausted in the finite energy
intervals of interest are quite sensitive to the model parameters.
Higher-precision calculations are possible in order to provide
more robust estimates where needed.

Particular attention is payed to the central
↔
J 2 terms

(cf. Sec. II B), which had not yet been included in our model.
In this work we will label the calculations obtained without
the spin-current tensor and with none of the time-odd (with the
exception of the time-odd spin-orbit) nor tensor terms “basic.”
In all the plots displaying the calculated IVD transition strength
distribution, which is measured in fm2 unless an artificial
smoothing is introduced, the scale on the vertical axis has been
normalized to the highest peak produced, for the considered

nucleus, in the SLy5 calculation including the central
↔
J 2 terms

(labelled by J 2
c or simply J 2. In the plots where the K = 0 and

K = 1 components are separately plotted, no relative factor 2
is included).

The results have been extensively verified. Comparisons
to other theoretical works or experimental data are provided
where available.

A. 16O

The first case considered is 16O, a historically widely used
benchmark for TDHF calculations due to the low demand of
computational complexity. Despite the limitations of the mean-
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FIG. 4. Isovector dipole (IVD) strength distribution in 16O ob-
tained for different truncations of the SLy5 functional. The legends
indicate the terms made active in the corresponding calculation, in
addition to the “basic” version. Details in the main text.

field approach and the known problems with reproducing the
location of the GDR in light systems, it still is a good candidate
to highlight some features of the Skyrme functional. In fact,
the residual interaction is expected to affect how the strength
is distributed in light nuclei more markedly than in heavier
systems, where, by a microscopic point of view, more single-
particle levels are involved in the process and shell-dependent
effects tend to average out.

The calculated isovector dipole in 16O mainly lies between
15 and 25 MeV. Figure 4(a) shows the response from the

SLy5 functional including the central
↔
J 2 terms (dashed line),

in comparison to the “basic” calculation previously defined
(dotted line). They produce a shift to higher energy of both of
the two main bumps which characterize the response, which
are peaked at 19.1 and 22.1 MeV. The most prominent effect is
obtained for the smaller peak at higher energy, the strength of
which is reduced by a factor 2 in the more complete calculation.

An evident change on the strength function appears when

including the
↔
J 2 Galileian invariant partner in the functional,

that is the S · T contribution, which increases the response
fragmentation for both the Skyrme forces [Fig. 4(b)]. For the
SLy5 case, such calculation produces two new bumps of almost
equal size, which are peaked at 18.5 and 21.5 MeV. This is the
case which qualitatively looks more similar to the experimental
cross section, which, in low-resolution experiments, displays
two main structures around 22 and 25 MeV [83]. However,
analyses of the microscopic structure in such 1p-1h limit
are required to add more information. Figure 4(d) shows the
calculation obtained when including also the S2 terms and
confirm their capability to increase the strength of the dipole
response, overcoming the effect of the S · T terms. As a matter
of fact, as a consequence of the action of the spin-squared
terms, there is basically one single centroid with the highest
peak at 19.7 MeV, showing an enhanced transition probability
and raised in energy with respect to the J 2

c calculation. The
outcomes described above are similarly obtained with the
T44 force (Fig. 5). The “aggregating” behavior of the S2
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FIG. 5. Same as described in the caption to Fig. 4 for the T44
force.

ingredient was already observed, without the S · T terms (c),
in Ref. [20], where the TDHF dipole response in 16O and Be
isotopes was analyzed with the SIII force, but no systematic
calculations were carried on. In general, in a p-h view, the
spin-squared terms, including the rearrangement due to the
density dependence, are able to couple spin-flip (↑↓, ↓↑),
which do not directly contribute to the IVD transition am-
plitudes, and non-spin-flip (↑↑, ↓↓) particle-hole pairs with
configurations of the same family, and, to some extent, to also
mix them up. By suppressing the CS

T one-body contribution
that depends on the spin ladder operators, the effect from the
spin-squared terms on the whole distribution is lost in our
TDHF calculations and one recovers the two-peaked structure
of the J 2

c run (the rearrangement has no effect). This finding is
possibly related to the specific shell structure of 16O. Further
analyses will be discussed in the future.

The results obtained by adding the tensor terms associated

to the spin current
↔
J to the central ones [hereafter labeled by

J 2
c+t like in Fig. 5(b)] turn out to be identical, or displaying

a negligible difference, to the “basic” version which does not
include any of the new terms. The inclusion of the tensor to
the S · T contribution does not produce an appreciable effect
either.

The information about the SLy5 centroid energies for the
different types of calculations are summarized in Table IV,
together with the percentage of total EWSR correspondingly
exhausted. They are evaluated in the intervals 17–20 MeV
(18–21 MeV for the T44 force), labeled by (I), where the main
peak from the J 2

c calculation is located. The information about
the transition strength that is left between 20 and 24 MeV (II) is
given as well. For the calculations including the S2 terms (last
two lines), the considered interval is 17–22 (17–23) MeV: the
strength is collected in a single bump absorbing more than the
74% of the total EWSR. In all the calculations, a small fraction
of strength is concentrated around 10 MeV. The total centroid
energy amounts to 20.6 MeV (20.8 MeV) for the SLy5 (T44)
force.

Studying the spin response is not the aim of this paper;
nevertheless, we tracked in time the expectation value of the
operator OK

1−11 = ∑
i Dg1K (xi , ωi)τz(i), where g1K (x, ω) =

TABLE IV. Isovector dipole centroid energies in 16O for various
types of calculations not including the tensor. “Basic” means that
none of the terms specified in the subsequent lines have been included.
The considered intervals are [17,20] MeV (I) and (20,24] MeV (II)
for SLy5 ([17,22] MeV and (22,24] MeV for the last two rows),
[18,21] MeV for T44 ([17,23] MeV). The percentage of total EWSR
exhausted in each energy range is reported within parenthesis.

SLy5 (I) SLy5 (II) T44

Basic 18.94(52.3%) 21.86 (28.2%) 19.40 (52.1%)
J 2 19.05(57.0%) 22.08 (23.7%) 19.45 (54.4%)
J 2 + ST 18.71(43.6%) 21.73 (34.8%) 19.34 (45.6%)
J 2 + S2 19.66(75.2%) 23.23 (5.20%) 19.72 (72.3%)
J 2 + ST + S2 19.56(74.1%) 23.28 (5.90%) 19.62 (71.6%)

Y1K (x)|x|σz(ω). This corresponds to

〈
ÔK

1−11

〉
(t) = D̃

2

∫
λ
[
S(n)

z (x, t) − S(p)
z (x, t)

]
dx, (35)

where S(n)
z (x, t) − S

(p)
z (x, t) is the time-dependent spin-

isovector density ρ11 = (ρn↑ − ρn↓) − (ρp↑ − ρp↓). The sig-
nal takes place at a scale which is several orders of magnitude
smaller than the dipole response. For some truncations of
the Skyrme EDF, regular oscillations occur from an early stage
[solid line in Fig. 6(b)] and appear to grow up in time. The plot
is for SLy5 and the same has been found for other cases.
We verified that within the time length considered, and well
beyond, such behavior, which is not enhanced when reducing
the box size, is small enough to not influence the observed
dipole strength. In particular, the oscillations are not larger
than the spurious total center-of-mass motion, represented, for
the same calculation, by a dotted line in all the three panels.
This, in turn, is two orders of magnitude smaller than the worst
case (YN) that was shown in Fig. 1 (dashed line in the bottom
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(lowest-order isoscalar dipole operator) is plotted as a dotted line in
all the three panels. In panel (c), the same quantity corresponding
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quantities are directly comparable and measured in fm.
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panel) and comparable to the NN and YY cases. Further studies
are underway.

B. 24Mg

The lightest axially deformed system we present is 24Mg.
The pairing correlations are negligible and the nucleus has
a prolate shape; hence, one main splitting of the response
arising from the deformation is expected, with the K = 0
mode, associated to oscillations along the symmetry (major)
axis, being less energetic than the K = 1 one.

The dipole calculations performed with the new terms
present some important pathologies when using the T44
parametrization and especially when the boost is applied
along the major axis: with the new terms, the system displays
spurious excitations, enters the nonlinear regime, and is led
to fission or explosion. This is the case when adding the

tensor from the
↔
J spin current: the dipole oscillations are

dramatically enhanced and the system splits up as a result of an
inelastic collision. Rotational effects can arise as well, as in the
J 2 + S2 model with no tensor, where the dynamic is similar to a
fusion state after a noncentral collision. With the J 2 + ST + S2

model, octupole deformations appear on top of the dipole
oscillations. When the boost is applied along the perpendicular
direction, the pathologies due to the inclusion of the S2 terms
are largely reduced when the S · T terms are added as well.

When using the SLy5 force, it is necessary to run the
simulation longer (at least for a time doubled with respect
to the T44 J 2 + S2 case) to face the same kind of instabilities,
which manifest far outside the time window considered in this
work, without affecting the results. These are shown in Fig. 7.
Nonzero signal is mainly visible between 13 and 30 MeV, with
a narrow peak associated to the K = 0 mode located at 15.8
MeV (practically unchanged when switching on/off the tensor
and time-odd terms of the functional), and a broader bump
associated to the second characteristic length of the system
(K = 1), with a narrower structure in the 18–23 interval (II).
The central J 2 model performs similarly to the “basic” one.
For the runs without tensor, the plot presents a pattern similar
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FIG. 7. IVD response from the SLy5 force in 24Mg for the
calculations specified by the labels. Only central terms are included.

TABLE V. Isovector dipole centroid energies in 24Mg for various
types of SLy5 calculations not including the tensor, evaluated in
the intervals [0,18) MeV (I) and [18,23) MeV (II) and in the larger
[18,26] MeV window (III). The exhausted percentage of the total
EWSR is listed within parentheses.

SLy5 I II III

J 2 15.81 (30.0%) 20.14 (31.5%) 21.78 (56.5%)
J 2 + S2 15.85 (29.9%) 20.74 (44.2%) 21.42 (56.8%)
J 2+ST + S2 15.79 (30.1%) 20.58 (42.0%) 21.37 (55.5%)

to that of Oxygen: the S2 terms are able to reduce the spreading
of the dipole response with respect to the central J 2 calculation
(dashed line), while the S · T terms work in the opposite
direction (full central calculation J 2 + ST + S2 represented by
a solid line). In the inset, the J 2 + ST calculation is separately
drawn.

All the information about the centroid energies computed in
the intervals of interest are listed in Table V, together with the
corresponding fraction of exhausted EWSR (see the caption

for details). The calculation obtained by adding only the
↔
J 2

terms to the “basic” one places in interval II about 10% less
than the energy-weighted strength of the other cases, because
the K = 1 mode is fragmented at higher energies (still within
interval III). The total centroid amounts to 20.2 MeV for all the
considered truncations of the SLy5 functional. The inclusion of
the time-odd terms reduces the overall deformation splitting
by 300–400 keV, which globally amounts to about one-half
of what is predicted by the Gogny-based QRPA of Péru and
Goutte [85]. This change is only due to the residual effects
in the p-h channel, since the time-odd terms vanish in the
ground-state and do not alter the single-particle spectrum. Our
outcome is similar to the SkM* [86] (Q)RPA result with no
tensor presented by Ref. [87] (same deformation parameters
and rms are obtained in the ground-state).

C. 28Si
28Si is a system comparable to 24Mg in mass but with

different deformation properties. Both the SLy5 and T44 forces
predict an oblate shape (γ = 60◦), with a β parameter that,
with the second force, is about 30% weaker when the central
↔
J 2 contribution is not included (β = 0.19 in the “basic” versus
β = 0.26 of the J 2

c case); it increases by a further ∼10% when
the tensor is switched on. The variations are smaller in the
SLy5 case (β = 0.28 ± 0.01 for the three calculations), with

the
↔
J 2 terms still enhancing the deformation.

Figure 8 shows how the linear response changes between

the J 2 run, where, we recall, the (central)
↔
J 2 terms are self-

consistently included in both the static and the dynamic, and
the “basic” version where they are neglected at both levels.
The upper (bottom) panels are for the SLy5 (T44) force and
the K = 1 and K = 0 modes are separately computed at the
left- and right-hand sides, respectively. It is possible to notice
that the response around 22 MeV receives contribution from
both the K = 0 mode and the Landau spreading of the K = 1
component. For the T44 case, the spin-current terms enlarge
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J 2 terms in the ground-state only. The arrow indicates

the height of the main peak in the latter case.

the splitting by 1.4 MeV, since the K = 1 centroid lowers from
20.5 to 19.5 MeV, while the K = 0 one increases by 400 keV,
as reported in Table VI; as a consequence, the ratio between
the centroid energies decreases by 6% (third column). The
empirical estimates of Eq. (34) are listed in the last column for
comparison. The effect from the SLy5 force is less pronounced,
but similar.

As said, a useful tool to investigate how the energy func-
tional reproduces the nuclear response consists in performing
not-self-consistent calculations where the underlying mean-
field is obtained from a functional simpler than that used in
the dynamic evolution. In such a way, one can disentangle
effects arising from the static mean-field, including the change
produced on the intrinsic deformation. By doing this in the
T44 case, it is possible to see that the 1.4-MeV variation of the
shift between the K = 0 and K = 1 modes can be explained
in terms of the change produced on the ground-state, which, as

said, is made more oblated by the
↔
J 2. In fact, when turning the

spin current on in a dynamical calculation performed on top
of the “basic” mean-field (basic + J 2), one obtains a profile
similar to the fully self-consistent J 2 run (see the dashed
lines in Fig. 8 for T44), but the gain in the energy splitting
is practically lost and one recovers exactly the same energy

TABLE VI. K = 1 and K = 0 centroid energies from T44 in
28Si, evaluated in the whole energy range, from the three types of
T44 calculations of Fig. 8. The comparison with the empirical ratio
of Eq. (34) is given as well.

T44 E1 (MeV) E0 (MeV) (E1/E0)th (E1/E0)emp

Basic 20.45 24.38 0.839 0.837
J 2 19.45 24.79 0.785 0.780
Basic + J 2 19.99 23.82 0.839 0.837
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FIG. 9. IVD response in 28Si for various types of SLy5 calcula-
tions. The white profiles show the (rescaled) profile of the response
perpendicularly to the symmetry axis (K = 1).

ratio of the pure “basic” case (a small fraction of strength
can be noticed at low energies, below 10 MeV, due to the
self-consistency breaking).

From Fig. 9, showing the total IVD strength from the SLy5
force, one can identify, once again, the opposite behavior of
the central S · T (upper-right panel) and S2 terms (lower-left
panel) in redistributing the transition strength. Table VII
displays the centroid energies computed below (interval I)
and above (II) 20 MeV. With the S2 ones, strength is pushed
at higher energies. The S · T terms fragment the response,
with the result that the main peak is lowered by 100 keV and
some transition probability is now visible between 18.0 and
21.5 MeV.

Concerning the tensor, instabilities arise when including
the S · F terms. In the case of the SLy5 force, these appear at
the middle of the time length we have typically assumed. We
still attempted to compare with runs where the CF

T coupling
constants are zero by halving the simulation time. This
operation might lead to loose relevant information, although
it turns out that, when repeating the same operation with the
cases listed in Table VII, the relative differences between the
calculations still hold. From Fig. 9(d), it seems the S · F terms
produce an overall attractive effect. The same comparison
between T44 calculations including the tensor is shown in
Fig. 10. The S · F terms shift down the highest peak by a
further ∼300 keV and also move strength (K = 0 mode) to

TABLE VII. Isovector dipole centroid energies in 28Si for the
SLy5 force evaluated below (I) and above (II) 20 MeV for the
calculations listed in the first column (no tensor).

SLy5 I II

J 2 17.13 25.16
J 2 + ST 17.02 24.85
J 2 + S2 17.38 25.25
J 2 + ST + S2 17.40 26.02
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higher energies. In any case, the role of these tensor terms
should be further investigated.

D. 120Sn

The next case under study is the spherical 120Sn, where,
at variance with the previous cases, pairing correlations are
important and are modelled with the pairing parameters (set 1)

introduced before. Superfluidity opens the channel to the
↔
J 2

tensor terms also in the ground-state, preventing the N = 70,
Z = 50 core from being spin saturated, although the system
remains time-reversal invariant. Consequently, there is no
contribution from the time-odd terms in the mean-field. While
checking this, we noticed that the inclusion of the S · T terms
may help the convergence in the static calculation when the

squared spin density is turned on. When the
↔
J 2 terms are

switched on, the pairing gap changes by 1–2%, which is far
from producing a relevant change on the main properties of
giant resonances. When using the optimum SLy5 pairing set
in connection to the T44 force, a pairing gap of 1.84 MeV
is obtained. However, even a change of around +20% of the
pairing strength (“pairing set 2”), which significantly alters the
pairing gaps, would produce small variations on the response
(cf. Fig. 11, left panel). There is, consequently, no need to
further tune the pairing either when modifying the functional
for a given force or when changing from SLy5 to T44.

The SLy5 strength distribution is characterized by two main
peaks (cf. Fig. 12). The predictions for the centroid energy
(∼15.4 MeV, calculated in the 13.0–18.5 MeV interval) match
the experimental value reported in Ref. [83] (cross-section
data fitted in the 13- to 18-MeV range). The change produced
by the new terms in this superfluid A = 120 nucleus is less
evident than in the lighter systems. However, one can still
notice [Fig. 12(b)] that the S · T terms (slightly) reduce the
peaks’ height ratio and produce an attractive effect on the cen-
troids, at variance with that obtained when adding the S2

terms [Fig. 12(c)]. All the calculations modify the low-energy
tail of the strength function (below 13 MeV), although these
outcomes must be considered carefully, since the low-lying
states, besides being sensitive to higher-order p-h correlations
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FIG. 11. Panel (a) shows the dependence of the IVD response
in 120Sn on the pairing sets “1” and “2” defined in the main text
when using the T44 force. Panel (b) shows the effect of the inclusion

of the tensor
↔
J 2 terms (dashed line) in comparison to a calculation

including only the central counterpart (solid line) and when none of
them is taken into account (dotted line).

and pairing, can be particularly affected by numerical artifacts
from the Fourier transform and spuriousities in the wave
functions.

When the tensor
↔
J 2 and S · T terms are made active, no

noticable change on the strength function is introduced when
SLy5 is used. This is not the case with the T44 force, where the
J 2

c+t calculation differs somewhat (cf. Fig. 11, right panel). We
finally notice that the two-peak structure always visible with
the SLy5 force is lost when using the T44 set in the simplest
“basic” calculation, where the distribution is shifted to lower
energies, but it appears as soon as the

↔
J 2 contribution is added.
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FIG. 12. IVD response in 120Sn from the SLy5 force (no tensor);

the three panels show the change produced when including the
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J 2

terms [panel (a), solid line], when also adding the Galileain invariant
partners S · T [panel (b), dashed-dotted line] and when switching on
the S2 ones as well [panel (c), dashed line].
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FIG. 13. Evolution of the deformation parameters β and γ in
190W during the first stage of the iteration process in Hartree-Fock
for SLy5. Different lines correspond to different runs complemented
by the pairing force 1, as explained in the legend. β is adimensional;
γ is measured in degrees.

E. 190W

In triaxial nuclei the deformation leads to a more
complex nuclear response when the system is excited.
The intrinsic nuclear shape, which affects the dynamical
response, results from the balance of different features of the
intra-medium N -N force: on the one hand, various truncations
of the Skyrme functional in the p-h channel can affect the
deformation properties in the ground-state; on the other hand,
(monopole) pairing correlations tend to drive the nuclear
system towards a spherical shape and alter the deformation
parameters as well, so the proper focus on the pairing force
must be posed when studying intrinsically deformed systems
where superfluidity plays a role.

The measurement of the E4+/E2+ energy ratio, which is a
good signature of shape transition, suggests that 190W behaves
like a triaxial rotor [88]. When using the optimum 120Sn pairing
force (set 1) in connection to the SLy5 functional, a triaxial
shape is obtained from our calculations. The two panels in
Fig. 13 show (an extract of) the evolution of the β and γ

parameters in 190W with the number of iterations with the SLy5
functional, for a “basic” calculation and when the spin-current
pseudotensor is included (with and without tensor). This is an

example where the inclusion of the
↔
J 2 terms quicken the con-

vergence. In particular, a 14% decrease of the γ value (21.8◦)
with respect to the “basic” calculation (25.3◦) is produced. A

SLy4 calculation obtained with no
↔
J 2, with the same starting

conditions, shows a γ parameter (γ = 23.2◦) close to the J 2
c+t

SLy5 one (γ = 23.7◦). The β parameter does not change.
The type of truncation of the energy density functional

can not only induce a variation of the deformation parameters
for a given (local or global) minimum but also reverse the
relative location in energy of different minima. For example,

when the
↔
J 2 terms are neglected in the functional based on

the T44 + pairing 1 parameters, it is possible to identify one
axially deformed and one triaxial solution, with an energy
difference of 0.91 MeV, where the prolate configuration is
the most bounded. By switching those (central) terms on, the
situation is reversed, with the triaxial configuration becoming
deeper than the prolate shape (with small variations of the β

and γ parameters, respectively, amounting to ∼1% and ∼3%)
by 1.42 MeV. This extra binding is mainly due to the fact that

the (positive) energy contribution from the central
↔
J 2 terms

in the triaxial case (9.78 MeV) is 2.3 MeV weaker than in

TABLE VIII. Isoscalar + isovector Hartree-Fock energies (in
MeV) from the central J 2

0 , J2, and J 2 terms of the T44 functional in
the prolate (γ = 0◦) and triaxial (γ = 39.3◦) minima found in 190W.

T44 �EJ0 �EJ1 �EJ2

γ = 0◦ �10−7 11.951 0.157
γ = 39.3◦ �10−5 9.671 0.105

the axial state (cf. Table VIII where the three J 2
0 , J2, and J 2

components are separately shown).
Turning on the time-odd terms, Kramer’s degeneracy is ex-

pected to be preserved. Their inclusion tends to make the con-
vergence more difficult and the time-reversal invariance is eas-
ily broken; in particular, use of the T44 force requires effort to
find suitable initial conditions. In some cases the problems are
emphasized when the S · T terms and the S2 ones are included
separately. We encountered a similar situation when changing
the pairing parameters, including the values of 288.5 and
298.8 MeV fm3 for the neutron and proton pairing strengths,
respectively (“pairing set 2”). These are optimal parameters
in connection to the SLy5 force, as they provide pairing
gaps �n,p ∈ 0.7–0.8 MeV, which are much closer to the em-
pirical estimates (0.859 and 0.740 MeV) than the quite small
pairing gaps obtained with pairing set 1 (�q ∈ 0.2–0.4 MeV,
q = n, p).

We noticed interesting variations on the deformation prop-
erties when changing the pairing force, with the same initial
conditions (the same providing the triaxial solution when using
pairing set 1). Figure 14 shows the outcome from “basic” T44
calculations based on the pairing sets considered in this work.
If the choice of pairing set 2 leads, in this case, to a prolate
axially deformed shape, by reinforcing the proton pairing
strength by ∼15%, that is, up to 344.00 MeV fm3 (“pairing
set 3”), one triaxial minimum with γ = 42◦ is constructed.
Reversing such proton and neutron pairing strengths (“pairing
set 3a”) would force the system to converge to an oblate shape
(dotted line; notice the spike around the 100th step).
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FIG. 14. Dependence of the deformation parameters of 190W on
the pairing force for the T44 Skyrme set with the iteration step number.
The pairing sets used in this work are considered.
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FIG. 15. IVD transition strength distribution in 190W on top of
a triaxial ground-state. The x (main axis), y, and z components are
separately plotted for some truncations of the SLy5 Skyrme functional
as described in the main text.

Concerning the projection of the linear response in the
IVD channel, in a triaxial case we expect a three-modal
response associated to the characteristic lengths of the nucleus.
Figure 15 shows the transition strength distribution in 190W
from the SLy5 force along the x, y, and z Cartesian axis and for
some truncations of the Skyrme functional. Each mode appears
as a bimodal function, where the highest peak is respectively
located at ∼12, 13, and 14 MeV and a weaker structure is
around 16 MeV in all the panels. The latter bump becomes
increasingly more important from x to z while the main peak
reduces in height by ∼40%. Concerning the various functional
terms, the S · T ones (three upper panels) produce an overall
(small) attraction on the y and z components. The inclusion of
the S2 terms (three bottom panels) tends, instead, to remove the
bimodal structure in all the components and the extra mixing
places the (new) centroids at higher energy.

The comparison of the total strength distribution among
three types of calculations including the tensor with the T44
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FIG. 16. IVD strength distribution in 190W from the T44 force,
in a “basic” calculation and when including the tensor at the J 2 and
J 2 + S2 + ST level, as denoted by the legends.
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FIG. 17. Same as Fig. 13 for 178Os.

force is shown in Fig. 16. The effect of the central + tensor

contributions associated to the pseudotensor
↔
J [Fig. 16(b)],

that is, from the central + tensor J 2
0 , J2, and J 2 terms of

the functional, and to S · T (c) consists in a broadening of
the response with respect to the “basic” [Fig. 16(a)] case.
Although the inclusion of the tensor can help the numerics in
some cases, no stable calculation including the tensor S · F
terms is currently available in this nucleus.

F. 178Os

Another system under study is 178Os, which has been con-
sidered a good candidate for shape cohexistance (see Ref. [89]
and references therein). As for 190W, we exploit the γ -softness
property to perform theoretical investigations by forcing
triaxiality in some cases. In this system, both the empirical
proton and neutron pairing gaps belong to the interval 0.91–
0.93 MeV. Among the various pairing sets considered, force 2
still appears the most suitable, although the convergence is not
trivially ensured, especially for T44. The SLy5 force behaves
better also in this system, in terms of convergence. The HF
calculation easily lead to a triaxial minimum; Fig. 17 shows
that with pairing force 1 (to which pairing gaps �n = 0.7
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to a purely central J 2 calculation. The arrow indicates the height of
the main peak in the former calculation.

and �p = 0.4 MeV correspond), the γ parameter changes by
∼13% when turning the spin-current terms on.

When performing TDHF calculations on top of the available
mean-fields, we find outcomes similar to those of the triaxial
case of 190W (see Fig. 18): the central S · T contribution (three
upper panels) provides an attractive effect on the y and z

components and increases the spreading at variance with the
S2 terms (included in the three bottom panels). Along the
main axis, with the S · T terms the signal relaxes down into
the tails, which become fatter while the height of the main peak
is reduced by ∼18%. Figure 19 shows the comparison between
a purely central J 2 calculation and the one including the tensor
in a full way [except for the (∇ · S)2 and S · �S terms], with
an evident difference in terms of fragmentation, especially on
the y component (the total EWSR is still preserved). The insta-
bilities associated to long time runs display rotational currents
before the system expands itself in the whole model space.
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FIG. 21. IVD response in 238U from SLy5 with the tensor
contribution.

G. 238U

The heaviest system considered in this work is the axially
deformed 238U (β = 0.27 with the SLy5 force). The inclusion
of the tensor S · F contribution leads to a stable result, which
is shown in Fig. 20 (solid line) in comparison to a simpler J 2

calculation (dashed line). The K = 0 and K = 1 modes are
separately plotted in the left and right sides, respectively.

The resulting smoothed total strength distribution is shown
in Fig. 21. The centroids of the K = 0 and K = 1 modes are
located at 11.0 and 13.5 MeV, not far from the 10.92 and
13.98 MeV reported in Ref. [83].

After the smoothing, which simulates the broadening due to
higher-order effects not accounted for in TDHF, the peaks just
above 15 MeV are no longer resolved. Such a level of detail
is dependent on the employed box (discretization) and other
possible numerical artifacts. However, one cannot exclude
that, when using different parameters, the full treatment of
the tensor might more markedly affect the high-energy side
of the strength distribution, which, in any case, appeared quite
sensitive to the Skyrme set in calculations where the tensor was
not included. For example, in Ref. [90], where a simpler func-
tional based on the SkI3 set was employed, and in the separable
RPA calculations of Ref. [91], based on the parameters from
SLy6, a shoulder in that region was found. Finally, we recall
that the modeling of higher-order correlations is expected to
alter the tails of the strength function. Such extensions with
the full Skyrme-tensor functional are undoubtedly envisaged
for the future.

IV. CONCLUSIONS

This work presents the full implementation of the Skyrme
energy density functional (EDF) complemented with the
original formulation of the Skyrme-tensor force, in the three-
dimensional time-dependent Hartree-Fock (3D-TDHF) with
no symmetry restrictions. To our knowledge, this is the most
complete development of TDHF concerning the p-h channel,
where full self-consistency is achieved between Hartree-Fock
and the dynamics (residual interaction) in the sense of no
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suppression of terms. The derivation of the Skyrme-tensor
Hartree-Fock energy is provided as an extension of Ref. [25].

The model has been applied in the linear limit, where
the random-phase approximation (RPA) is recovered, to
simulate the nuclear response in the 1− channel, induced
by the isovector dipole (IVD) operator. Comments about the
methodology have been outlined and some self-consistency
issues discussed.

Various benchmark nuclei with a mass number ranging
from 16 to 238 have been considered and triaxial calculations
have been presented. The overall results satisfy the empirical
trend from the liquid drop model, although, as expected,
deviations are found in the light region of mass, where the
giant dipole resonance (GDR) energy is underestimated. More
importantly, the gross features of the strength distribution from
TDHF have been found in agreement with the experimental
data or other theoretical works for all the systems where
information are available.

The effects produced by each spin-dependent term of the
p-h sector of the functional have been separately discussed.
These are more visible for lighter nuclei where, in the RPA
picture, fewer p-h configurations are involved in the response
and Landau fragmentation is more pronounced. However,
systematic outcomes are found for both the considered Skyrme
forces (SLy5 and T44) from 16O to 238U: the GDR transition
strength, which receives contributions from one-body tran-
sition densities (OBTDs) between parallel spin orbitals, is
appreciably sensitive to the central spin-dependent part of
the residual interaction. In particular, a behavior similar to
calculations in other (charge-exchange) channels sensitive to
the spin (-isospin) residual force has been noticed. This is
the case of the Gamow-Teller resonance, modelled within a
RPA formulated in the configuration space [60], the transition
strength of which receives contributions from both spin-flip
and non-spin-flip OBTDs. The S2 terms tend to reinforce
the residual interaction in the isovector channel, providing
a repulsive effect on average and enhancing the strength of the
resonance markedly in the considered cases. This dominant
mechanism is countered by the S · T terms, which, although
less important in the IVD channel than what was found in the
(charge-exchange) 1+ one, produces more fragmentation in
the GR region.

On the recalled basis, one would conclude that the S · T
terms, which are spin and velocity dependent, can be useful
to balance the S2 contribution of the current functionals.
The former have been often suppressed in the past, together

with their Galilean partners, the time-even
↔
J 2 terms (cf. the

discussion in Ref. [60] and Sec. II B). In Ref. [92], the removal
of the S · T terms was found to improve the performance of the
Skyrme EDF in infinite matter; however, as acknowledged by
the same authors, this suppression would completely remove
the GT =0

1 and GT =1
1 Landau parameters of the standard Skyrme

functional, besides spoiling, with more or less manifested
effects, the GT =0

0 , GT =1
0 ones, which depend on both the

t0, t3 and t1, t2 parameters respectively through the CS
T and

CT
T coupling constants.

Besides influencing the spin-orbit splittings, the spin-

current terms, associated to the pseudotensor
↔
J , are of

particular interest in connection to tensor studies, as they allow
the tensor to become active even under time-reversal-invariant
conditions. For this reason, they were the first tensor terms to
be considered in the past [6], as well as more recently [7,55].

In the ground-state, the inclusion of the central
↔
J 2 terms can

markedly influence the deformation properties. In particular,
variations of the deformation parameters up to ∼30–40%
have been recorded in 28Si, where the splitting between the
K = 0, 1 modes accordingly changes by ∼1.5 MeV, and
178Os. In 190W, they turned out to drive the system to a triaxial
shape.

The inclusion of the tensor at the
↔
J and S · T level does

not introduce important changes on the IVD response in the
considered cases. A small effect is produced by the S · F
terms, but higher-precision calculations are required.

Particular attention has been paid to the pairing correlations,
which affect the intrinsic deformation in terms of both the β

and γ parameters. This has to be taken into consideration when
discussing the predictive power of EDF-based calculations.
More precisely, the impact of the smearing of the Fermi surface
produced by a zero-range (monopole) pairing force has been
discussed: different values of the pairing parameters have been
considered, tuned against experimental masses, or exploited
as additional degrees of freedom to force the intrinsic nuclear
shape. The treatment of the p-p channel does not alter our
conclusions about the p-h channel, where relative effects are
mainly considered, and does not prevent a comparison with
the experiment.

The occurrence of instabilities from the Skyrme functional
has attracted particular interest in recent times (cf. Ref. [93]
and references therein). In our calculations, various types of
instabilities from the spin-density-dependent terms of the SLy5
or T44 functional have been found, which are enhanced in
presence of derivatives, depend on the way the EDF terms
couple one another and mix with the zero modes. They appear
similarly to the possible cases described in Ref. [93]. This is
especially true when the T44 force is employed, while the SLy5
set behaves more regularly. A peculiar case is represented by
the performance of T44 in 24Mg, where different truncations
of the functional allow the spuriousities to dominate the scene
in a relatively short time. This might be related to possible
softness properties of this nucleus, which are predicted by
some calculations [87]. The T44 force, moreover, turned out to
hinder the convergence in the static Hartree-Fock quite easily
in our calculations, making the numerics more difficult.

We notice that the S2 and the S · T terms can produce
an unphysical time-reversal breaking in both the ground-state
and the long-term dynamics of the heavy γ -soft nuclei we
considered. The inclusion of both those EDF contributions
turned out to reduce the appearance of unwanted effects in
some cases, with respect to the situation where only one of
them is included. It similarly happens when the tensor is added
to the central S · T terms, due to cancellations. The terms
depending on the Laplacian and on the divergence of the spin
density have not been analyzed in this work. No instabilities
related to the Laplacian of the particle density or to the other
time-even contributions have risen up, but more focused and
systematic analyses in both sectors can be accomplished.
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Unphysical dissipation effects in TDHF, when time-odd
terms from the spin-orbit sector of the functional are
suppressed, were observed in Ref. [36] and divergences taking
place when running the simulation for a long time, in relation
to couplings with zero modes, were mentioned in Ref. [20].
A more detailed study of such phenomena is envisaged
also in view of computing the spin modes and we will deal
with this subject in a separate work. The 3D-TDHF could
represent a particularly sensitive testing tool for Skyrme(-like)
energy density functionals in finite systems and complement
information from infinite matter analyses [19,94]. Whereas
the problem of instabilities might represent a limitation and
demands a solution that does not drop terms, causing possible
further spuriousities besides the lack of physical effects,
useful information about the nuclear structure can be accessed
through correlations associated to the symmetries breaking.

Changing the functional by dropping terms according to
one’s needs is useful for explorative purposes, the ultimate
goal of this line of research still being the realization of
a reliable functional, ideally flexible enough to adapt to
disparate conditions. Finding the proper balance between the
various spin-dependent terms would improve the predictive
power of the current formulations. As is known, one
conclusion of Ref. [7] was that the available parametrizations
for the tensor force are not able to adjust the drawbacks
of the central and spin-orbit part of the Skyrme functional,
although it can offer extra degrees of freedom to fix the
velocity-dependent terms. Interest is still driving the search for
suitable constraints sensitive to the spin-dependent terms from
excited states and/or ground-state properties. Clearly, in order
to ensure predictability on collective excitations in the RPA or
equivalent approaches that strongly depend on the underlying
shell structure, coherent efforts are required to improve
the description of the involved single-particle degrees of
freedom.

The GDR energy is known to be correlated to the symmetry
energy in dependence on the TRK enhancement factor,
expressed in terms of the t1 and t2 parameters through the
effective mass [95], which is already employed in fitting
procedures (see, e.g., Ref. [67]). Input from the deformation
splitting could also be taken into account.

Concerning further applications, we saw that the spin-
dependent terms of the Skyrme functional can affect the
tails of the nuclear response. The fraction of dipole strength
concentrated in the low-energy tail of the GDR, around the
threshold for particle emission, affects the photodisintegration
rates, of particular interest for nucleosynthesis (see, e.g.,
Ref. [96]). In such a region, also pertaining to pygmy
resonances, pairing correlations and the coupling to low-lying
phonon can play a role [97]. The investigation of such an
energy window by means of TDHF simulations, even in the
linear approximation, is delicate, because proper attention is
required to remove artifacts related to the Fourier transform
and possible unphysical effects from the coupling to zero
modes. In any case, the treatment of anharmonicities with
the full Skyrme-tensor functional, in particular, the extensions
to account for coupling to high-lying 2p-2h states, which is
expected to be strengthened by the tensor force, would be an
interesting step to undertake.

Finally, studying particle emission from collective exci-
tations allows one to access information about the involved
single-particle degrees of freedom as well as the mechanisms
responsible for their cooperation, which is of interest for both
the (interdependent) nuclear structure and nuclear interaction
modeling.
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APPENDIX A: THE UNRESTRICTED SKYRME-TENSOR
HARTREE-FOCK ENERGY DENSITY FUNCTIONAL

In this Appendix, the derivation of the Skyrme energy
density functional provided in Ref. [25] is extended in order to
include the tensor contribution, under the general hypothesis
of no symmetry restrictions. The original expression of the
zero-range tensor force formulated by T. H. R. Skyrme [5] is
used (the central and spin-orbit terms are not reported); for the
sake of convenience, we rewrite it here as

vτ (1, 2) =
{

T

2
[(σ 1 · k′)(σ 2 · k′)δ(x1 − x2) + δ(x1 − x2)(σ 1 · k)(σ 2 · k)] − T

6
(σ 1 · σ 2)[k′2δ(x1 − x2) + δ(x1 − x2)k2]

+ U

2
[(σ 1 · k′)δ(x1 − x2)(σ 2 · k) + (σ 1 · k)δ(x1 − x2)(σ 2 · k′)]

− U

6
[(σ 1 · σ 2)(k′ · δ(x1 − x2)k) + (σ 1 · σ 2)(k′δ(x1 − x2) · k)]

}
(1 − PσPτPM ), (A1)

where k = 1
2i

(∇1 − ∇2) and k′ = − 1
2i

(∇′
1 − ∇′

2), respectively, act on the right and on the left, σ are the spin Pauli matrices, and
Pσ , Pτ , P M are the usual operators which exchange the spin, isospin, and spatial coordinates. When computing the Hartree-Fock
energy (11), the (1 − PσPτPM ) operator allows, as for the Skyrme central and spin-orbit terms, to account for the exchange
without antisymmetrizing the wave function in the ket. For the considered force, and under the hypothesis of no charge mixing,
the product of the three exchange operators can be replaced by ±δq1,q2 (q = p, n) for the T - and U -weighted terms, respectively.
To emphasize the spatial behavior of the corresponding interaction terms, the tensor parameters are defined as T = 3te and
U = 3to in some works.
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Although we deal with a zero-range force, it is appropriate to render the dependence on space more explicit in order
to proceed with the calculation. By representing the σz diagonal basis by the set {|ω〉}, where ω = 2ms = ±1 identifies
the ↑,↓ eigenvectors, the direct contribution to the Hartree-Fock energy from the first square brackets of Eq. (A1) is
computed as

�ED
I = − T

16

∑
i,j

∑
ω1′ ,ω1,ω2′ω2

∫
d R{φ∗

i (x′
1, ω

′
1)φ∗

j (x′
2, ω

′
2)δ(x1 − x2)δ(x1 − x′

1)δ(x2 − x′
2)

[〈ω′
1|σ 1|ω1〉 · (∇1 − ∇2)][〈ω′

2|σ 2|ω2〉 · (∇1 − ∇2)]φi(x1, ω1)φj (x2, ω2)} + H.c., (A2)

where H.c. denotes the Hermitian conjugate of what precedes and d R stands for dx′
1dx′

2dx1dx2 [in general, δ(x1 − x′
1)δ(x2 −

x′
2) ensures the force has a local character]. The subscripts i, j summarize the quantum numbers of the spinor ψi(x) =∑
ω=± φi(x, ω)|ω〉; the isospin is represented through the charge q, among the other quantum numbers. In the following, unless

differently specified, all the derivative operations apply to the right.
By inserting the definition of the spin-density (13) Sq(x) = Sq(x, x′) |x=x′ , where, like for the other densities, S(x) =∑

q=p,n Sq(x) denotes the isoscalar density ST =0(x), the previous energy contribution can be recast as

�ED
I = − T

16

∑
μ,ν

∫
d R{[2Sν(x2, x′

2)∇1,μ∇1,νSμ(x1, x′
1) − ∇1,μSμ(x1, x′

1)∇2,νSν(x2, x′
2)

−∇1,νSμ(x1, x′
1)∇2,μSν(x2, x′

2)] + H.c.}x1=x′
1=x2=x′

2
. (A3)

By inserting the relation (A.7) of Ref. [25][∇μS(q)
ν (x, x′)

]
x=x′ = [∇′

μS(q)
ν (x, x′)

]∗
x=x′ = 1

2∇μS
(q)
ν (x) + iJ

(q)
μν (x) (A4)

and the identity ∑
μν

S(q)
ν (x2, x′

2)(∇1′,μ∇1′,ν + ∇1,μ∇1,ν)S(q)
μ (x1, x′

1) = 2Sq(x2, x′
2) · Gq(x1, x′

1), (A5)

where G(x) = G(x, x′)|x=x′ was introduced first in Eq. (18), the energy becomes

�ED
I = −T

8

∫
dx1dx2

{
2S(x1) · G(x2) − 1

4
[∇1 · S(x1)][∇2 · S(x2)] + J0(x1)J0(x2)

− 1

4

∑
μν

∇1,μSν(x1)∇2,νSμ(x2) +
∑
μν

Jμν(x1)Jνμ(x2)

}
x1=x2

. (A6)

Performing integration by parts twice on the fourth term, after also the δ(x1 − x2) function has acted, and using, in each point of
space, the identity ∑

μν

J (q)
μν J (q)

νμ = J 2
q − 1

2
J2

q + 1

3

(
J (0)

q

)2
(A7)

for the last term, lead to

�ED
I = T

∫
dx

[
−1

4
S(x) · G(x) + 1

16
(∇ · S(x))2 − 1

6
J0

2(x) − 1

8
J 2(x) + 1

16
J2(x)

]
. (A8)

By similarly proceeding for the remnant terms of the tensor force that are weighted by the parameter T , one gets

�ED
II = T

24

∑
μ,ν

∫
d R{[Sν(x2, x′

2)(∇1,μ)2Sν(x1, x′
1) − ∇2,μSν(x2, x′

2)∇1,μSν(x1, x′
1)] + H.c.}x1=x′

1=x2=x′
2
.

By using the relation (A.6) of Ref. [25]

[(∇2 + ∇′2)S(q)
μ (x, x′)]x=x′ = �S(q)

μ (x) − 2T (q)
μ (x), (A9)

in addition to Eq. (A4), one obtains

�ED
II = T

24

∫
dx1dx2

{
S(x2) · �S(x1) − 2S(x2) · T (x1) − 1

2
∇2,μSν(x2)∇1,μSν(x1) + 2

∑
μν

Jμν(x2)Jμν(x1)

}
x1=x2

.

044303-21



S. FRACASSO, E. B. SUCKLING, AND P. D. STEVENSON PHYSICAL REVIEW C 86, 044303 (2012)

Once again, due to the zero-range nature of the interaction, after one single integration by parts on the next-to-last term, one
has

�ED
II = T

∫
dx

[
1

16
S(x) · �S(x) − 1

12
S(x) · T (x) + 1

12

↔
J

2(x)

]
; (A10)

the square of the tensor of rank two
↔
J is defined, as usual, by

↔
J 2

q = ∑
μν(J (q)

μν )2 and, for every point x, the relation

↔
J

2
q = J 2

q + 1
2 J2

q + 1
3

(
J (0)

q

)2
(A11)

holds. By summing up the two energies �ED
I and �ED

II and taking into account the exchange, the total T -weighted contribution
to the tensor energy is

�ED+E
T

= T

4

∫
dx

({
1

4
S(x) · �S(x) − 1

3
S(x) · T (x) + 3

4
[∇ · S(x)]2 + S(x) · F(x) − 5

9
J0

2(x) + 5

12
J2(x) − 1

6
J 2(x)

}

−
∑

q=p,n

{
1

4
Sq(x) · �Sq(x) − 1

3
Sq(x) · T q(x) + 3

4
[∇ · Sq(x)]2 + Sq(x) · Fq(x) − 5

9

(
J (0)

q

)2
(x) + 5

12
J2

q(x) − 1

6
J 2

q(x)

})
,

(A12)

where our equation

−
∫

(∇ · S(x))2dx = 2
∫

[S(x) · G(x) + S(x) · F(x)]dx (A13)

has been used. As a matter of fact, the integration by parts of the square of the divergence of the spin density reads (the integral
will be omitted)

(∇ · S(x))2 =
∑
μν

∇μSμ(x)∇νSν(x) = −
∑
μν

Sμ(x2, x′
2)[∇1′,μ∇1,νSν(x1, x′

1) + ∇1,μ∇1,νSν(x1, x′
1)

+∇1′,μ∇1′,νSν(x1, x′
1) + ∇1′,μ∇1,νSν(x1, x′

1)]x1=x′
1=x2=x′

2
(A14)

and one can recognize the structure of the S · F and S · G terms on the right.
Concerning the terms weighted by the U coefficient, the contribution from the first addend in Eq. (A1) reads

�ED
III = U

16

∑
i,j

∑
ω1′ ,ω1,ω2′ ,ω2

∑
μν

∫
d R

{[
�

∗(μ)
i (x′

1, ω
′
1)φ∗

j (x′
2, ω

′
2) − φi(x′

1, ω
′
1)�∗(μ)

j (x′
2, ω

′
2)

]
σ (1)

μ δσ (2)
ν

[
�

(ν)
i (x1, ω1)φj (x2, ω2) − φi(x1, ω1)�(ν)

j (x2, ω2)
]}

, (A15)

where the definition �μ( y, ω) = [∇μφ(x, ω)]x= y and the short-hand notation δ = δ(x1 − x2)δ(x1 − x′
1)δ(x2 − x′

2) have been
introduced. By inserting the definition of the spin density, after a few algebric steps one obtains

�ED
III = U

16

∑
μν

∫
d R{Sν(x2, x′

2)∇1′,μ∇1,νSμ(x1, x′
1) − ∇1′,μSμ(x1, x′

1)∇2,νSν(x2, x′
2)

−∇1,νSμ(x1, x′
1)∇2′,μSν(x2, x′

2) + Sμ(x1, x′
1)∇2,ν∇2′,μSν(x2, x′

2)}x1=x′
1=x2=x′

2
. (A16)

By using the relation (A4) and the identity∑
μν

S(q)
ν (x2, x′

2)(∇′
1,μ∇1,ν + ∇1,μ∇′

1,ν)S(q)
μ (x1, x′

1) = 2Sq(x2, x′
2) · Fq(x1, x′

1), (A17)

after having renamed x1 ↔ x2, x ′
1 ↔ x ′

2 and μ ↔ ν in the fourth term, one is led to

�ED
III = U

16

∫
dx1dx2

{
2S(x2) · F(x1) − 1

4
[∇1 · S(x1)][∇2 · S(x2)] − J0(x1)J0(x2)

− 1

4

∑
μν

∇1,νSμ(x1)∇2,μSν(x2) −
∑
μν

Jνμ(x1)Jμν(x2)

}
x1=x2

. (A18)
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The corresponding H.c. term in Eq. (A1), treated in the same way, provides an identical integral and one can multiply the previous
result by a factor 2. By performing the same steps used to obtain Eq. (A8) we get

�ED
III = U

8

∫
dx

[
2S(x) · F(x) − 1

2
(∇ · S(x))2 − J0

2(x) −
∑
μν

Jμν(x)Jνμ(x)

]
(A19)

and, thus,

�ED
III = U

8

∫
dx

[
2S(x) · F(x) − 1

2
(∇ · S(x))2 − 4

3
J0

2(x) + 1

2
J2(x) − J 2(x)

]
. (A20)

For the last line of Eq. (A1), the different spin-momentum structure allows a simpler expression,

�ED
IV = − U

24

∑
i,j

∑
ω1′ ,ω1,ω2′ ,ω2

∑
μ

∫
d R

{[
�

∗(μ)
i (x′

1, ω
′
1)φ∗

j (x′
2, ω

′
2) − φ∗

i (x′
1, ω

′
1)�∗(μ)

j (x′
2, ω

′
2)

]
σ 1 · σ 2δ

[
�

(μ)
i (x1, ω1)φj (x2, ω2) − φi(x1, ω1)�(μ)

j (x2, ω2)
]}

, (A21)

equal to

�ED
IV = − U

12

∫
d R

∑
μν

{Sν(x2, x′
2)∇1′,μ∇1,μSν(x1, x′

1) − ∇1′,μSν(x1, x′
1)∇2,μSν(x2, x′

2)}x1=x′
1=x2=x′

2
. (A22)

By using the relations (A4) one more time and recognizing the scalar product between the spin and the kinetic density∑
μ

S(q)
μ (x2, x′

2)∇1′ · ∇1S
(q)
μ (x1, x′

1) = Sq(x2, x′
2) · T q(x1, x′

1) (A23)

one obtains

�ED
IV = − U

12

∫
dx1dx2

{
S(x2) · T (x1) − 1

4

∑
μν

∇2,μSν(x2)∇1,μSν(x1) −
∑
μν

Jμν(x1)Jμν(x2)

}
x1=x2

,

that is,

�ED
IV = − U

12

∫
dx

[
S(x) · T (x) + 1

4
S(x) · �S(x)− ↔

J
2(x)

]
. (A24)

By adding together �ED
III and �ED

IV, the final result is

�ED
U =

∫
dx

U

12

[
3S(x) · F(x) − S(x) · T (x) − 1

4
S(x)�S(x) − 3

4
(∇ · S)2(x) − 5

3
J0

2(x) + 5

4
J2(x) − 1

2
J 2(x)

]
. (A25)

The direct plus exchange provides

�ED+E
U

= U

12

∫
dx

{
3S(x) · F(x) − S(x) · T (x) − 1

4
S(x) · �S(x) − 3

4
(∇ · S)2(x) − 5

3
J0

2(x) + 5

4
J2(x) − 1

2
J 2(x)

+
∑

q=p,n

[
3Sq(x) · Fq(x) − Sq(x) · T q(x) − 1

4
Sq(x) · �Sq(x) − 3

4
(∇ · Sq)2(x) − 5

3
(J (0)

q )2(x) + 5

4
J2

q(x) − 1

2
J 2

q(x)

]}
.

(A26)

The sum of the integrand in Eqs. (A12) and (A26) provides
the tensor contribution to the standard Skyrme energy density
functional, denoted by Htens in Eq. (16).

By defining as Dα (Eα) the weight of a generic term
α belonging to the direct (exchange) contributions to the
energy, the relations Dα = Cα

0 − Cα
1 and Dα + Eα = Cα

0 +
Cα

1 hold, where Cα
T =0,1 are the isoscalar and isovector coupling

constants employed in some other works. By rearranging
the result in terms of the isoscalar and isovector densities,

the sum of the expressions (49a) + (49b) of Ref. [58] is
recovered. Otherwise, when the S · G terms from Eq. (A8) are
retained, the S · F and (∇ · S)2 coupling constants in (A12)
change according to the combination (a) of Table IX; in
such a way, one obtains, in the proton-neutron formalism,
the more general formulation of Eq. (16), where Aα =
Dα + Eα and Bα = Dα . Since Eα = ∓Dα for the T (−) and
U (+) contributions, only the U -weighted terms contribute
to Aα .

044303-23



S. FRACASSO, E. B. SUCKLING, AND P. D. STEVENSON PHYSICAL REVIEW C 86, 044303 (2012)

TABLE IX. Two possible combinations of the Dα coupling
constants for the direct functional’s terms listed in the first row. Set
(a) corresponds to what is straightforwardly obtained for the direct
contributions through the derivation presented here, when Eq. (A13)
is not used. Set (b), on which the result (A12) is based, leads to
recovery of the expression of Ref. [58]. In both cases, the Galilean
invariance of the functional is fulfilled [see Eqs. (29)].

Set S · G S · F (∇ · S)2

(a) T

4
U

4
1
16 (T − U )

(b) 0 1
4 (T + U ) 1

16 (3T − U )

APPENDIX B: DENSITIES AND CURRENTS
OF THE SKYRME-TENSOR EDF

In this Appendix, the expressions of the densities and
currents entering the Skyrme energy density functional (16)
are provided. For the sake of simplicity, we take as implicit
the sum over the wave-functions index, which includes all the
quantum numbers with the exception of the spin projection ω,
which is separately written.

When boosting the Hartree-Fock single particles, they gain
an imaginary part. We adopt the definitions of Table X,
where φω = φ(x, ω), k = x, y, z, and ω = 2ms = ±1, and
of Table XI, where the second-order terms are listed. In
the following, all the relations hold if considering isoscalar,
isovector, neutron, or proton densities.

The densities which are even under the time-reversal oper-
ation TK : φi(x, ω) → −ωφ∗(x,−ω) (TK = −iσyK0, where
K0 denotes the complex conjugation) include

(i) the particle density

ρ(x) =
∑

ω

φ∗(x′, ω)φ(x, ω)|x=x′ (B1)

=
∑

ω

[(
φR

ω

)2 + (
φI

ω

)2] =
∑

ω

|φω|2; (B2)

(ii) the kinetic density

τ (x) = [∇ · ∇′ρ(x, x′)]x=x′ (B3)

=
∑

ω

[(∇φR
ω

)2 + (∇φI
ω

)2] =
∑

ω

|�ω|2; (B4)

(iii) the spin-current pseudotensor
↔
J

↔
J (x) = 1

2i
[(∇ − ∇′) ⊗ S(x, x′)]x=x′ . (B5)

TABLE X. Conventions (I) adopted in the current Appendix.

φR
ω Reφω

φI
ω Imφω

�ω
k �kφω

�̃ω
k �kφ

∗
ω

�ω ∇φω

�̃ω ∇φ∗
ω

�
R,ω
k Re�ω

k

�
I,ω
k Im�ω

k

�R(I )
ω Re(Im)�ω

TABLE XI. Conventions (II) adopted in the current appendix.

�ω
kk′ ∇k∇k′φω

�̃ω
kk′ ∇k∇k′φ∗

ω

�
R,ω

kk′ Re�ω
k,k′

�
I,ω

kk′ Im�ω
k,k′

The nine components (k = x, y, z) can be implemented
as

Jkx =
∑

ω,ω′=±1,ω �=ω′

[
φR

ω �
I,ω′
k − φI

ω�
R,ω′
k

]
= +Im[φ∗

+�−
k + φ∗

−�+
k ] (B6)

Jky =
∑

L=R,I

[φL
−�

L,+
k − φL

+�
L,−
k ]

= −Re[φ∗
+�−

k − φ∗
−�+

k ] (B7)

Jkz = φR
+�

I,+
k − φI

+�
R,+
k + φI

−�
R,−
k − φR

−�
I,−
k

= +Im[φ∗
+�+

k − φ∗
−�−

k ]. (B8)

The time-odd densities are

(i) the spin density

S(x) =
∑
ω,ω′

φ∗(x′, ω′)φ(x, ω)〈ω′|σ |ω〉∣∣x=x′ , (B9)

where each component corresponds to

Sx = 2[φR
+φR

− + φI
+φI

−] = 2Re[φ∗
+φ−] (B10)

Sy = 2[φR
+φI

− − φR
−φI

+] = 2Im[φ∗
+φ−] (B11)

Sz =
∑

L=R,I

[φL
+φL

+ − φL
−φL

−] = Re[φ∗
+φ+ − φ∗

−φ−] (B12)

(ii) the momentum density

j (x) = − i

2
[(∇ − ∇′)ρ(x, x′)]x=x′ , (B13)

with components equal to

jk =
∑
ω=±

[
φR

ω �I,ω
x − φI

ω�R,ω
x

]
= Im[φ∗

+�+
x + φ∗

−�−
x ]; (B14)

(iii) the spin kinetic density

T (x) = [∇ · ∇′S(x, x′)]x=x′ , (B15)

where

Tx = 2[�R
+�R

− + �I
+�I

−]

= 2Re[�−�̃+] (B16)

Ty = 2[�R
+�I

− − �I
+�R

−]

= 2Im[�−�̃+] (B17)

Tz =
∑

L=R,I

[�L
+�L

+ − �L
−�L

−]

= Re[�+�̃+ − �−�̃−]; (B18)
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(iv) the pseudovector F(x) density

F(x) = 1
2

{[
(∇′ ⊗ ∇) + (∇ ⊗ ∇′)

]
S(x, x′)

}
x=x′ .

It can be conveniently represented by splitting each k

component in three contributions

Fk(x) =
∑

k′=x,y,z

F
(k′)
k (x), (B19)

where the single terms read

F (x)
x = 2

[
�R,+

x �R,−
x + �I,+

x �I,−
x

]
= 2Re[�̃+

x �−
x ] (B20)

F (y)
x =

∑
k,k′=x,y;k �=k′

[
�

I,−
k �

R,+
k′ − �

I,+
k′ �

R,−
k

]

= Im[�̃+
x �−

y − �̃−
x �+

y ] (B21)

F (z)
x =

∑
L=R,I

[
�L,+

x �L,+
z − �L,−

x �L,−
z

]

= Re[�̃+
x �+

z − �̃−
x �−

z ] (B22)

F (x)
y =

∑
L=R,I

[
�L,+

y �L,−
x + �L,−

y �L,+
x

]

= Re[�̃+
y �−

x + �̃−
y �+

x ] (B23)

F (y)
y = 2

[
�I,−

y �R,+
y − �R,−

y �I,+
y

]
= −2Im[�̃−

y �+
y ] (B24)

F (z)
y = F (z)

x

∣∣
x→y

(B25)

F (x)
z = F (x)

y

∣∣
y→z

(B26)

F (y)
z = F (y)

x

∣∣
x→z

(B27)

F (z)
z =

∑
L=R,I

[
(�L,+

z )2 − (�L,−
z )2

]
= Re[�̃+

z �+
z − �̃−

z �−
z ]; (B28)

(v) the pseudovector G(x) density

G(x) = 1
2 {[(∇′ ⊗ ∇′) + (∇ ⊗ ∇)]S(x, x′)}x=x′ ;

by proceeding similarly to F(x), we obtain

G(x)
x =

∑
L=R,I

[φL
+ �x φL

− + φL
− �x φL

+]

= Re[φ∗
+ �x φ− + φ∗

− �x φ+] (B29)

G(y)
x = φR

+�I,−
xy − φI

+�R,−
xy + φI

−�R,+
xy − φR

−�I,+
xy

= Im[φ∗
+�−

xy − φ∗
−�+

xy] (B30)

G(z)
x =

∑
L=R,I

[
φL

+�L,+
xz − φL

−�L,−
xz

]
= Re[φ∗

+�+
xz − φ∗

−�−
xz] (B31)

G(x)
y =

∑
L=R,I

[
φL

+�L,−
yx + φL

−�L,+
yx

]
= Re[φ∗

+�−
yx + φ∗

−�+
yx] (B32)

G(y)
y = φR

− �y φI
− − φI

+ �y φR
−

+φI
− �y φR

+ − φR
− �y φI

+
= Im[φ∗

+ �y φ− − φ∗
− �y φ+] (B33)

G(z)
y = G(z)

x

∣∣
x→y

(B34)

G(x)
z = G(x)

y

∣∣
y→z

(B35)

G(y)
z = G(y)

x

∣∣
x→z

(B36)

G(z)
z =

∑
L=R,I

[φL
+ �z φL

+ − φL
− �z φL

−]

= Re[φ∗
+ �z φ+ − φ∗

− �z φ−]. (B37)
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[70] L.-G. Cao, G. Colò, and H. Sagawa, Phys. Rev. C 81, 044302

(2010).
[71] T. Duguet, P. Bonche, P.-H. Heenen, and J. Meyer, Phys. Rev. C

65, 014311 (2001).
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[85] S. Péru and H. Goutte, Phys. Rev. C 77, 044313 (2008).
[86] J. Bartel, P. Quentin, M. Brack, C. Guet, and H. B. Hånkansson,
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