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Time-dependent approach to many-particle tunneling in one dimension
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By employing the time-dependent approach, we investigate a quantum tunneling decay of many-particle
systems. We apply it to a schematic one-dimensional three-body model with a heavy-core nucleus and two
valence protons. We calculate the decay width for two-proton emission from the survival probability, which well
obeys the exponential decay law after a sufficient time. The effect of the correlation between the two emitted
protons is also studied by observing the time evolution of the two-particle density distribution. It is shown that
the pairing correlation significantly enhances the probability for the simultaneous diproton decay.
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I. INTRODUCTION

The quantum tunneling of a system with intrinsic degrees
of freedom or of many particles is an important subject of
modern physics [1–6]. In nuclear physics, typical examples
include heavy-ion fusion reactions at sub-barrier energies
[7,8], spontaneous fission [9], α and heavy-cluster decays
[10], and stellar nucleosynthesis [11,12]. In heavy-ion fusion
reactions, for instance, it has been well recognized that the
couplings of the relative motion between the colliding nuclei to
several collective motions enhance the tunneling probability of
the Coulomb barrier, thus, increasing the fusion cross sections
by several orders of magnitude as compared to the prediction
of a simple potential model [7,8]. Nevertheless, it has still
been a challenging problem to understand the many-particle
tunneling from a fully microscopic view. For instance, even
though there have been several attempts [10,13–15], α decays
have not fully been understood microscopically with sufficient
accuracy.

Recently, two-proton (2p) radioactivities have been exper-
imentally observed for a few proton-rich nuclei outside the
proton drip line, such as 45Fe [16–18] and 6Be [19–21], and
have attracted much attention [22–25] in connection with, e.g.,
the dinucleon correlations [26–29]. This is a phenomenon of
spontaneous emission of two valence protons from the parent
proton-rich nuclei in which the emission of one proton is
energetically forbidden. Notice that an analogous process of
the two-proton radioactivity, that is, a two-neutron decay has
also been observed recently for 16Be [30]. These two-nucleon
emission decays may provide a useful testing ground for
many-particle tunneling theories.

The primary task for a many-particle tunneling decay is
to investigate the effect of interaction or correlation among
emitted particles on decay properties, such as the decay width
and the survival probability. In the case of 2p decay, this
corresponds to the pairing correlation between the valence
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protons. Because of the strong pairing correlation in proton-
rich nuclei, 2p emitters are expected to have an even number
of protons outside the proton drip line. Incidentally, it has been
well known that the pairing correlation plays an important role
in two-neutron transfer reactions [31–33].

The quantum tunneling decay phenomena can be studied
either with the time-independent approach [10,24,25] or with
the time-dependent approach [34–40]. In the time-independent
approach, one seeks, e.g., a Gamow state, which is a purely
outgoing wave outside the barrier. The imaginary part of the
energy of the Gamow state is related to the decay width,
whereas, the real part corresponds to the resonance energy.
On the other hand, in the time-dependent approach, one first
modifies the potential barrier so that the initial state can
be prepared as a bound state of a confining potential. The
confining potential is then suddenly changed to the original
barrier, and the initial state evolves in time. The decay width
can be obtained from the survival probability of the initial
state. An advantage of the time-independent approach is that
the decay width can be calculated with high accuracy even
when the decay width is extremely small [41]. An advantage
of the time-dependent approach, on the other hand, is that it
provides an intuitive way to understand the tunneling decay,
even though it may be difficult to apply it to a situation with
an extremely small decay width. This approach may provide
a useful means to explore the mechanism of many-particle
tunneling decay, although it has, so far, been applied only to
two-body decay phenomena, such as α decays and one-proton
decays [34–38].

In this paper, we extend the time-dependent approach to
two-proton emissions and discuss the dynamics of a two-
particle tunneling decay. To this end, we employ the schematic
one-dimensional three-body model [42], which consists of
a heavy-core nucleus and two valence protons. We solve
the time-dependent Schrödinger equation by expanding the
wave function on a basis with time-dependent expansion
coefficients. The decay width is then defined from the survival
probability. We will study the time evolution of the survival
probability as well as the density distribution. We will also
discuss the role of the pairing correlation in the two-proton
decay.
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The paper is organized as follows. In Sec. II, we detail our
formalism for the time-dependent approach to the two-proton
decays. We show the results of the calculations in Sec. III.
It will be shown that the decay width will converge to a
constant value after a sufficient time evolution, which will
indicate that the decay rate will follow the exponential law.
With this method, the time evolution of a quasistationary 2p

state, namely, the density and the flux distributions, can be
visualized. By using them, we will discuss an important role
of the pairing interaction between the two protons in the decay
process. Finally, we summarize the paper in Sec. IV.

II. FORMALISM

A. One-dimensional three-body model

We consider a one-dimensional three-body system with two
valence protons and the core nucleus whose atomic and mass
numbers are Zc and Ac, respectively. By neglecting the recoil
kinetic energy of the core nucleus, the three-body Hamiltonian
reads [42]

H = h(x1) + h(x2) + vpp(x1, x2), (1)

h(x) = − h̄2

2m

d2

dx2
+ V (x), (2)

where m is the nucleon mass and x1 and x2 are the coordinates
of the valence protons with respect to the core nucleus. V (x) is
the potential between a valence proton and the core, whereas,
vpp(x1, x2) is the interaction between the two valence protons.
The core-proton potential,

V (x) = Vnucl(x) + Vcoul(x) (3)

consists of the nuclear part Vnucl and the Coulomb part Vcoul.
For the nuclear part, we take a Woods-Saxon form,

Vnucl(x) = − V0

1 + e(|x|−R)/a
. (4)

For the Coulomb part, we employ a soft-core Coulomb
potential [43–45], that is,

Vcoul(x) = Zce
2

√
b2 + x2

. (5)

In this paper, we take V0 = 46.5 MeV. The radius R and the
surface diffuseness parameter a in the Woods-Saxon potential,
Eq. (4), are taken to be R = 1.27A

1/3
c and a = 0.67 fm,

respectively. We arbitrarily take Ac = 60 and Zc = 30 for the
mass and atomic numbers of the core nucleus, whereas, we
use b = 2.0 fm in the Coulomb interaction.

The interaction vpp(x1, x2) induces the pairing correlation
between the two valence protons. In this paper, we adopt a
density-dependent contact interaction of the surface type [42],
that is,

vpp(x1, x2) = −g

(
1 − 1

1 + e(|x̄|−R)/a

)
δ(x1 − x2), (6)

where g is the strength of the interaction and x̄ = (x1 + x2)/2.
The density dependence is introduced with the Woods-Saxon
form [R and a are the same as those in Eq. (4)]. Notice

that, in the limit of |x̄| → ∞, this interaction becomes a pure
contact interaction, −gδ(x1 − x2). For simplicity, we neglect
the Coulomb interaction between the two protons. We have
confirmed that, as long as the one-dimensional three-body
system is concerned, its effect on the decay properties can be
well taken into account by somewhat reducing the strength g

(see also Refs. [29,46,47]).
It is important to notice that a one-dimensional δ func-

tion potential v(x) = −gδ(x) always holds a bound state
at Epp = −mg2/4h̄2 for a two-proton system even with an
infinitesimally small attraction g [48]. This is in contrast to a
three-dimensional system in which a bound state exists only
with a strong strength g of an attractive contact interaction.

B. Time-dependent method

To describe the 2p tunneling, we employ the time-
dependent method. The first step is to prepare the initial 2p

state, which is confined inside the potential barrier as in the
two-potential method developed by Gurvitz and Kalbermann
[49], Gurvitz [50], and Gurvitz et al. [51]. To this end, we
modify the core-proton potential V (x) to a confining potential
Vmod(x) defined as

Vmod(x) = V (x), |x| � |xc|
= V (xc), |x| > |xc|. (7)

In Fig. 1, we show the confining potential Vmod and the original
potential V together with the wave function for the bound
state of Vmod. The position xc can be chosen arbitrarily as
long as V (xc) is larger than the resonance energy, although
the accuracy is improved if xc is chosen so that V (xc) is
as close as possible to the resonance energy [51]. When
this condition is satisfied, the modified potential Vmod holds
a bound state, which resembles the resonance state of the
original potential. In this paper, we choose xc = 10 fm, which
yields the bound state at ε = 2.71 MeV for the modified
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FIG. 1. (Color online) The core-proton potential used in our
calculations. The initial state at t = 0 is constructed with a modified
potential Vmod(x) given by Eq. (7), which is shown by the dashed line.
For t > 0, the potential is changed to the original potential V (x), given
by Eq. (3) as shown by the solid line. We also show the wave function
for the bound single particle (s.p.) state of the modified potential at
ε = 2.71 MeV, which is shown by the dotted line.
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potential. The value of the modified potential at x = xc is
Vmod(xc) = 4.21 MeV, whereas, the barrier height is Vb =
V (x = 8.1 fm) = 4.75 MeV.

We solve the s.p. states of the modified Hamiltonian,

hmod(x) = − h̄2

2m

d2

dx2
+ Vmod(x), (8)

as

hmod(x)φn(x) = εnφn(x). (9)

In this paper, we assume that all the s.p. states with negative
energy, that is, εn < 0, are occupied by the core nucleus.
Therefore, there is only one bound state in this potential
at ε = 2.71 MeV. The other positive energy states are in
the continuum spectra, which we discretize with a box of
Xbox = ±120 fm. We have confirmed that the bound state at
ε = 2.71 MeV corresponds to a resonance state of the original
potential, whose energy is stabilized against a variation of
Xbox [52–54].

By using these s.p. wave functions, one can obtain the
eigenfunctions of the modified three-body Hamiltonian,

Hmod(x1, x2) = hmod(x1) + hmod(x2) + vpp(x1, x2), (10)

as

�k(x1, x2) =
∑

n1�n2

α(k)
n1n2

�n1n2 (x1, x2), (11)

where we exclude those s.p. states occupied by the core
nucleus. Here, �n1n2 (x1, x2) is defined as

�n1n2 (x1, x2) = 1√
2
(
1 + δn1,n2

) [
φn1 (x1)φn2 (x2)

+φn2 (x1)φn1 (x2)
]|S = 0〉. (12)

Because we use spin-independent interactions in the Hamil-
tonian, the total spin S of the two protons is a good quantum
number. We set it to be zero (that is, the spin-singlet state). The
spatial part of the 2p wave function is, therefore, symmetric
under the exchange of x1 and x2. The coefficients α(k)

n1n2
in

Eq. (11) are determined by diagonalizing the Hamiltonian
matrix for the modified Hamiltonian Hmod.

The next step is to carry out the time evolution for t >

0 by starting from the lowest eigenfunction of the modified
Hamiltonian, i.e., �k=0 in Eq. (11) at the eigenenergy E0.
That is,

�(t = 0, x1, x2) = �0(x1, x2). (13)

By excluding the core-occupied states in the expansion, we
have confirmed that there is only one bound state for Hmod

in the energy region between 0 and 2Vmod(xc). Similar to a
s.p. resonance state, the lowest state �0 corresponds to the
three-body resonance state of the original Hamiltonian H .
The energy E0 corresponds to the resonance energy of the
three-body system, that is, the Q value for the 2p decay.

We then solve the time-dependent Schödinger equation with
the original Hamiltonian H ,

ih̄
∂

∂t
�(t, x1, x2) = H�(t, x1, x2) (14)

= (Hmod + 	V )�(t, x1, x2), (15)

where

	V = V (x1) + V (x2) − Vmod(x1) − Vmod(x2) (16)

is the difference between the original and the modified
potentials. We expand the time-dependent 2p wave function
with the eigenfunctions of the modified Hamiltonian, that is,
�k(x1, x2) given in Eq. (11) as

�(t, x1, x2) =
∑

k

ck(t)�k(x1, x2), (17)

with the initial condition of

ck(t = 0) = δk,0. (18)

By substituting Eq. (17) into Eq. (15) and by using the
orthogonality of �k , we obtain the differential equation for
the expansion coefficients ci(t),

ih̄
dci(t)

dt
= 〈�i |H |�〉 (19)

=
∑

k

ck(t)(Eiδi,k + 〈�i |	V |�k〉). (20)

By using the wave function so obtained, one can compute
the survival probability Ps(t) and the decay width 
 as [34–38]

Ps(t) ≡ |〈�0|�(t)〉|2 = |c0(t)|2, (21)


 = −h̄
Ṗs(t)

Ps(t)
. (22)

When the survival probability is an exponential function of t ,
the decay width 
 becomes a constant. In the next section,
we show that Ps(t), indeed, has an exponential form after a
sufficient time evolution.

III. RESULTS

A. Decay energy and width

Before we numerically solve the time-dependent
Schrödinger equation, let us first investigate the overlaps
between the initial wave function �0 and the eigenfunctions
of the original Hamiltonian H . That is,

Qk ≡ |〈�̃k|�0〉|2, (23)

where |�̃k〉 is the eigenfunctions of the original Hamiltonian,
which satisfies

H |�̃k〉 = Ẽk|�̃k〉. (24)

Figure 2 shows the overlaps Qk as a function of Ẽk for g = 0
and 20 MeV fm. The initial state is fragmented over several
eigenfunctions of the original Hamiltonian and, thus, forms
a wave packet, which evolves in time. As one can see, the
fragmentation of the initial state is small where the energy
spreading corresponds to the decay width.

Let us now numerically solve the time-dependent
Schrödinger equation. To this end, we use a time mesh of
	t = 0.01 fm/c. Figure 3 shows the survival probability and
the decay width defined as Eqs. (21) and (22) as a function of
time t for several values of g. One can see that the decay width
converges to a constant value after sufficient time evolution,
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FIG. 2. (Color online) Overlaps between the initial state �0 and
the eigenfunctions �̃k of the original three-body Hamiltonian as
a function of the corresponding eigenenergies Ẽk . The solid and
the dashed lines correspond to the cases of g = 20 and 0 MeV fm,
respectively. Notice that the initial state is the lowest eigenstate of
the modified Hamiltonian Hmod with the eigenenergy of 4.56 MeV
(5.42 MeV) for g = 20 MeV fm (g = 0 MeV fm).

which indicates the exponential decay law Ps(t) = e−i
t/h̄.
Notice that the converged values for the decay width with this
model Hamiltonian are on the same order as the experimental
width for 6Be and 16Ne [19–21,55]. At shorter periods, the
decay width shows a transient behavior [34–38]. That is, the
survival probability behaves like a parabolic function of t ,
whereas, the decay width increases linearly [56,57].

The dependence of the decay width on the strength of the
pairing interaction is shown in Fig. 4(b). In Fig. 4(a), we also
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of time t defined by Eq. (21). (b) The decay width defined by Eq. (22).
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FIG. 4. (Color online) (a) The decay energy E0 of the three-body
system as a function of the strength of the pairing interaction g.
The dashed line indicates the asymptotic kinetic energy of a bound
diproton. (b) The decay width estimated at t = 1200 fm/c.

show the decay energy E0 [that is, the eigenenergy of the
modified Hamiltonian given by Eq. (10)] and the asymptotic
kinetic energy of diproton Erel defined as

Erel = E0 + Bpp, (25)

where Bpp = mg2/4h̄2 is the binding energy of a diproton. The
decay width is estimated at t = 1200 fm/c where it has been
well converged (see Fig. 3).

The decay width 
 first decreases as a function of g, despite
that the diproton kinetic energy Erel increases. This should be
related to the decrease in the decay energy E0, which indicates
that the sequential two-proton emissions are the main decay
mechanism in this region of g, even though two protons are
bound in this one-dimensional model. For g � 18 MeV fm, on
the other hand, the decay width increases. This is consistent
with the increase in Erel, which suggests that the direct diproton
decay, that is, the emission of a deeply bound diproton, is the
main mechanism in this region.

The transition from the sequential to the diproton decays
will be clarified more in the next subsection.

B. Two-particle density and flux distributions

To confirm a transition from a sequential to a simultaneous
decay discussed in the previous subsection, we next discuss
the time evolution of two-particle density distribution,

ρ(t, x1, x2) = |�(t, x1, x2)|2. (26)

We also analyze the flux distribution defined as

ji(t, x1, x2) = h̄

2im

(
�∗ ∂�

∂xi

− ∂�∗

∂xi

�

)
(j = 1, 2). (27)
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FIG. 5. (Color online) The time evolution of the density distribu-
tion ρ(t, x1, x2) in the two-dimensional (x1, x2) plane calculated with
the pairing strength of g = 20 MeV fm. Panels (a)–(c) correspond to
the density at t = 0, 300, and 600 fm/c, respectively.

Note that the 2p density is normalized as

∫ ∞

−∞
ρ(t, x1, x2)dx1dx2 = 1. (28)

Figures 5 and 6 show the two-particle density and flux
distributions, respectively, for g = 20 MeV fm at t = 0, 300,
and 600 fm/c. The corresponding quantities for g = 0 are also
shown in Figs. 7 and 8. The flux distributions are plotted in a
form of vector at each value of (x1, x2) in the two-dimensional
(x1, x2) plane where the core nucleus is located at the origin.
Note that there is no flux distribution at t = 0 because the
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FIG. 6. (Color online) The flux distributions j (t, x1, x2) =
j1(t, x1, x2)e1 + j2(t, x1, x2)e2, where ei is the unit vector in the two-
dimensional (x1, x2) plane. These are obtained with g = 20 MeV fm
at (a) t = 300 fm/c and (b) 600 fm/c and are plotted in arbitrary units.

initial wave function �(t = 0) can be taken to be real, and we
do not show it in the figures.

Figures 5(a) and 7(a) show the density distribution for the
initial 2p state, which is confined within the modified potential
Vmod. Because of the pairing correlation, the initial density for
g = 20 MeV fm has an asymmetric form with the peaks along
x1 = x2, which are higher than those along x1 = −x2 [42].
The peaks along the x1 = x2 line, that is, in the first and third
quadrants of these panels, correspond to a compact diproton
cluster. On the other hand, the peaks along the x1 = −x2 line
(i.e., in the second and the fourth quadrants) correspond to a
configuration in which two protons are located opposite the
core nucleus. If we discard the pairing interaction, the density
distribution has four symmetric peaks as shown in Fig. 7(a),
that is, the probability in the first and third quadrants is the
same as that in the second and fourth quadrants [42].

The effect of the pairing correlation is also apparent during
the time evolution. In the presence of the pairing correlation,
the extension of the two-particle density along the x1 = x2

line increases significantly, although the extension along the
x1 = 0 or x2 = 0 lines is not negligible. This is in marked
contrast with the uncorrelated case shown in Fig. 7 in which
the two-particle density expands democratically. That is, in
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FIG. 7. (Color online) Same as Fig. 5 but for g = 0 MeV fm.

the uncorrelated case, the probability of emission of the two
protons in opposite directions is equal to that in the same
direction. The flux distributions shown in Figs. 6 and 8 also
indicate the same behavior.

To investigate the time evolution more quantitatively, we
divide the (x1, x2) plane into four regions shown in Fig. 9.
That is, as follows: (i) the region of x1 > 16 and x2 > 16 fm
as well as the region of x1 < −16 and x2 < −16 fm, (ii) the
region of x1 > 16 and x2 < −16 fm as well as the region of
x1 < −16 and x2 > 16 fm, (iii) the region of −16 � x1 � 16
and |x2| > 16 fm as well as the region of −16 � x2 � 16 and
|x1| > 16 fm, and (iv) the rest in the (x1, x2) plane. At each
time, we integrate the two-particle density distribution in each
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FIG. 8. (Color online) Same as Fig. 6 but for g = 0 MeV fm.

region,

Pk(t) =
∫

region k
ρ(t, x1, x2)dx1dx2 (k = 1–4). (29)

The time evolution of these partial probabilities is shown in
Fig. 10 for g = 0, 20, and 32 MeV fm. We also show the total
decay probability, that is, 1 − P4 = P1 + P2 + P3.

1x

2x 16 fm 

FIG. 9. (Color online) The four regions in the (x1, x2) plane used
to calculate the partial probabilities shown in Fig. 10. The boundaries
of each region are at x1 = ±16 and x2 = ±16 fm.
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FIG. 10. (Color online) The time evolution of the partial proba-
bilities in the regions defined in Fig. 9 for g = 0, 20, and 32 MeV fm.
The total decay probability Ptot ≡ 1 − P4 = P1 + P2 + P3 is also
shown by the dot-dashed lines.

We first discuss the behavior for the uncorrelated case
shown in Fig. 10(a). In this case, the dominant process is
the decay into the third region P3, which corresponds to an
emission of one of the valence protons, whereas, the other
proton remains inside the core-proton potential. As there is no
active s.p. bound state in the present core-proton potential, the
second proton mainly occupies the s.p. resonance state. This
resonance state eventually decays, and the second proton is
emitted outside the potential after a sufficient time evolution.
This is nothing but the sequential two-proton decay and can be
clearly seen in the probabilities P1 and P2, which exist only at
t � 600 fm/c. Notice that P1 and P2 are identical to each other
since the second proton is emitted into either the left or the
right direction with respect to the core nucleus with an equal
probability irrespective of the position of the first proton.

For g = 20 MeV fm shown in Fig. 10(b), the probability in
region (i) increases considerably due to the pairing correlation,
whereas, P3 decreases significantly. This partly corresponds
to an emission of a bound diproton, that is, the simultaneous
two-proton decay. Notice, however, that P3 is still larger than
P1 at t � 800 fm/c, and a sequential decay also coexists
for this value of g. As we have shown in Fig. 4, the total
decay probability P1 + P2 + P3 decreases compared to the
uncorrelated case.

When the pairing interaction is even stronger, the simulta-
neous diproton decay becomes dominant. See Fig. 10(c) for
g = 32 MeV fm. In this case, P1 is the dominant part of the
total decay probability, except for the short-time region at

which the high-energy components in the initial wave function
quickly escape from the potential barrier. The long-time
behavior in this case may correspond to α decays in realistic
nuclei for which a tightly bound α particle tunnels through the
Coulomb barrier of the daughter nucleus.

From these studies, it is evident that the present one-
dimensional three-body model nicely describes a transition
from an uncorrelated case to a strongly correlated case for
many-particle tunneling decays.

IV. SUMMARY

We have employed the time-dependent method and have
qualitatively investigated many-particle tunneling decays,
particularly, the two-proton radioactivity. To this end, we
used a one-dimensional three-body model, which consisted
of a core nucleus and two valence protons. To describe the
decaying process, we first confined the two-proton wave
function inside a confining potential. The confining potential
was then changed to the original potential with which the
two-proton wave function evolved in time. We confirmed that
the survival probability followed the exponential decay law
after a sufficient time evolution, which yielded a constant
decay width. We found that an emission of a bound diproton
was enhanced due to the pairing correlation as was evidenced
in the time evolution of the density and flux distributions. We
have also analyzed the partial probabilities and have discussed
the relative importance of the sequential and simultaneous
two-proton decays. We showed that, for the uncorrelated case,
the sequential decay was the dominant decay process, whereas,
the simultaneous decay played an essential role in the case of
strong pairing correlation. For an intermediate value of the
pairing strength, we have shown that both the simultaneous
and the sequential two-proton emissions coexist.

The one-dimensional three-body model, which we emp-
loyed in this paper, is a simple schematic with which a deep un-
derstanding of many-particle decay process may be obtained.
One drawback, however, is that two protons are inevitably
bound, even with an infinitesimal attraction between the two
protons. Even though our model nicely demonstrates the co-
existence of the simultaneous and sequential decays for an in-
termediate pairing interaction, in reality, two protons are never
bound in vacuum. It will be an important task to extend the
present paper to realistic two-proton emitters in three dimen-
sions, such as 6Be and 16Ne nuclei. Work towards this direction
is in progress, and we will report on it in a separate paper.
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