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Energy and width of a narrow I = 1/2 DN N quasibound state
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The energies and widths of DNN quasibound states with isospin I = 1/2 are evaluated in two methods,
the fixed center approximation to the Faddeev equation and the variational method approach to the effective
one-channel Hamiltonian. The DN interactions are constructed so they dynamically generate the �c(2595)
(I = 0, J π = 1/2−) resonance state. We find that the system is bound by about 250 MeV from the DNN

threshold,
√

s ∼ 3500 MeV. Its width, including both the mesonic decay and the D absorption, is estimated to
be about 20–40 MeV. The I = 0 DN pair in the DNN system is found to form a cluster that is similar to the
�c(2595).
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I. INTRODUCTION

The interaction of mesons with nuclei and the property of
mesonic bound states are one of the most important topics
in nuclear-hadron physics [1–6]. Bound states of pions and
K− have been investigated for a long time and have revealed
the role of strong interactions in the hadron-nucleus bound
states. A step forward in the experimental observation of
the most deeply bound pionic states was given using the
(d,3He) reaction [7], and, although less clearly, using the
coherent radiative π− capture [8] in Ref. [9]. The deeply bound
kaon atoms had been studied theoretically using the optical
potentials [10–14]. Because of the large imaginary part, the
width of the bound states is larger than the energy separation
between the levels [5,15], so experimental observation is not
feasible (see also Refs. [16,17]).

The simplest of the many-body kaonic nuclear systems
is K̄NN , which has received much attention theoretically.
Because the �(1405) resonance is interpreted as a quasibound
state of the K̄N system in the π� continuum [18–25],
one expects a quasibound K̄NN system driven by the
attractive K̄N interaction in the isospin I = 0 channel. Various
approaches have resulted in a rather general consensus that
the quasibound state is obtained above the π�N threshold
and the width is larger than the binding [26–37]. Thus, the
experimental identification of this system would be difficult.

What we report here is the analogous state of the K̄NN ,
substituting the K̄ by a D meson. The DN interaction in I = 0
is predicted to be attractive in the vector-meson exchange
picture and, thus, to dynamically generate the JP = 1/2−
excited state, �c(2595) [38–41]. The �c(2595) resonance is
rather narrow (� < 1.9 MeV), in contrast to the analogous
�(1405) with apparent widths of the order of 30–60 MeV
[23–25]. While the large width of the �(1405) is responsible
for the large width of the K̄NN state, the analogous state
DNN , where the �c(2595) plays the role of the �(1405) in

the K̄NN state, has much better chances to survive as a long
lived and observable state.

The interaction of the D mesons with nuclei has been
addressed in Refs. [39,41,42] and the possibility of making
bound atomic states of D mesons in nuclei has been considered
in Ref. [43]. The interaction of DN is attractive both
in isospin I = 0 and I = 1, but much weaker for I = 1.
Although this leads to a weakly attractive D+p interaction,
the Coulomb repulsion becomes important for heavier nuclei.
As a consequence, the D will be only weakly bound in heavy
nuclei and the probability to see these bound states is not
excessively promising [43]. However, few-body systems like
DNN are less affected by the Coulomb repulsion particularly
for the total isospin Itot = 1/2.

With this in mind we tackle the DNN system from two
different approaches. The first one is using the fixed center
approximation (FCA) to the Faddeev equations, as done in
Refs. [34–36] for the K̄NN system. The second one is using
the variational method as done in Refs. [29,30]. In order to
gain confidence that the state found is narrow, we have also
evaluated the width of the state coming from the absorption of
the D by a pair of nucleons going to the �cN system in the
FCA, analogous to the absorption of K̄ by a pair of nucleons
as considered in Refs. [11,30,44]. In the variational approach,
we extract the typical size of the quasibound state from the
obtained wave function.

The paper is organized as follows. In Sec. II, we briefly in-
troduce the coupled-channels approach for the DN scattering
and derive the corresponding DN potential. These provide the
basis of the three-body calculations in later sections. The FCA
to the Faddeev equations is formulated in Sec. III, together with
the evaluation of the two-nucleon absorption. The variational
approach to the same DNN system is discussed in Sec. IV.
The numerical results of the three-body calculations are shown
in Sec. V. Discussion of the obtained results is given in Sec. VI.
The conclusions of this study are drawn in the last section.
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BAYAR, XIAO, HYODO, DOTÉ, OKA, AND OSET PHYSICAL REVIEW C 86, 044004 (2012)

II. DN SCATTERING AND INTERACTION

We consider the two-body DN scattering based on the
model in Ref. [39]. This is a coupled-channels approach
to the s-wave meson-baryon scattering in the vector-meson
exchange picture. The negative parity �c(2595) resonance
is dynamically generated as a quasibound state of the DN

system in the I = 0 channel, just like the �(1405) resonance
in the strangeness sector [19–25]. In Sec. II A, we derive the
DN two-body scattering amplitude which will be used in
the FCA calculation. An effective single-channel potential is
constructed to reproduce the equivalent scattering amplitude
in Sec. II B. This will be the basic input in the variational
calculation. We work in the isospin symmetric limit, which is
sufficient for the required precision of the present study.

A. Coupled-channels model for the DN scattering

We consider seven (eight) coupled channels in the isospin
I = 0 (I = 1) sector, DN , π�c, η�c, K�c, K�′

c, Ds�, and
η′�c (DN , π�c, π�c, η�c, K�c, K�′

c, Ds�, and η′�c).
In Ref. [39], the coupled-channels interaction is given by the
Weinberg-Tomozawa term

v
(I )
ij (W ) = −κC

(I )
ij

4f 2
(2W − Mi − Mj )

√
Mi + Ei

2Mi

√
Mj + Ej

2Mj

,

where W is the total energy, f is the meson decay constant,
Mi and Ei are the mass and energy of the baryon in channel i,
respectively, and C

(I )
ij is the group theoretical coupling strength

for isospin I . The reduction factor κ is introduced to take into
account the mass difference of the exchanged meson, which we
set κ = 1 (κ = κc = 1/4) for the uds (charm) flavor exchange
process [39]. The scattering amplitude tij is obtained from the
matrix equation

t (I ) = ((v(I ))−1 − g(I ))−1, (1)

where the diagonal loop function is given in dimensional
regularization as

g
(I )
i (W ; ai(μ))

= 1

(4π )2

{
ai(μ) + ln

M2
i

μ2
+ m2

i − M2
i + W 2

2W 2
ln

m2
i

M2
i

+ q̄i

W

[
ln

(
W 2 − (

M2
i − m2

i

) + 2Wq̄i

)
+ ln

(
W 2 + (

M2
i − m2

i

) + 2Wq̄i

)
− ln

(−W 2 + (
M2

i − m2
i

) + 2Wq̄i

)
− ln

(−W 2 − (
M2

i − m2
i

) + 2Wq̄i

)]}
,

where q̄i is the magnitude of the three-momentum in the center-
of-mass frame. We choose the subtraction constants at μ = 1
GeV as

aDN = −2.056, ai = −2.06 (i �= DN ), (2)

for both the I = 0 and I = 1 states, so the �c(2595) resonance
is dynamically generated at the observed energy. By choosing
the isospin symmetric subtraction constants (2), a resonance
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FIG. 1. (Color online) S-wave DN scattering amplitude in the
coupled-channels model (1); (a) I = 0 channel, (b) I = 1 channel.
Vertical dotted lines represent the threshold energies of π�c and DN

channels.

state is also generated in I = 1 at ∼2760 MeV. The diagonal
components of the s-wave scattering amplitudes in the DN

channel, which are complex above the πYc (Yc = �c,�c)
threshold, are shown in Fig. 1. The resonant nature of the
amplitudes can be seen in both channels.

It is worth comparing the I = 0 DN -π�c system with the
corresponding K̄N -π� system. Both systems have a quasi-
bound state. Neglecting the small effect of the normalization
factor, we can write the coupling strength for the DN case as

vij ∼
⎛
⎝ 3

√
3
2κc√

3
2κc 4

⎞
⎠2W − Mi − Mj

4f 2
,

where the channels are assigned as DN (i = 1) and π�c

(i = 2). This is the same form as with the K̄N -π� case,
except for the factor κc = 1/4 in the off-diagonal channel.
The diagonal interaction is proportional to the meson energy
W − Mi , which is reduced to the meson mass at threshold.
Thus, there are three differences from the strangeness sector:
(1) heavy mass of D meson, which enhances the strength of
the DN interaction by the energy factor W − Mi ; (2) large
reduced mass of the system, which suppresses the kinetic
energy in the charm sector; (3) weak transition coupling
DN → π�c, which suppresses the decay of the quasibound
state into the π�c state. These facts explain the reason why the
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DN quasibound state is generated with larger binding energy
and narrower width than those of the K̄N quasibound state. In
addition, (1) and (2) also enhance the attractive interaction in
the I = 1 channel. As a consequence, we obtain a resonance
state also in I = 1 at ∼2760 MeV, as far as choosing the
isospin symmetric subtraction constants (2).

B. Effective single-channel DN potential

We now construct an effective single-channel potential,
which will be used in the variational calculation of the DNN

system. We utilize the method in Ref. [45], first constructing
a single-channel framework which is equivalent to Eq. (1) and
then translating the result into a local and energy-dependent
potential in coordinate space.

The effective interaction veff is constructed to reproduce
the original amplitude t11, given by the DN single-channel
scattering equation (we suppress the isospin index in this
section)

t11 = [(veff)−1 − g1]−1. (3)

It is shown that the veff is given by the sum of the bare
interaction in channel 1 (v11) and the term with coupled-
channels effects as [45]

veff = v11 +
N∑

m=2

v1mgmvm1 +
N∑

m,l=2

v1mgmt
(N−1)
ml glvl1, (4)

where t
(N−1)
ml = [(v(N−1))]−1 − g(N−1)]−1 is the (N − 1) ×

(N − 1) matrix of the coupled-channels amplitude without
the DN channel. In this way, Eq. (3) gives the equivalent
amplitude with the 11 components in Eq. (1). veff is complex
above the πYc threshold, because of the imaginary part of the
loop function of the πYc channel in Eq. (4).

We then translate veff into the local potential in coordinate
space. Adopting a single Gaussian form for the spatial
distribution, the two-body potential can be written as

vDN (r; W )

= MN

2π3/2a3
s ω̃(W )

[veff(W ) + 
v(W )] exp[−(r/as)
2], (5)

where as = 0.4 fm is the range parameter of the potential
and ω̃(W ) is the reduced energy of the DN system. The
energy-dependent correction term 
v(W ) is introduced to
compensate the deviation from the local potential approxima-
tion. This complex and energy-dependent potential reproduces
the scattering amplitude t11 when the Schrödinger equation
with this potential is self-consistently solved. The strength
of the potential vDN (r; W ) at r = 0 is shown in Fig. 2. One
finds that the real part (imaginary part) is larger (smaller)
than that of the K̄N potential [45], which demonstrates the
differences of the interaction kernel discussed in the previous
section.

III. THE FIXED-CENTER APPROXIMATION
FOR THE DN N SYSTEM

The fixed-center approximation (FCA) to the Faddeev
equations has been used with success in several problems.
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FIG. 2. (Color online) Strength of the effective potential
vDN (r,W ) at r = 0 by Eq. (5); (1) I = 0 channel, (b) I = 1 channel.
The range parameter is chosen to be as = 0.4 fm. Vertical dotted lines
represent the threshold energies of π�c and DN channels.

It is advantageous in that the two-body absorption process
of the three-body system can be calculated as discussed
in Sec. III B. One assumes that a pair of particles remains
relatively unaffected by the interaction of the third particle
with this pair. This usually happens when the third particle is
lighter than the constituents of the pair and also if the cluster
is tightly bound. The method has been used with success in
the study of K− scattering with the deuteron in Refs. [46–49]
(see a review in Ref. [50] for comparison with full Faddeev
calculations). More recently, it has been applied to systems of
two mesons and a baryon in Ref. [51], where the NK̄K system
is investigated. The results obtained are in good agreement with
more accurate results obtained with variational calculations
in Ref. [52] or the Faddeev equations in coupled channels
[53,54]. The puzzle of the 
5/2+ (2000) is also addressed
with this technique, assuming this resonance to be mostly
built up from πρ
 in Ref. [55]. Closer dynamically to the
problem under consideration is the work of Ref. [56], where
the NDK , K̄DN , and NDD̄ systems are studied with this
method.

In the present case, where we want to study the DNN

system, we have also the precedent of the work of Refs. [34,36],
where the K̄NN system was studied within this approximation
and found to provide results in qualitative agreement with those
of the variational calculations [29,30]. The condition that the
interacting particle (D meson) is lighter than those of the
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FIG. 3. Diagrammatic illustration of the three-body equation (6).

two-body cluster (nucleon) is not fulfilled in this case. This
certainly introduces larger uncertainties than in other cases
studied but we still expect that one can get good results at
a qualitative level. Actually, the real difficulty of the FCA
occurs when one applies it to studying possible resonant three-
body systems above the threshold of the three particles [57].
In the present case, we look for deeply bound states of the
DNN system and we are safer. However, in order to be more
certain about the results, we have also performed calculations
using a variational method. The differences found in the two
approaches can give us an idea of the uncertainties, and the
features shared by the two approaches can be considered more
reliable.

The work of Ref. [57] gives us some idea of when we
should expect a break down of the FCA. Indeed, in that work
the system φKK̄ was studied within the FCA with the system
KK̄ forming the cluster on which the φ collides. The results
were compared with a full Faddeev calculation [58] where
the φ(2170) resonance was dynamically generated, with the
KK̄ system clustering around the f0(980) resonance. The
comparison of two approaches allowed one to see that the
FCA was failing to provide realistic results because it did not
allow the KK̄ system to be excited in intermediate states. Since
the energy of the system is 90 MeV above the threshold of its
components, the φ, a massive particle compared to the mass
of the components of the cluster, can easily produce excited
intermediate states of the KK̄ system in its collisions with the
kaons and this is accounted for by the Faddeev calculations
of Ref. [58] but not in the FCA, where the KK̄ cluster
wave function is supposed to be unaltered. Maintaining the
structure of the cluster on collisions can happen either when the
interacting particle with the cluster is very light or in the case
when it is not light (like in the present case), when the system
is rather bound such that the interacting particle does not have
energy to excite the cluster. The situation for the DNN case
that we study corresponds to this latter case and we expect a
fair description of the three-body system within the FCA.

A. The formalism for the FCA in the DN N system

In the FCA to the Faddeev equations for the DNN three-
body system, one takes the NN as a cluster and D scatters
from that cluster. We consider the DNN system with total
isospin Itot = 1/2 and with the total spin-parity JP = 0− and
JP = 1−. In this approach, all the two-body pairs are in s wave.

First, we make the evaluation for the case of JP = 0−,
which corresponds to the spin (isospin) of the NN pair as
SNN = 0 (INN = 1). To have total isospin Itot = 1/2, the
dominant component of the DN system is I = 0, where the
�c(2595) resonance appears.

The T matrix for the three-body DNN scattering is labeled
by the DN isospins in the entrance channel I and the exit
channel I ′, TI,I ′ . We denote the two-body (s-wave) DN

scattering amplitudes by t (0) for I = 0 and t (1) for I = 1. The
T matrix then satisfies

TI,I ′ = t (I )δI,I ′ + t (I )GI,I ′′G0TI ′′,I ′Pex, (6)

which is diagrammatically represented in Fig. 3. In Eq. (6),
G0 is the meson exchange propagator [34,59]

G0 =
∫

d3q

(2π )3
FNN (q)

1

q02 − �q 2 − m2
D + iε

, (7)

where FNN (q) is the form factor, representing the momentum
distribution of the NN system. Pex is the isospin exchange
factor, which depends on the total isospin of the nucleons,
INN , in the final state, Pex = (−1)INN +1 = 1 for J = 0, and
= −1 for J = 1.

Here we concentrate on the isospin factors in the DNN

scattering amplitudes. We define the isospin doublets, N =
(p, n), D = (D+,−D0) and consider the DNN states with
the total isospin Itot = 1/2. There are two independent states
with the total spin J = 0 and J = 1, which can be decomposed
into the DN isospin eigenstates, as

|D(N1N2)INN=1〉J=0 =
√

3

2
|(DN1)0N2〉 + 1

2
|(DN1)1N2〉,

|D(N1N2)INN=0〉J=1 = −1

2
|(DN1)0N2〉 +

√
3

2
|(DN1)1N2〉.

The D exchange matrix is given in terms of the isospin
recombination factors.

|(DN1)0N2〉 = 1

2
|(DN2)0N1〉 +

√
3

2
|(DN2)1N1〉,

|(DN1)1N2〉 =
√

3

2
|(DN2)0N1〉 − 1

2
|(DN2)1N1〉.

Thus, the transition matrix G is given by

G =
(

1
2

√
3

2√
3

2 − 1
2

)
.

The three-body amplitude TI,I ′ is obtained by solving
Eq. (6),

T =
[

1 − 1

2
(t (0) − t (1))G0Pex − t (0)t (1)G2

0

]−1

×
⎛
⎝t (0) + 1

2 t (1)G0t
(0)Pex

√
3

2 t (0)t (1)G0Pex
√

3
2 t (0)t (1)G0Pex t (1) − 1

2 t (0)G0t
(1)Pex

⎞
⎠ .
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In calculating the T matrix for the scatterings in the J = 0 and
J = 1 channels, we take the linear combinations, with a factor
2 for the choice of the first nucleon, as

T (J = 0) = 2
(√

3
2

1
2

) (
T00 T01

T10 T11

) ( √
3

2
1
2

)
,

T (J = 1) = 2
(
− 1

2

√
3

2

) (
T00 T01

T10 T11

) (− 1
2√
3

2

)
.

Substituting the T matrix and replacing Pex by +1 for J =
0, INN = 1 scattering and −1 for J = 1, INN = 0, we obtain

T (J = 0) = [
3
2 t (0) + 1

2 t (1) + 2t (0)t (1)G0
]

× {
1 − 1

2 [t (0) − t (1)]G0 − t (0)t (1)G2
0

}−1
, (8)

T (J = 1) = [
1
2 t (0) + 3

2 t (1) + 2t (0)t (1)G0
]

× {
1 + 1

2 [t (0) − t (1)]G0 − t (0)t (1)G2
0

}−1
. (9)

These results coincide with those derived in the charge basis
[35,36] (see Appendix B).

We can see that Eq. (7) contains the folding of the D

intermediate propagator with the form factor of the NN

system. The variable q0 in Eq. (7) is the energy carried by
the D, which is given by

q0 = s + m2
D − (2MN )2

2
√

s
,

with
√

s for the rest energy of the DNN system. Equation
(7) requires the NN form factor. For INN = 0 one could take
the deuteron form factor, but the attraction of the D on the
nucleons will make the NN system more compact, like in
the case of the K̄NN system. Yet, there are limits on how
much one can contract this system because of the strong NN

repulsion at short distances. In order to estimate the NN size,
one can rely on the results of Ref. [30] in the study of the
K̄NN system, where the NN repulsion at short distance was
explicitly taken into account. In practical terms we use the
same expression for the form factor as for the deuteron [60]

F (q) =
∫ ∞

0
d3p

11∑
j=1

Cj

�p2 + m2
j

11∑
i=1

Ci

( �p − �q)2 + m2
i

, (10)

but with the parameters mi rescaled such as to give an average
separation of the nucleons of RNN 
 2 fm [30]. They are
shown in Fig. 4. The validity of this NN form factor will be
examined by the result of the variational calculation, where
the average distance of the NN pair in the DNN system will
be optimized in the three-body dynamics.

We need the argument s1 of the DN amplitude, t(
√

s1).
To evaluate it, we adopt a common procedure of dividing the
binding energy into the three particles proportionally to their
masses. The energy of the nucleon and the D meson are given
by

EN = MN

√
s

2MN + mD

, ED = mD

√
s

2MN + mD

,

0 500 1000 1500 2000
q [MeV]

0

0.2

0.4

0.6
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1

F
(q

)

F(q)
F(q)reduced

FIG. 4. Form factor of the deuteron and the one corresponding to
an NN system with a reduced radius from Ref. [30].

so the total energy of the two-body system can be calculated as

s1 = (
pD + pN1

)2 = s

(
MN + mD

2MN + mD

)2

− �p2
N2

. (11)

The approximate value of �p2
N2

can be obtained by assuming

�p2
N2

2MN


 BN2 ; BN2 = MN − MN

√
s

2MN + mD

, (12)

which provides a rough estimate for bound systems with the
strong interaction.

We use here a different prescription for s1 than the one used
in Ref. [34]. The latter one was based on the calculation of
s1 = (pA + p1)2 = m2

A + m2
b1

+ 2pA · p1 and further steps to
calculate pA · p1, where A is the interacting particle and b1

one of the particles of the cluster. However, when the binding
of the system is large, like in the present case, assuming
p2

A = m2
A and p2

1 = m2
b1

grossly underestimated the binding
of the particles and we have introduced the new, more realistic
prescription of Eq. (11).

B. Evaluation of the D(N N) absorption

As we shall see in Sec. V, we obtain a DNN bound system
with a very small width. This is related to the small width
of the �c(2595) state which is generated in DN interaction
in I = 0. Yet, this calculation only takes into account the
decay channel DN → π�c, for which there is little phase
space, and the DN → π�c channel, which comes from the
subdominant DN I = 1 component in the DNN system. Now
we allow the D to be absorbed by two nucleons, analogously
to the K̄NN → �N considered in Refs. [11,44]. Here the
channel will be DNN → N�c, whose absorption process
is shown diagrammatically in Fig. 5 (other mechanisms and
decay channels will be discussed at the end of this section). We
calculate only the first diagram in Fig. 5. The second one gives
an identical contribution and they sum incoherently: There is
no interference since the N�c and �cN are orthogonal states.
Hence, the total width will be twice the one obtained from just
one diagram.
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FIG. 5. Diagrammatic representation of the D(NN ) absorption.

The S matrix for the diagram is given by

S =
∫

d4x

∫
d4y(−i)tDN→DN

× 1√
2ωD

ϕD(�x)e−iωDx0
e
iE′

N1
x0

e−iEN1 x0
ϕ∗

N ′
1
(�x)ϕN1 (�x)

×
∫

d4q

(2π )4
e−iq(y−x) i

q2 − m2
D + iε

×Vy �σ �qeiE�c y
0
e−iEN2 y0

ϕ∗
�c

(�y)ϕN2 (�y),

where Vy is the Yukawa vertex. We take the same coupling as
K−p → � since in the D and �c the c quark plays the role
of the s quark in the K̄ and �. In Ref. [61], the Vy is given as

Vy = − 1√
3

3F + D

2f
,

with D = 0.795, F = 0.465 [62]. We perform the x0, y0

integrations and make a change of the spatial variables as

�x = �R − �r
2
, �y = �R + �r

2
.

We can then write

ϕN1 (�x)ϕN2 (�y) = 1√
V

ei �P . �Rϕ(�r),

where ϕ(�r) is the wave function of the NN system. N ′
1 and �c

will be outgoing plane waves. Let us also assume that the D

is a plane wave with a certain momentum. The final formula
that we shall use is independent of this momentum, as we shall
see. Thus,

ϕD(�x) = 1√
V

ei �pD.�x,

and then, using these new functions, the S matrix is written as
follows:

S = 1

V 2

∫
d3q

(2π )3

1√
2ωD

tDN→DN

1

q2 − m2
D + iε

×Vy �σ �qϕ̃

(
�q − �p�c

+
�P
2

)
(2π )4δ4(pi − pf )

≡ −iT
1√
2ωD

1

V 2
(2π )4δ4(pi − pf ), (13)

where ϕ̃(�q) is the Fourier transform of the wave function
ϕ(�r) normalized to 1 and pi and pf are the initial and
final momentum, respectively. The NN wave function in
momentum space is defined as

ϕ̃(�q) =
∫

d3qei �q �xϕ(�x),

and has a maximum value for �q = 0. If we take the NN system
at rest, �P = 0, the wave function ϕ̃(�q) in Eq. (13) will peak at
�q − �p�c

= 0. This allows us to approximate the D propagator
in Eq. (13) as

1

q2 − m2
D

→ 1

(q0)2 − �p2
�c

− m2
D

, (14)

where q0 = E�c
− EN2 and p�c

≈ λ1/2(M2
NND,M2

N,

M2
�c

)/2MNND with λ(M2
NND,M2

N,M2
�c

) = M4
NND + M4

N +
M4

�c
− 2M2

NNDM2
N − 2M2

NNDM2
�c

− 2M2
NM2

�c
. We do not

need to specify the tDN→DN amplitude since it will be
accounted for at the end of the formalism.

Defining of �q − �p�c
≡ �q ′, the square of the total matrix

element is obtained as follows:

|T |2 = V 2
y �p2

�c

(
1

(q0)2 − p2
�c

− m2
D

)2

×
∣∣∣∣ 1

2π2

∫
q ′2dq ′ϕ̃(�q ′)tDN,DN (

√
s ′)

∣∣∣∣
2

, (15)

With this T matrix we evaluate the cross section for the process
of Fig. 5 (left) and we obtain

σabs = 1

2π

MNNM�c
MN

M2
NND

p�c

pD

|T |2.

It is interesting to relate this cross section to the imaginary
part of the forward D(NN ) → D(NN ) amplitude from the
diagram of Fig. 6 using the optical theorem. We find

Im TD(NN) = −pD

√
s

MNN

σabs = − 1

2π

M�c
MN

MNND

p�c
|T |2.

The next step is to convert the absorption diagram of
Fig. 6(a) into a “many-body” diagram [Fig. 6(b)] where the
nucleon where the D is absorbed, the only occupied state of
the “many-body” system, is converted into a hole state in the
many-body terminology [63]. Once this is done, one observes
that if we remove the amplitude tDN in the expression of T ,

D

NN

NN
D

(a) (b) (c)

D

D D

D

NhN Λc D

D

DN

N

N

FIG. 6. D(NN ) absorption.
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the expression that we obtain for Im TD(NN) corresponds to
the evaluation of the imaginary part of the two-body loop
function g of a nucleon and a D meson [Fig. 6(c)] but with a
D self-energy insertion accounting for the (�cNh) excitation
of the D meson. We call this δg̃. The Feynman rules to
evaluate Im δg̃ and Im TD(NN) are identical, except that tDN,DN

is removed in the evaluation of Im δg̃. Hence, we obtain

iIm δg̃ = −i
1

2π

M�c
MN

MNND

p�c
|T̃ |2.

with |T̃ |2 is given by Eq. (15) removing tDN,DN . This simplifies
the expression since

1

2π2

∫
q ′2dq ′ϕ̃(�q ′) = lim

r→0

∫
d3q ′

(2π )3
ei �q ′ �r ϕ̃(�q ′)

= ϕ(r = 0). (16)

Thus, |T̃ |2 is given by

|T̃ |2 = V 2
y �p2

�c

1[
(q0)2 − p2

�c
− m2

D

]2 |ϕ(0)|2.

Finally, �p2
�c

, accompanying V 2
y in the former expression,

requires a small correction. The factor comes from the
nonrelativistic �σ �q form of the DN�c vertex. If we take,
instead, the relativistic Yukawa vertex of the type γ μγ 5, then
we find the easy prescription to account for the relativistic
correction,

V 2
y �p2

�c
→ V 2

y

1

4m2
�c

(
MN + M�c

)2 �p2
�c

.

The next step is to reevaluate the tDN,DN amplitude used as
input in the fixed center formulas. As we mentioned, they
were obtained using the method of Ref. [39] with several
coupled channels and the formula (1). We redo the evaluation
by replacing the loop function in the DN channel as

gDN → gDN + iIm δg̃ (17)

to take into account the D absorption by two nucleons or,
analogously, the �cNh excitation of the D meson. When
doing this, the DN amplitude becomes complex below the
DN threshold and the narrow �c(2595) resonance acquires
now a moderate width due to the D absorption with a second
nucleon. The second process of Fig. 5 (right) is accounted for
when we consider the three-body amplitude T in the FCA
formula with the first D scattering with the second nucleon.

For the estimation of the width we take the wave function

ϕ(r) = ae−αr , a = 1

2

(
α3

2π

) 1
2

,

ϕ̃(q) = 4πaα(
1
4α2 − q2

)2 + q2α2
,

with α 
 1.7 fm−1, which corresponds to an NN object of
relative distance 2 fm.

Let us numerically investigate the effect of the absorption
using the model described in Sec. II A. In Fig. 7, we show the
meson-baryon loop function gDN in the DN channel together
with the two-body absorption contribution to the imaginary
part, iIm δg̃. We can see that the imaginary part of the total g

2200 2300 2400 2500 2600 2700 2800 2900 3000

s
1

1/2 [MeV]

-15

-10

-5

0

g

FIG. 7. The meson-baryon loop function gDN in the DN channel
(solid line) and with the effect of the two-body absorption iIm δg̃

added (dashed line).

function is no longer zero below the DN threshold due to D

absorption. In Fig. 8, we show the modulus of the two-body
amplitude |t | for the DN channel for I = 0 using gDN and
gDN + iIm δg̃ of Eq. (17). As we can see, the inclusion of the
absorption mechanism induces an increase in the width of the
peak of �c(2595) in |t | which will have repercussions in
the width of the DNN system.

For a narrow resonance, we can approximate the amplitude
around the resonance energy by a Breit-Wigner form,

t(
√

s1) 
 g2

√
s1 − MR + i �

2

.

This leads to the expression of the coupling of the resonance
to the DN scattering state as

g2 = 1
2�|t(MR)|.

Inspection of Fig. 8, together with the values of �(no absorp-
tion) = 3 MeV and �(absorption) = 15 MeV, show that the

2200 2300 2400 2500 2600 2700 2800 2900 3000

s
1

1/2
[MeV]

0

5

10

15

20

25

30

| t
 |

t
DN

t
DN

(with δ g)

FIG. 8. Modulus of the two-body amplitude DN → DN (solid
line) and with the effect of the two-body absorption iIm δg̃ added
(dashed line).
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value of the coupling g2 barely changes from the introduction
of iIm δg̃, but, of course, the resonance has become wider.
Indeed, g2(noabsorption)/g2(absorption) 
 6/5.

The absorption diagram that we have considered is not the
only one, but it is the most relevant. On the same footing,
we should consider the diagrams where the Yukawa coupling
produces �c or even �∗

c (2520). The analogy with the kaons
made before, and the values of these couplings that can be
seen in Ref. [62], together with the dynamical factor p3 of
the cross section, make the contribution of these terms of
the order of 5% of the �c production and we neglect them.
Analogously, we can also have DN → π (η)�c(�c) in the first
hadron line of the absorption diagram and exchange a pion
or an η. These diagrams are further suppressed because they
require the exchange of a heavy vector in the DN → π (η)Yc

amplitude in the extension of the hidden gauge approach that
we use. They are penalized by the factor κ2

c , which, even
considering that the pion (η) propagators have bigger strength
than the D one, renders these diagrams at the level of 10%.

IV. VARIATIONAL CALCULATION
OF THE DN N SYSTEM

Here we calculate the energy of the DNN system with
a variational approach formulated for the K̄NN system in
Refs. [29,30]. As in the case of the FCA, we consider the DNN

system with total isospin I = 1/2 and the total spin-parity
either JP = 0− or JP = 1−. The trial wave function for the
JP = 0− state is prepared with two components,

|�J=0〉 = (N 0)−1[|�0
+〉 + C0|�0

−〉],
where N 0 is a normalization constant and C0 is a mixing
coefficient. In the main component |�0

+〉, two nucleons
are combined into spin SNN = 0 and isospin INN = 1 so all
the two-body subsystems can be in s wave. We also allow a
mixture of the |�0

−〉 component where both spin and isospin
are set to be zero, so the orbital angular momentum between
two nucleons is odd. The JP = 1− state is studied in a similar
way as

|�J=1〉 = (N 1)−1[|�1
+〉 + C1|�1

−〉],
where |�1

+〉 (|�1
−〉) denotes the SNN = 1 and INN = 0

(SNN = 1 and INN = 1) components. Note that only the main
component of |�J=0,1

+ 〉 is taken into account in the FCA
calculation. The wave functions are expanded in terms of
Gaussians in coordinate space, and we minimize the total
energy of the system with the Hamiltonian given below.
Detailed explanation of the variational method can be found
in Ref. [30].

We consider the following Hamiltonian in this study:

Ĥ = T̂ + V̂NN + Re V̂DN − T̂c.m., (18)

where T̂ is the total kinetic energy, V̂DN is the DN potential
term which is the sum of the contributions from two nucleons,
and T̂c.m. is the energy of the center-of-mass motion. For the
NN potential V̂NN , we use three models: HN1R, which is
constructed from the Hasegawa-Nagata No. 1 potential [64],
the Minnesota force [65], and the Gaussian-fitted version of

the Argonne v18 potential [66]. The characteristic features of
these NN potentials are summarized in Appendix A. For later
convenience, we define the following matrix elements:

Ekin = 〈�|T̂ − T̂c.m.|�〉,
V (NN ) = 〈�|V̂NN |�〉,
V (DN) = 〈�|Re V̂DN |�〉,

Tnuc = 〈�|T̂N − T̂c.m.,N |�〉,
ENN = Tnuc + V (NN ),

where T̂N and T̂c.m.,N are nucleonic parts of the kinetic term
and center-of-mass energy, respectively.

We take the real part of the DN potential for the energy
variation, and the imaginary part will be used to estimate
the mesonic decay width. The energy dependence of the
interaction was treated self-consistently in the study of K̄NN

system [30]. While the K̄N amplitude is well calibrated by
experimental data such as total cross sections and π� mass
distributions, the DN amplitude is constrained only by the
mass of the quasibound state �c(2595) = �∗

c . In addition,
the self-consistent treatment requires some assumption on the
energy fraction of the DN pair in the three-body system, which
cannot be determined unambiguously. In this study, therefore,
we refrain from the self-consistent treatment of the energy of
the DN subsystem and set the strength of the potential at the
energy of �∗

c resonance,

Re vDN (r = 0; W = M�∗
c
) =

{−1336 MeV (I = 0)

−343 MeV (I = 1)
, (19)

with M�∗
c
= 2597.1 MeV. In this case, the M�∗

c
in I = 0

channel is correctly reproduced, while the I = 1 resonance
disappears, because the strength of the DN potential (5)
reduces at the lower energy region, as seen in Fig. 2.

It is useful to introduce one- and two-body densities in order
to extract the spatial structure of the DNN bound state. We,
first, define the one-body densities as

ρN (r) = 〈�|
∑
i=1,2

δ3(|r i − RG| − r)|�〉,

ρD(r) = 〈�|δ3(|rD − RG| − r)|�〉,
ρT (r) = ρN (r) + ρD(r),

where RG is the center-of-mass coordinate of the three-body
system. The one-body densities represent the probability of
finding N , D, or any of them at distance r from the center of
mass of the system. We also define the two-body correlation
densities as

ρNN (x) = 〈�|δ3(|r1 − r2| − x)|�〉,
ρDN (x) = 〈�|

∑
i=1,2

δ3(|rD − r i | − x)|�〉,

which stand for the probabilities of finding a NN or DN pair
at relative distance x. The root-mean-square radius of particle
X,

√
〈r2〉X, and relative distance of particles X and Y , RXY ,

are given as the second moment of the one-body and two-body
densities, respectively,

〈r2〉X =
∫

d3r r2ρX(r), R2
XY =

∫
d3x x2ρXY (x).
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In this setup, since the imaginary part of the DN potential
is not included, the �∗

c appears as a stable bound state. Thus,
in the variational approach, the DNN three-body bound state
can be found in the energy region below the �∗

cN threshold√
s ∼ 3536 MeV. If the three-body (quasi-)bound state exists

above the �∗
cN threshold, the variational calculation will find

the �∗
cN two-body scattering state as the ground state of the

three-body system.
A three-body bound state above the π�cN threshold

√
s ∼

3363 MeV has a mesonic decay width. The three-body decay
width can be estimated by the matrix element of the imaginary
part of the DN potential as

�πYcN = −2〈�|Im V̂DN |�〉,
where |�〉 is the obtained wave function of the ground state. As
seen in Fig. 2, the imaginary part of the DN potential is much
smaller than the real part. This may justify the perturbative
treatment of the imaginary part, which ignores the dispersive
effect on the energy of the DNN system from the imaginary
part.

V. RESULTS

A. Quasibound states in the FCA approach

We, first, study the quasibound state found in the FCA
calculation. In Figs. 9 and 10 we show the results for |T |2 as
functions of the total energy

√
s assuming the NN system to

have reduced size. For both INN = 0, INN = 1(J = 1, J =
0), we obtain a neat peak. The resonance energy for J = 0 is
about 3486 MeV and the width is extremely small. In the case
of J = 1 we have a smaller binding and the energy is about
3500 MeV, with a width of around 9 MeV. We should note that
the binding is similar for both the spin channels. The position
of the peak in this approximation is, in a rough estimate, given
by the position of the pole of the �c(2595). This gives the
value of s1 and, through Eqs. (11) and (12), the value of s.

However, one should note the different strength of |T |2
in these two cases, but a direct comparison cannot be done
because the strength of the resonance amplitude at the peak
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FIG. 9. Modulus-squared of the three-body scattering amplitude
for I = 1/2 and J = 0 with reduced size of the NN radius.
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FIG. 10. Modulus-squared of the three-body scattering amplitude
for I = 1/2 and J = 1 with reduced size of the NN radius.

is related to the width, which strongly depends on the spin.
A proper comparison is better done after the D absorption is
included where the widths are similar.

We next include the δg̃ to account for absorption and plot
|T |2 for the DNN system in Figs. 11 and 12 for J = 0 (INN =
1) and J = 1 (INN = 0). The difference of the peak position
by the absorption effect is only a few MeV (2–4 MeV) which
is certainly within our uncertainties. The novelty, which is
welcome, is that |T |2 has become now wider and acquires
a width of about 20–25 MeV. We are now in a position to
compare the strength of these two amplitudes and we see that,
in the case of J = 0, the strength of |T |2 at the peak is about
a factor 15 larger than that for J = 1. This means that the
state that we find at J = 1 should be more difficult to see, or
alternatively we should see the small strength as an indication
that this state is more uncertain in our approximation, as should
be the smaller shoulder that one can see at higher energies for
J = 1 in Fig. 12.
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FIG. 11. Modulus-squared of the three-body scattering amplitude
for I = 1/2 and J = 0 (with δG̃) with reduced NN radius.

044004-9
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FIG. 12. Modulus-squared of the three-body scattering amplitude
for I = 1/2 and J = 1 (with δG̃) with reduced NN radius.

B. Quasibound states in the variational approach

Now we investigate the same system in the variational
approach. We, first, adopt the HN1R potential for the nuclear
force. As a result of the variational calculation, we have found
that the total spin J = 1 system (INN = 0) is unbound with
respect to the �∗

cN threshold. A bound state of the spin J = 0
system (INN = 1) is found at

B ∼ 225 MeV,

measured from the DNN threshold (∼3745 MeV). This
corresponds to the total energy of the three-body system as

MB ∼ 3520 MeV.

We also examine the Minnesota force and Av18 potential.
The results are summarized in Table I, together with the
contributions from the individual terms in Eq. (18).

As seen in the Table I, the DNN system in the J = 0
channel is bound below the �∗

cN threshold (B ∼ 209 MeV)

TABLE I. Results of the energy compositions in the variational
calculation for the ground state of the DNN system with total isospin
I = 1/2 (range parameter as = 0.4 fm). Terms bound and unbound
are defined with respect to the �∗

cN threshold. All the numbers are
given in MeV.

HN1R J = 0 Minnesota Av18
J = 1 J = 0 J = 0

Unbound Bound Bound Bound
B 208 225 251 209
MB 3537 3520 3494 3536
�πYcN — 26 38 22
Ekin 338 352 438 335
V (NN ) 0 −2 19 −5
V (DN ) −546 −575 −708 −540
Tnuc 113 126 162 117
ENN 113 124 181 113
P (odd) 75.0% 14.4% 7.4% 18.9%

for all the NN potentials employed.1 A large kinetic energy of
the deeply bound system is overcome by the strong attraction
of the DN potential, while the NN potential adds a small
correction. Comparing the results with three different nuclear
forces, we find that the binding energy is smaller when the
NN potential has a harder repulsive core (see Appendix A).

In the J = 1 channel, the ground-state energy is obtained
slightly above the �∗

cN threshold. The fact that the J = 1
channel is unbound is confirmed by changing the parameter μ

in the trial wave function, which controls the size of the total
system [30]. By increasing the system size, the total energy
gradually approaches the �∗

cN threshold. This indicates that
the lowest-energy state is indeed a two-body scattering state
of the �∗

cN channel. A large fraction of the odd component
in this channel (∼75%) is realized to enhance the INN = 1
component which has larger fraction of the IDN = 0 than the
INN = 0 component. In fact, pure |(DN )I=0N〉 state can be
decomposed into INN = 0 and INN = 1 components with the
ratio 1:3. Since the INN = 1 state is the odd state in J = 1
(SNN = 1) channel, the 75% fraction of the odd component
indicates that the DN pair forms the �∗

c . We also examine
the J = 1 channel with the Minnesota force. Although the
repulsive core is soft in this case, no bound �∗

cN is found.
Using the imaginary part of the DN potential, we evaluate

the mesonic decay width of the quasibound state in the J =
0 channel, �πYcN . The results are 20–40 MeV as shown in
Table I. This corresponds to the result of FCA without the
D absorption, where the width is less than 10 MeV. Note,
however, that, in the variational approach, we have evaluated
the width perturbatively, while in the FCA the evaluation is
done nonperturbatively. In this sense, �πYcN obtained in the
variational approach can only be regarded as an estimation of
the mesonic decay width.

C. Structure of the DN N quasibound state

To further investigate the structure of the DNN systems,
we calculate the expectation values of various distances of the
obtained wave function. The results of the root-mean-square
radii and the relative distances are shown in Table II. Except
for the Av18 case where the wave function spreads due to
the weaker binding, the size of the DNN bound state in the
J = 0 channel is smaller than the K̄NN system, in which the
NN and K̄N distances are RNN ∼ 2.2 fm and RK̄N ∼ 1.9 fm.
It is, on the other hand, acceptable to use the reduced size
of Eq. (10) for the NN distribution in the FCA calculation,
given the uncertainty that arises from the choice of the NN

interaction. The large relative distances in the J = 1 channel
also reflect the nature of the scattering state in this channel.

In view of the different values of RNN obtained from the
use of different NN potentials (see Table II) and the different
binding obtained in each case (see Table I), we redo the
calculations in the FCA changing the NN form factor of
Eq. (10). We find a change in the binding from RNN = 2.62 fm
to 1.55 fm of 10 MeV (more bound) versus 16 MeV in

1Av18 case is almost at the �∗
cN threshold, but we confirm that the

wave function is localized as we will see in Sec. V C.
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TABLE II. Structure of the DNN ground state (range parameter
as = 0.4 fm).

√
〈r2〉T ,

√
〈r2〉D , and

√
〈r2〉N mean the root-mean-

square radius of the distribution of total system, nucleons, and D

meson, respectively. RNN (RDN ) is the mean distance between two
nucleons (D meson and a nucleon) in the DNN . RDN (I ) is the mean
distance of a DN component with isospin I . All numbers are given
in fm.

HN1R J = 0 Minnesota Av18
J = 1 J = 0 J = 0√

〈r2〉T 4.81 0.75 0.50 1.26√
〈r2〉N 5.61 0.88 0.59 1.47√
〈r2〉D 2.52 0.41 0.28 0.67

RNN 10.04 1.55 1.03 2.62
RDN 7.11 1.12 0.76 1.87
RDN (I = 0) 4.52 0.83 0.62 1.28
RDN (I = 1) 10.03 1.57 1.03 2.65

Table I. In the case of RNN , from RNN = 2.62 fm to 1.03 fm
the change is 28 MeV (more bound) versus 42 MeV in Table I.
The effects of the binding go in the same direction in both cases
and they also agree in absolute value at the qualitative level.

In Fig. 13, we show the one-body densities of the nucleon
and D meson of the quasibound state with the HN1R potential.
It is clear that the D meson distributes more compactly than
the nucleons. This result indicates a schematic picture where
the D meson sits at the center and nucleons circulate around it.

It is instructive to look at the DN correlation in more
detail. In Fig. 14, we show the DN two-body correlation
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FIG. 13. (Color online) (a) One-body densities ρN (r) and ρD(r)
in the J = 0 channel with HN1R potential. (b) The same plot of the
densities multiplied by r2.
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FIG. 14. (Color online) (a) Normalized DN two-body correlation
density ρDN (r) with isospin decomposition. The I = 0 DN bound
state (�∗

c ) correlation density is also shown for comparison. (b) The
same plot of the densities multiplied by r2.

density as well as its isospin decomposition. It is seen that the
I = 0 component distributes more compactly than the I = 1
component, which reflects the strength of the attraction in
each channel [see Eq. (19)]. Moreover, the I = 0 component
is similar to the distribution of the relative distance of the DN

two-body bound state ρ�∗
c
(r). This indicates that the structure

of the �∗
c is maintained even in the three-body system. This

feature has also been found in the K̄NN system [30,67].
As in the case of the K̄NN system, the survival of the

�∗
c in the three-body system opens the possibility of the “�∗

c -
hypernuclei,” in which the �∗

c is treated as an effective degree
of freedom [68,69]. In fact, this picture is more suitable in the
charm sector, since the width of the �∗

c is smaller than that of
the �∗, so the effect of the imaginary part in the calculation
should be smaller. Note also that the binding of the DN system
is as large as 200 MeV, while the binding of the �∗

cN is much
smaller, especially for the case of the realistic Av18 potential.

We have examined theoretical uncertainties in the construc-
tion of the potential. The range parameter of the DN potential
as is introduced in Eq. (5) and chosen to be 0.4 fm. When
we adopt as = 0.35 fm, the binding energy changes by a few
MeV, and the size changes less than 0.1 fm. The Minnesota
potential has a parameter u which controls the strength of the
NN odd force [65]. The effect of the slight inclusion of the odd
force (u = 0.95) turns out to be very small, less than 1 MeV.
We thus conclude that these uncertainties are much smaller
than the dependence on the choice of the NN potential. The

044004-11
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variation of the values in Tables I and II can be regarded as the
theoretical uncertainties in the present calculation.

VI. DISCUSSION

A. Comparison of two approaches

We have presented the results of two approaches, the
Faddeev FCA calculation and the variational calculation. In the
total spin J = 0 channel, both approaches find a quasibound
state around 3500 MeV, which is below the �∗

cN threshold.
The assumed NN distribution in the FCA turns out to be
similar with that found in the variational calculation by
minimizing the total energy. It is, therefore, reasonable to
conclude that these approaches find the same quasibound state.

The spin J = 1 channel, on the other hand, has differences
in the two approaches. The lowest-energy state obtained in the
variational calculation is a �∗

cN scattering state, while a nar-
row peak is found in the FCA amplitude below the �∗

cN thresh-
old, although the signal strength is not so significant as in the
J = 0 case. A major reason of this discrepancy may be traced
back to the DN interaction in the isospin I = 1 channel. In the
original coupled-channels amplitude, there is an I = 1 quasi-
bound state, which induces the bound state in the FCA. As dis-
cussed in Sec. II B, however, the energy dependence of the DN

potential in the variational approach is fixed at the energy of the
�∗

c in the I = 0 channel. This reduces the strength of the I = 1
amplitude, and the two-body quasibound state is not generated
in the effective potential. Since the total spin J = 1 channel
has larger fraction of the I = 1 DN amplitude, this difference
is enhanced and results in different three-body results.

In fact, we may artificially adjust the condition Eq. (19) to
generate a quasibound state in the I = 1 channel in the varia-
tional approach. By setting the strength of the DN interaction
at W ∼ 2766 MeV in the I = 1 channel, a quasibound state is
generated in the I = 1 DN channel. In this case, the energy
dependence of the DN interaction is fixed at each isospin
channel, and the strength of the DN attraction is increased in
the I = 1 channel. By performing the three-body calculation,
we find that the binding energy in the J = 0 quasibound state
are increased by 10–50 MeV, depending on the NN interaction
employed. This is because of the increase of the attraction,
and the binding energy appears to be closer to the FCA result.
In the J = 1 sector, only the Minnesota potential supports
a bound state with B = 214 MeV, while no state is found
below the �∗

cN threshold with the other two NN interactions.
Given the uncertainty in the choice of the NN interaction,
the present result does not strongly support the existence
of the quasibound state in the J = 1 sector. In order to pin
down the J = 1 quasibound state, it is necessary to accumulate
the experimental information of the DN I = 1 scattering am-
plitude or the information on the negative parity �∗

c resonance.
The difference of the results in two approaches also stems

from the odd component of the NN state, which is included
only in the variational calculation. For a bound state, the
inclusion of additional components in the wave function
generally increases the binding energy. In fact, when the
odd component is switched off, we obtain B ∼ 211 MeV for
the J = 0 case with the Minnesota potential. Thus, for the

TABLE III. Binding energies of the three-body bound state in
J = 0 channel measured from the three-body threshold with different
meson mass and different meson-nucleon potential.

m = mK̄ m = mD

V = VK̄ ∼30 MeV ∼190 MeV
V = VD ∼40 MeV ∼230 MeV

J = 0 quasibound state, we consider that the effect of the odd
component is comparable with the uncertainty from the NN

force. For the J = 1 case, the odd component may be more
important, because we need 3/4 fraction of the odd component
to obtain a pure �∗

cN scattering state. This may be related with
the discrepancy of the results in the J = 1 channel.

In addition, we should also remember that the two ap-
proaches employ different approximations. In the FCA, the
dynamics of the nucleons is not solved explicitly, while the
imaginary part of the DN potential is not taken into account in
the variational approach. In both cases, the explicit πYcN dy-
namics is approximated at different levels (see the discussion in
Ref. [36]), whereas its importance has been pointed out in the
strangeness sector [31]. These effects can also be responsible
for the difference of the results in the two approaches.

B. Comparison with K̄ N N results

It is instructive to compare the DNN quasibound state
with the corresponding K̄NN state in Ref. [30]. In both cases,
we obtain a quasibound state, but the DNN system has a
larger binding energy and a narrower width. This is in parallel
with the properties of the DN and K̄N two-body quasibound
states, and they are closely related through the DN and K̄N

interactions.
As discussed in Sec. II A, the D meson can be more strongly

bound in a nucleus than K̄ meson by two reasons. On the
one hand, the coupling itself is stronger, and, on the other
hand, the heavier mass of the D meson is advantageous to
increase the binding. So, we can consider two hypothetical
variants between the DNN system (B ∼ 230 MeV) and K̄NN

system (B ∼ 30 MeV)2: case I, with kinematics of the DNN

system with the K̄N potential (m = mD,V = VK̄ ), and case
II, with kinematics of the K̄NN system with the DN potential
(m = mK̄, V = VD). The result of the variational calculation
shows that B ∼ 40 MeV for case I and B ∼ 190 MeV for
case II. As summarized in Table III, the suppression of the
kinetic energy by the heavy D mass is more important for
the strong binding of the DNN system. One should note that,
in the present case, the strength of the two-body interaction is
fixed at the energy of the two-body quasibound state. Since the
DN two-body bound state locates 200 MeV below the DN

threshold, the strength of the potential is reduced, as seen in
Fig. 1. Thus, in the present prescription, the attractive strength
of the DN potential does not differ much from the K̄N one,
and the result of case I does not very much deviate from the
K̄NN quasibound state.

2Here we also set the strength of the K̄N potential at the energy of
the �∗ for comparison with the DNN calculation.
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The narrow width of the DNN system is a consequence of
the narrow width of the �∗

c (2595). This is partly because of the
small transition coupling which is suppressed by the exchange
of the heavy flavor, but the main reason is the suppression of
the phase space due to the large binding energy. In this sense,
the heaviness of the D meson is essential to realize the deep
and narrow DNN quasibound state.

C. Possible experiments to produce the DN N state

The very narrow width of the DNN system differs
qualitatively from the K̄NN one, where the width was so
large as to make its experimental observation unfeasible. In
the present case, there is a clear situation and there are no
problems, in principle, for the observation of the state. In the
FCA calculation, we observe that the two-nucleon absorption
width is larger than the three-body decay width. This indicates
that the DNN quasibound state can be more easily seen in
the two-baryon final states such as �cN . The findings of the
present work should stimulate efforts to find suitable reactions
where this state could be found.

As a suggestion in this direction we can think of the
p̄3He → D̄0D0pn → D̄0[DNN ] reaction, which could be
done by the GSI Facility for Antiproton and Ion Research
(FAIR). With a p̄ beam of 15 GeV/c, there is plenty of energy
available for this reaction and the momentum mismatch of the
D0 with the spectator nucleons of the 3He can be of the order
of 550 MeV/c, equivalent to an energy of 80 MeV for the D,
small compared with the scale of the binding (�200 MeV).
With an estimate of σ 
10–20 nb for p̄p → D̄0D0 production
[70,71], one would expect several thousand events per day for
the background of the proposed reaction [72]. A narrow peak
could be visible on top of this background corresponding to
the DNN bound-state formation.

Another possibility is the high-energy π -induced reaction.
An analogous reaction is π−d → D−D+np → D−[DNN ],
where the relevant elementary process is π−N → D+D−N .
Since the DN pair in the DNN system is strongly clustering
as the �∗

c , the reaction π−d → D−�∗
cn → D−[DNN ] is also

another candidate. The elementary reaction π−p → D−�∗
c is

relevant in this case. Such reactions may be realized in the
high-momentum beamline project at Japan Proton Accelerator
Research Complex (J-PARC).

A different strategy is to look for the formation of the
quasibound state in heavy-ion collisions. It has been shown that
the hadronic molecular states with charm quark are abundantly
produced at Relativistic Heavy Ion Collider (RHIC) and Large
Hadron Collider (LHC) [73,74]. Although a deeply bound
DNN state has a smaller production yield, it can also be
produced via coalescence of the �∗

cN with much smaller
binding. A peak structure of the DNN state may be seen,
for instance, in the invariant mass spectrum of the �cπ

−p or
�cp final state.

VII. CONCLUSIONS

We have studied the DNN system with I = 1/2 and have
found that the system is bound and rather stable, with a width of
about 20–40 MeV. We obtained a clear signal of the quasibound
state for the total spin J = 0 channel around 3500 MeV.

We have used two methods for the evaluation of the
quasibound state. The first one used the fixed center ap-
proximation for the Faddeev equations and the second one
employs the variational approach with hadronic potentials in
coordinate space. The DN interaction was constructed in the
field theoretical method with channel couplings, and a unitary
approach dynamically generates the �∗

c (2595) resonance as a
DN quasibound state.

In both cases, we have found a bound state with an energy
around 3500 MeV in the J = 0 channel. This corresponds
to 250 MeV binding from the DNN threshold. The J = 1
channel is more subtle, and the precise DN amplitude in
the I = 1 channel is important for a robust prediction in this
channel. The mesonic decay width of the quasibound state
turned out to be less than 40 MeV. In addition, the D absorption
on two nucleons was evaluated in the FCA formalism.
Although the absorption process adds several tens of MeV to
the width, the total width is still much smaller than the binding
energy. It is found that the DN pair in the I = 0 channel in the
DNN system resembles the wave function of the �c(2595)
state in vacuum. Thus, the DNN state found here can be
interpreted as a quasibound state of �c(2595) and a nucleon.

The small width of the DNN quasibound state is advanta-
geous for the experimental identification. The search for the
DNN quasibound state can be done by a p̄-induced reaction
at FAIR, a π−-induced reaction at J-PARC, and relativistic
heavy-ion collisions at RHIC and LHC.
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APPENDIX A: N N INTERACTIONS

Here we summarize the properties of the NN potentials
used in this study with a variational calculation. We have
examined three kinds of NN interactions. Because we work
in the isospin symmetric limit, the Coulomb interaction is not
included in all cases.

The Hasegawa-Nagata No. 1 potential [64] has a three-
range Gaussian form with no odd force. The repulsive core is as
high as 1 GeV. Because the potential was originally introduced
for the resonating-group-method study, when applied to the
two-nucleon systems, the attraction is too strong to generate a
bound state in the 1S0 channel and to overestimate the deuteron
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BAYAR, XIAO, HYODO, DOTÉ, OKA, AND OSET PHYSICAL REVIEW C 86, 044004 (2012)

binding energy. In this study, we have reduced the strength
of the long-range term (middle-range term) by factor 0.25
(0.95) and call it the HN1R potential. The HN1R potential
has no bound state in the 1S0 channel and reproduces the NN

phase-shift data, as shown below.
Minnesota force [65] is expressed by the sum of two

Gaussians, with a relatively soft repulsive core. The parameters
were chosen so as to reproduce the scattering lengths and the
effective ranges of the NN scattering. As a consequence, the
deuteron is bound only with the s-wave component, so the
tensor force is considered to be renormalized in the central
part. We set the parameter u = 1 so there is no odd force,
unless otherwise stated.

The Argonne v18 potential [66] is one of the realistic
nuclear forces with a strong repulsive core. As in Ref. [30], we
used the Gaussian-fitted version of the potential with central,
spin-spin, and L2 terms. Since the description of the deuteron
requires d-wave mixing, which is beyond the present model
wave function, we only consider the S = 0 channel with the
Av18 potential.

In Fig. 15, we show the spatial form of the potentials in the
1S0 channel. The phase shifts of the NN scattering in the 1S0

channel are shown in Fig. 16 in comparison with experimental
data.

APPENDIX B: DERIVATION OF THE THREE-BODY
AMPLITUDE IN THE CHARGE BASIS

In this Appendix, we derive Eqs. (8) and (9) in the
Approach of Ref. [36] by applying the following strategy.
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FIG. 15. (Color online) (a) Coordinate space NN potentials in
the 1S0 channel. (b) Detail of the lower part of (a).
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FIG. 16. (Color online) NN phase shifts in the 1S0 channel
calculated by the NN potentials.

We evaluate, first, the D0pp → D0pp amplitude considering
charge exchange processes in the rescattering of the D meson.
The amplitude will contains total isospin Itot = 1/2 and
Itot = 3/2. Since we only want the Itot = 1/2, we evaluate
the scattering amplitude for Itot = 3/2 in addition, taking the
D+pp → D+pp amplitude, and from a linear combination of
the two we obtain the Itot = 1/2 amplitude. This strategy was
found most practical in Ref. [36].

For the D0pp → D0pp we define three components of the
three-body scattering amplitude as follows:

(i) Tp, which are called partition functions, which contains
all diagrams that begin with a D0 collision with the first
proton of the pp system and finish with D0pp,

(ii) T
(p)

ex , which contains all the diagrams that begin with a
D+p collision on a np system and finish with D0pp,
and

(iii) T (n)
ex , which contains all the diagrams that begin with a

D+n collision on a np system and finish with D0pp.

These amplitudes fulfill a set of coupled equations,

Tp = tp + tpG0Tp + texG0T
(p)

ex

T (p)
ex = t

(p)
0 G0T

(n)
ex (B1)

T (n)
ex = tex + texG0Tp + t

(n)
0 G0T

(p)
ex ,

where the two-body amplitudes are given as tp = tD0p,D0p,
tex = tD0p,D+n, t

(p)
0 = tD+p,D+p, and t

(n)
0 = tD+n,D+n. The set

of equations (B1) are diagrammatically represented in Fig. 17.
By taking into account the phase convention |D0〉 =

−|1/2,−1/2〉 in the isospin basis, we can write all the former
elementary amplitudes in terms of I = 0, 1 [t (0), t (1)] for the
DN system, and we find

tp = 1
2 [t (0) + t (1)] tex = 1

2 [t (0) − t (1)]
(B2)

t
(p)
0 = t (1) t

(n)
0 = 1

2 [t (0) + t (1)].

Eliminating T
(p)

ex and T (n)
ex in Eq. (B1) we obtain

Tp = tp
(
1 − t

(n)
0 G0t

(p)
0 G0

) + t2
exG0t

(p)
0 G0

(1 − tpG0)
[
1 − t

(n)
0 G0t

(p)
0 G0

] − t2
ex t

(p)
0 G3

0

, (B3)
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FIG. 17. Diagrammatic representations of the partition functions
for the D0pp → D0pp.

which, in the isospin basis, can be simplified to

Tp =
1
2 [t (0) + t (1)] − t (0)t (1)2

G2
0

[1 − G0t (1)]
{
1 + 1

2 [t (1) − t (0)]G0 − G2
0t

(0)t (1)
} .

The total D0pp → D0pp amplitude would be 2Tp , accounting
for the first interaction of the D0 with either of the protons.

We now take into account that, in the basis of |Itot, I3,tot〉,

|D0pp〉 = −
(

1√
3
|3/2, 1/2〉 +

√
2

3
|1/2, 1/2〉

)
(B4)

and, thus,

〈1/2|T |1/2〉 = 3
2

(〈D0pp|T |D0pp〉 − 1
3 〈3/2|T |3/2〉). (B5)

The 〈3/2|T |3/2〉 amplitude is particularly easy to obtain.
In this case, we take the D+pp → D+pp transition and,
diagrammatically, we have the mechanism of Fig. 18 for the
only partition function T

(3/2)
p .
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p p

p p

+

p p

pp

D+

D+

D+

D+

D+

D+

p

FIG. 18. Diagrammatic representation of the partition function
for I = 3/2.

Hence,

T (3/2)
p = t

(p)
0 + t

(p)
0 G0T

(3/2)
p (B6)

and the total T (3/2) amplitude will be 2T
(3/2)
p , accounting for

the D+ interacting first also with the second nucleon. We
have

T (3/2)
p = t

(p)
0

1 − G0t
(p)
0

= t (1)

1 − G0t (1)
. (B7)

We can now use Eq. (B5) and find for the total amplitude
(including the factor 2 for the first interaction with either
proton)

T (1/2) = 3Tp − t (1)

1 − G0t (1)

=
3
2 t (0) + 1

2 t (1) − 1
2 t (1)(t (1) − t (0))G0 − 2t (0)t (1)2

G2
0

[1 − G0t (1)]
{
1 + 1

2 [t (1) − t (0)]G0 − G2
0t

(0)t (1)
} ,

which can be simplified by dividing the numerator by [1 −
G0t

(1)] with the final result,

T (1/2) =
3
2 t (0) + 1

2 t (1) + 2G0t
(0)t (1)

1 + 1
2 [t (1) − t (0)]G0 − G2

0t
(0)t (1)

.

This corresponds to Eq. (8).
The case of SNN = 1 (INN = 0), that we also study here,

can be done in a similar way, but this was done in Ref. [48]
for K−d at rest and in Ref. [35] for the K−d interaction below
threshold. We quote here the formula that was obtained in
Ref. [35] which we use here, too,

TD0d =
1
2 t (0) + 3

2 t (1) + 2G0t
(0)t (1)

1 − 1
2 [t (1) − t (0)]G0 − G2

0t
(0)t (1)

.

This corresponds to Eq. (9).
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