
PHYSICAL REVIEW C 86, 044002 (2012)

Application of the complex-scaling method to four-nucleon scattering above break-up threshold
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A formalism based on the complex-scaling method is developed and applied to solve the four-nucleon scattering
problem above the break-up threshold. Converged calculations are presented for the isospin T = 0 and T = 1
channels in several energy regions above both the three- and the four-particle break-up thresholds.
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I. INTRODUCTION

The theoretical description of quantum-mechanical colli-
sions turns out to be one of the most complex and challenging
fundamental problems in theoretical physics. The calculations
of the scattering process in configuration space require bound-
ary conditions. Moreover, the complexity of these boundary
conditions drastically increases with increasing number of
open channels and, in particular, when the break-up chan-
nels are open. Momentum-space calculations do not involve
complex boundary conditions; nevertheless, one has to deal
with Green’s functions, which carry singularities of increasing
complexity. The description of the break-up process in the
three-nucleon system became available already a while ago
both in configuration space, by imposing complex boundary
conditions, as well as in momentum space, by integrating mov-
ing singularities of the Green’s functions [1]. Nevertheless,
such direct approaches have not been extended beyond the
three-body system, while their further development is stalled
due to the rapid rise in complexity when the number of particles
increases. Therefore, finding a method which would allow
one to solve the scattering problem by avoiding difficulties
due to the complex boundary conditions (singularities) is
of great importance. One can acknowledge several recent
efforts [2–7]. First of all, one should mention the Lorentz
integral transform method [2], which allows one to calculate
the integral cross section of the scattering process using
bound-state-like techniques. However, this method becomes
rather involved for the differential observables. Some time later
a complex-energy method was presented [3]; this may provide
full information about the scattering process. Lately, after some
technical improvements, this method has even been applied
to describe realistic four-nucleon break-up process [8]. Other
recent developments include a momentum lattice technique [4]
and a method based on a discretized continuum solution [7],
which, respectively, must be tested in the four-body sector and
for the break-up case.

In [6] we have presented the application of the complex-
scaling method to describe three-nucleon scattering, including
break-up reactions. This method allows one to treat a strong
interaction of almost any complexity: realistic local and
nonlocal potentials, optical potentials, and strong interactions
in conjunction with a repulsive Coulomb force. Furthermore,
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both elastic and break-up amplitudes might be addressed by
this method, thus representing the full description of three-
particle collisions. There are no formal obstacles in extending
this method to treat the collisions involving any number
of particles, as long as one is able to handle a large-scale
numerical problem. The logical evolution of the former work is
to perform the first calculations in the four-body sector, treating
nuclear reactions above the four-nucleon break-up threshold.

One should mention that an alternative variant of the
complex-scaling method to calculate scattering observables
above the break-up threshold has been proposed by Giraud
et al. [9]. It relies on the spectral function formalism and
requires diagonalization of the full N -body matrices to get
converged results; the last fact makes it difficult to extend the
method of Giraud et al. beyond the N = 3 case.

II. FORMALISM

In this study the four-body problem is treated using
Faddeev-Yakubovski (FY) equations in configuration space.
Using the FY formalism the wave function of the system is
naturally decomposed into so-called FY components (FYCs)
For the A = 4 system, two types of FYCs appear: type K
(Kl

ij,k) and type H (Hkl
ij ), where i, j , k, and l are particle

indexes. By permuting particle indexes one may construct 12
independent components of type K as well as 6 independent
components of type H. The asymptotes of the components Kl

ij,k

and Hkl
ij incorporate (3 + 1)- and (2 + 2)-particle channels,

respectively (see Fig. 1).
We consider a four-nucleon system in the isospin for-

malism, where neutrons and protons are treated as isospin-
degenerate states of the same particle nucleon. FY components
which differ by the order of the particle indexing become
related due to the symmetry of particle permutation. There
remain only two independent FYCs, which we denote K and
H by omitting their indexing. The FY equations for a case of
four identical particles read [10,11]

(E − H0 − V12)K = V12(P + + P −)[(1 + Q)K + H ],

(E − H0 − V12)H = V12P̃ [(1 + Q)K + H ], (1)

where H0 is a kinetic energy operator, whereas Vij describes
the interaction between the ith and j th nucleons. FYCs
may be converted from one coordinate set to another by
using particle permutation operators, which are summa-
rized as follows: P + = (P −)−1 ≡ P23P12, Q ≡ −P34, and
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P̃ ≡ P13P24 = P24P13, where Pij indicates operator permut-
ing particles i and j .

In terms of the FYCs, the total wave function of an A = 4
system is given by

� = [1 + (1 + P + + P −)Q](1 + P + + P −)K

+ (1 + P + + P −)(1 + P̃ )H. (2)

Each FY component F = (K,H ) is considered as a
function, described in its proper set of Jacobi coordinates
(�x, �y, �z) (see Fig. 1), and defined, respectively, by

FIG. 1. (Color online) The FY components K4
12,3 and H 34

12 for a
given particle ordering. As z → ∞, the K components describe (3 +
1)-particle channels, while the H components contain asymptotic
states of 2 + 2 channels.
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√
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(
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2

)
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)
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√
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2
− �r1 + �r2

2

)
.

(3)

Angular, spin, and isospin dependence of these components is described using tripolar harmonics Yα(x̂, ŷ, ẑ), i.e.,

〈�x �y�z|F 〉 =
∑

α

Fα(xyz)

xyz
Yα(x̂, ŷ, ẑ). (4)

The quantities Fα(xyz) are called regularized FY amplitudes, where the label α holds for a set of 10 intermediate quantum
numbers describing a given four-nucleon quantum state (Jπ , T , Tz). By using the LS-coupling scheme the tripolar harmonics are
defined for components K and H, respectively, by

YαK
≡ {[(lx ly)lxy

lz]L[((s1s2)sx
s3)S3s4]S}JπM ⊗ [((t1t2)tx t3)T 3t4]T TZ

, (5)

YαH
≡ {[(lx ly)lxy

lz]L[(s1s2)sx
(s3s4)sy

]S}JπM ⊗ [(t1t2)tx (t3t4)ty ]T TZ
. (6)

The next step is to separate the incoming plane wave of two colliding clusters from K (or H ) partial components:

K(�x, �y, �z) = Kout(�x, �y, �z) + K in(�x, �y, �z), (7)

H (�x, �y, �z) = H out(�x, �y, �z) + H in(�x, �y, �z). (8)

The expansion of the incoming plane wave in tripolar harmonics provides

F in
αK

(x, y, z) = δ3+1κ
(3)
αK

(x, y) · ĵlz (q3z)/q3, (9)

F in
αH

(x, y, z) = δ2+2κ
(22)
αH

(x, y) · ĵlz (q22z)/q22. (10)

Here δ3+1 = 1 and δ2+2 = 0 if one considers the incoming state of one particle projected on the bound cluster of three particles (like
n + 3H). Alternatively, δ3+1 = 0 and δ2+2 = 1 if one considers the incoming state of (2 + 2)-particle clusters (like d + d). The
functions κ (3)

αK
(x, y) and κ (22)

αH
(x, y) represent regularized Faddeev amplitudes of the corresponding bound-state wave functions

containing three- and (2 + 2)-particle clusters, respectively. The terms q2
3 = m

h̄2 (E − ε3) and q2
22 = m

h̄2 (E − ε2 − ε2) are the
momenta of the relative motion of the free clusters. Here we suppose that the system possesses only one three-particle bound
state and only one two-particle bound state where the binding energies equal ε3 and ε2, respectively. By inserting Eq. (7) into
Eq. (1) one may rewrite FY equations in their driven form:

(E − H0 − V12)Kout − V12(P + + P −)[(1 + Q)Kout + H out] = V12(P + + P −)[(1 + Q)H in + QK in],

(E − H0 − V12)H out − V12P̃ [(1 + Q)Kout + H out] = V12P̃ [(1 + Q)K in]. (11)

One may note that the Kout and H out components in the asymptote contain only various combinations of the outgoing waves.
The FY components of both types retain parts of the outgoing wave of the break-up into three and four clusters. In addition, the
components Kout retain an outgoing wave in the (3 + 1)-particle channel, whereas the components H out retain an outgoing wave
in the (2 + 2)-particle channel. In the asymptote, where at least one particle recedes from the others, they take the following
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forms:

Kout(�x, �y, �z) = A31(ẑ)ψ (3)(�x, �y)
exp(iq3z)

|z| + AK
211(ŷ, ẑ)ψ (2)(�x)

exp(iq2X)

|X|5/2
+ AK

1111(x̂, ŷ, ẑ)
exp(iq1R)

|R|4 ,

H out(�x, �y, �z) = A22(ẑ)ψ (22)(�x, �y)
exp(iq3z)

|z| + AH
211(ŷ, ẑ)ψ (2)(�x)

exp(iq2X)

|X|5/2
+ AH

121(x̂, ẑ)ψ (2)(�y)
exp(iq2Y )

|Y |5/2

+AH
1111(x̂, ŷ, ẑ)

exp(iq1R)

|R|4 , (12)

where terms A represent various types of amplitudes of scattering in two, three, and four clusters. Wave functions ψ (3), ψ (22),
and ψ (2) represent various cluster bound states and thus are exponentially bound.

One may introduce the complex-scaling operator (CSO)

Ŝ = eiθr ∂
∂r = e

iθ(x ∂
∂x

+y ∂
∂y

+z ∂
∂z

)
, (13)

where r2 = x2 + y2 + z2, with the complex-scaling angle θ of free choice. The action of the complex-scaling operator on an
outgoing wave gives

Ŝ exp(ikr) = exp(−kr sin θ ) exp(ikr cos θ ). (14)

Therefore, if one acts on Kout (or H out) with the complex-scaling operator and chooses the complex-scaling angle 0 < θ < π/2,
one must get exponentially decreasing functions K̃out ≡ ŜKout and H̃ out ≡ ŜH out. By acting on Eq. (11) with the complex-scaling
operator Ŝ one gets

Ŝ(E − H0 − V12)Ŝ−1K̃out − ŜV12Ŝ
−1(P + + P −)[(1 + Q)K̃out + H̃ out] = ŜV12Ŝ

−1(P + + P −)[(1 + Q)H̃ in + QK̃ in],

Ŝ(E − H0 − V12)Ŝ−1H̃ out − ŜV12Ŝ
−1P̃ [(1 + Q)K̃out + H̃ out] = ŜV12Ŝ

−1P̃ [(1 + Q)K̃ in], (15)

based on the fact that permutation operators, being inde-
pendent of r , commute with the complex-scaling operator.
Since the components K̃out and H̃ out are exponentially bound,
one may use standard bound-state techniques to represent
them and eventually solve Eqs. (11). Nevertheless, in order
to obtain stable numerical results—either using discretiza-
tion techniques on finite grids or square-integrable bases to
represent K̃out (H̃ out) components—one must ensure that the
inhomogeneous term on the right-hand side of Eq. (11) is also
exponentially bound. It is easy to realize that the short-range
potential term nullifies the expression on the right-hand side
everywhere except for x < rV , where rV is the range of
the interaction. Therefore, in order to see the convergence
of the inhomogeneous term one should concentrate on its
behavior in the x 
 (y2 + z2)1/2 region of space. In a similar
manner, as has been demonstrated for a three-body case [6],
convergence of the inhomogeneous term implies some limiting
conditions for the complex-scaling angle to be used. For a
system of four identical particles, these conditions turn out
to be

tan θ <

√
2B3

Ec.m.

, (16)

if the incoming plane wave of 1 + 3 type is considered with a
binding energy of a three-particle cluster equal to B3, and

tan θ <

√
2B2

Ec.m.

, (17)

when the incoming plane wave of 2 + 2 type is considered
with a binding energy of a two-particle cluster equal to B2.

Ec.m. is the scattering energy of two clusters in the center-
of-mass frame. In the last equation one should take a smaller
value of the two-body binding energies if the 2 + 2 incoming
plane wave combines two-body clusters in different energy
states.

Expressions (16) and (17) are compatible with rather large
rotation angle region at low energies. For example, at the
four-particle break-up threshold this limit gives θ < 54.7◦.
The choice of a large angle at low energy is moreover
restricted by the ability to use analytically continued short-
range potentials ŜV12Ŝ

−1, which may become divergent and
strongly oscillating when using large θ values [12,13]. Well
above the four-particle break-up threshold the aforementioned
limit may become important, as demonstrated in [6] for a
three-body case. However, at these higher energies the solution
converges at smaller θ values, since exponents in the outgoing
wave components K̃out and H̃ out decrease faster because the
values of the momenta q increase with energy [see Eqs. (12)
and (14)]. The most complicated regions in which to obtain the
converged solution are situated around the thresholds where
one of the momentum q value is small and thus one of the
outgoing waves is dominated by avery slow exponent.

The scattering amplitudes may be obtained by using
Green’s theorem

A(�k) = m

h̄2 [〈F in(�k)|H0 − E|�(�k)〉
− 〈�(�k)|H0 − E|F in(�k)〉], (18)

where F in(�k) is a part of the wave function describing the
incoming plane wave, whereas �(�k) is the total wave function.
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For the transition amplitudes to (3 + 1)-particle channels,
using Eq. (11) and employing symmetry properties of FY
components, one gets

A31(�k) = m

h̄2

∫∫∫
V

dVxyz{6K†
K (H0 − E)(Kout + K in)

+ 3K†
H (H0 − E)(H out + H in)}, (19)

with KK = 1
2 (P + + P −)Q(1 + P + + P −)K in and KH =

P̃ (1 + P + + P −)K in. The scattering amplitudes are scalars
and do not depend on r; therefore they are not affected by
the complex-scaling operator ŜA(�k) = A(�k). This allows us to

extract the scattering amplitudes utilizing the complex-scaled
wave functions, obtained by solving Eq. (15):

A31(�k) = m

h̄2

∫∫∫
V

˜dVxyz{6K̃†
KŜ(H0 − E)Ŝ−1(K̃out + K̃ in)

+ 3K̃†
H Ŝ(H0 − E)Ŝ−1(H̃ out + H̃ in)}. (20)

In the last equation the terms combining two incoming plane
waves are the slowest to converge. However, since these
terms are easy to calculate without complex scaling they may
also be evaluated by using unscaled expressions, thus finally
giving

A31(�k) = m

h̄2

∫∫∫
V

˜dVxyz{6K̃†
KŜ(H0 − E)Ŝ−1K̃out + 3K̃†

H Ŝ(H0 − E)Ŝ−1H̃ out}

+ m

h̄2

∫∫∫
V

dVxyz{6K†
K (H0 − E)K in + 3K†

H (H0 − E)H in}. (21)

In a similar manner one may derive the transition amplitudes into (2 + 2)-particle channels:

A22(�k) = m

h̄2

∫∫∫
V

˜dVxyz{8H̃†
KŜ(H0 − E)Ŝ−1K̃out + 4H̃†

H Ŝ(H0 − E)Ŝ−1H̃ out}

+ m

h̄2

∫∫∫
V

dVxyz{8H†
K (H0 − E)K in + 4H†

H (H0 − E)H in}, (22)

with HK = HH = 1
2 (P + + P −)(1 + P̃ )H in.

Four- and three-particle break-up amplitudes may equally
be calculated. However, we do not report on them in this paper.

III. RESULTS

To test the applicability of our approach we consider
a system of four identical nucleons with masses h̄2

m
=

41.4711 MeV fm2, where the nucleon-nucleon (NN) inter-
action is described by the spin-dependent S-wave MT I-III
potential, defined as

VS(r) = −AS

exp(−1.55r)

r
+ 1438.72

exp(−3.11r)

r
, (23)

where VS(r) is in MeV and r is in femtometers. The attractive
Yukawa strengths are given by As=0 = −513.968 MeV fm and
As=1 = −626.885 MeV fm for the two-nucleon interaction
in the spin singlet and triplet states, respectively. Coulomb
repulsion between the protons is neglected. Within this model
the nuclear interaction turns out to be isospin independent
and thus nucleonic systems conserve the total isospin (T ). In
addition, due to the S-wave limitation of the model, nucleonic
systems separately conserve the total spin and the orbital
angular momentum. The MT I-III model is fitted to reproduce
the correct binding energies of the deuteron (2H) and the triton
(3H), at −2.230 and −8.535 MeV, respectively. However, the
absence of the Coulomb interaction relocates the 3He ground
state to the same energy as the 3H ground state. Two-cluster
collisions are available in T = 1 and T = 0 channels, which
will be discussed further on.

The calculations are performed by employing the numerical
method described in [6,10,11] and using 50 discretization
points in each direction (x, y, z). The complex-scaling angle is
fixed at θ = 9◦. Vanishing boundary conditions for FY partial
amplitudes were imposed at the borders of the discretized grid,
which was varied from 35 to 50 fm. The results have been tested
to be stable when modifying the scaling angle and the grid
parameters. Basically, the extracted amplitudes turn out to be
accurate to three digits, which guarantees three-digit accuracy
for the extracted phase shifts. Nevertheless, this method is
slightly less accurate for the inelasticity parameter, especially
once its value is very close to 1. Due to the S-wave limitation
of the interaction model, partial amplitudes with lx �= 0 do
not contribute in solving the FY equation (15); however, one
must include these amplitudes in evaluating the integrals of

TABLE I. Neutron-triton scattering phase shifts (in degrees) and
inelasticity parameters. The accuracy for calculated phase shifts is
about 0.1◦ whereas the inelasticity parameter has an accuracy of
around 0.005.

Elab L = 0 L = 1 L = 2

(MeV) S = 0 S = 1 S = 0 S = 1 S = 0 S = 1

14.4 72.7 81.2 40.0 57.4 −3.92 −2.45
0.993 0.988 0.988 1.00 0.999 0.988

18.0 65.5 74.4 38.8 55.4 −3.24 −1.98
0.990 0.984 0.968 0.983 0.995 0.973

22.1 58.4 67.4 37.1 53.0 −2.40 −1.21
0.988 0.983 0.944 0.952 0.988 0.955
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FIG. 2. (Color online) Calculated n-3H elastic differential cross sections for neutrons of laboratory energies of 14.4 MeV (left panel) and
22.1 MeV (right panel) compared with the experimental results of Frenje et al. [14], Debretin et al. [15], and Seagrave et al. [16].

Eqs. (19)–(22) The expansion into tripolar harmonics was
limited by the max(lx, ly, lz) � 3 condition. The results are
converged to four significative digits with respect to the partial
angular momentum basis.

First of all we present the results for the T = 1 case, which
well reflects the reality of the n-3H collisions. The values of
the calculated phase shifts and the inelasticity parameters are
summarized in Table I. The phase shifts are obtained with
very high accuracy, with a variation observed only in the third
digit. The variation of the inelasticity parameter is of the order
0.005, which looks to be a rather accurate result. Nevertheless,
since the values of the inelasticity parameter are very close to
unity such accuracy might be critical in determining the small
value of the total break-up cross section.

In Table II the calculated total elastic cross sections are com-
pared with the experimental values. One may notice a rather
good agreement. These calculations have been performed for
total orbital momentum states L � 3 and seem to be converged
in this respect. In Fig. 2 we present the comparison of the
differential elastic cross sections, calculated for an incident
neutron at laboratory energies of 14.4 MeV (left panel) and
22.1 MeV (right panel), with the experimental values. One may
notice that a rather good agreement is also obtained in this case.
Only at the minimum region, for the 14.4-MeV neutrons, do
the theoretical results underestimate the experimental values.
Nevertheless, the overall agreement remains very good and
is far beyond expectations for such a simplistic interaction
model as MT I-III. This proves that the n-3H cross sections
at higher energy, beyond the resonance region, are rather

TABLE II. Neutron-triton elastic (σe), inelastic (σb), and total
(σt ) scattering cross sections (in units of millibarns) for the selected
neutron laboratory energies (in units of MeV) compared with the
experimental data. Calculations have been limited to the maximal
total orbital angular momentum states L � 3.

Elab MT I-III Experimental

(MeV) σe σb σt σt Ref.

14.4 922 11 933 978 ± 70 [17]
18.0 690 25 715 750 ± 40 [17]
22.1 512 38 550 620 ± 24 [18]

insensitive to the details of the nucleon-nucleon interaction.
As has been shown recently [8] the realistic interaction models
further improve the description of n-3H elastic cross sections,
providing almost perfect agreement with the data also in the
minimum region.

Next we consider the total isospin T = 0 case. This isospin
channel is a very rich one, combining the d + d, n-3H, and
p-3He binary scattering modes in addition to three- and
four-particle break-up ones. Due to the absence of the Coulomb
interaction, the n-3H and p-3He thresholds coincide in our
calculations. The soundness of these calculations is further
shrouded by the fact that we neglect the Coulomb interaction
in the asymptotes of the open channels. Therefore, there is
not much sense in comparing the obtained results compiled in
Table III with the experiment. One may notice (see Table IV)
that our obtained values are also rather different from the
ones calculated for the Jπ = 0+ case by Uzu et al. [3],
who have used the same assumptions as in the present paper
but employed a separable Yamaguchi interaction. The last
fact indicates the strong sensitivity of the T = 0 channel to
the details of the nucleon-nucleon interaction. However, this
sensitivity is not surprising, as the T = 0 channel is strongly
attractive and contains a series of resonances also above the
four-particle break-up threshold. It is also confirmed by rather
large inelastic cross sections (inelasticity parameters).

TABLE III. Nucleon-trinucleon scattering phase shifts (in de-
grees) and inelasticity parameters calculated for center-of-mass
energies of 20.5 and 30 MeV and nucleon laboratory energies of
27.3 and 40 MeV, respectively.

Ec.m. = 20.5 MeV Ec.m. = 30 MeV

δ (deg) η δ (deg) η

L = 0 S = 0 −56.6 0.650 −81.0 0.618
S = 1 68.8 0.947 56.9 0.882

L = 1 S = 0 −85.3 0.945 78.9 0.918
S = 1 64.9 0.886 52.8 0.843

L = 2 S = 0 47.1 0.678 44.7 0.720
S = 1 1.09 0.896 4.49 0.851
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TABLE IV. Nucleon-trinucleon scattering phase shifts (in de-
grees) and inelasticity parameters for the J π = 0+ case and at the
chosen center-of-mass projectile energies (in units of MeV). The
results of this manuscript using the MT I-III interaction are compared
with the ones of Ref. [3], in which the Yamaguchi potential was
employed.

Ec.m. MT I-III (this work) Yamaguchi [3]

δ (deg) η δ (deg) η

7.3 −4.46 0.988 −5.51 0.899
20.5 −56.6 0.650 −61.7 0.746

IV. CONCLUSION

The complex-scaling method has been applied in this
manuscript to study four-nucleon scattering above the three-
and four-particle break-up thresholds. The restrictive condition
has been derived for the complex-scaling angle to be used
in the four-body calculations. When considering scattering at

high energies, according to Eqs. (16) and (17), the scaling
angle must be strongly restricted from above. However, this
limitation should not hamper the method at high energies, since
after the complex scaling the fast vanishing of the outgoing
wave is ensured by the large-wave-number values.

The method turns out to be very reliable and provides a very
accurate description of the scattering phases, with better than
three-digit accuracy. The inelasticity parameters are obtained
with two-digit accuracy. The complex-scaling method might
be used with almost any configuration-space bound-state
technique to solve scattering problems. It is straightforward
to extend this method beyond the four-body case.
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