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A nonlocal energy-dependent two-body quasipotential (E2Q) is defined within the framework of the three-
body Faddeev formalism. The Fourier transform of this E2Q generates an energy-dependent Yukawa-type local
potential. After an appropriate average of the potential with respect to the energy, a variety of local potentials with
different ranges are obtained. These include a Yukawa potential, a Van der Waals potential, and a 1/r2 potential.
An interesting potential appears in the πNN system, which gives rise to the one-pion-exchange NN interaction. It
is also found that the Yukawa potential is automatically accompanied by an additional longer-range interaction.
This potential could give rise to an infinite number of bound states near the threshold above the deuteron bound
state with a more interesting physics than the Efimov effect.
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I. INTRODUCTION

After the three-body Faddeev equations [1] were proposed,
it was pointed out that the exact theory of the scattering of a
particle from a two-component composite target reduces to the
multichannel Lippmann-Schwinger (LS)-type equation [2–5],
also known as the Faddeev-Lovelace equations. However,
such a LS-type equation consists of a nonlocal energy
dependent two-body quasipotential (E2Q) and a two-body
propagator. The E2Q or the nonlocal energy-dependent three-
body potential is characterized by a particle transfer between
a state {(ab)c} with a compound quasiparticle (ab) and the
elementary particle (c), and the other state {(bc)a} or {(ca)b}.

The zero-energy limit of the three-body Faddeev equation
was extensively investigated in combination with the Efimov
effect, which arises with certain two-body interactions [6],
especially when the two-body potential has a large scattering
length. Such a two-body interaction could lead to a plethora
of three-particle bound states emerging one after the other.
Efimov physics has been widely studied theoretically (see,
for example, Refs. [8–13]), while attempts to observe such a
phenomenon in nature have not been fully successful. There
are some reports for experimental evidence for the existence
of Efimov states [7,14–16], and recently, the strength of the
potential was varied artificially, and Kraemer et al. claim
evidence for Efimov quantum states in an ultracold gas of
cesium atoms [7]. However, one may be curious about what
kind of reality exists in this phenomenon? Or, to put it in
another way, what kind of physics could one extract?

In general, there are two types of mechanisms that generate
a three-body binding. One is that the three particles combine
simultaneously with E → −EB ; the other is that two particles
make a pair first [with the binding energy εB(>0)], and
the pair absorbs the other particle next, which means E ≡
Ecm − εB → (−ηB − εB) ≡ −EB . Here, Ecm, E, EB , and ηB

are the three-body center of mass energy, the three-body free
energy, the three-body binding energy, and the separation
energy, respectively.

Therefore, in the former type, if we take E → 0− (i.e.,
E reaches 0 from the negative side of it) with εB = 0, then
Ecm → 0− where the Efimov levels exist. In the latter case,
Ecm → 0−, also occurs when E → −(εB)−. One then wonders

if the latter case creates Efimov-like states as well, although
εB �= 0 or the scattering length is not infinity. Both cases can
be investigated using a specific energy-dependent (E ≡ Ecm)
E2Q [17].

In Sec. II, we present the E2Q and its Fourier transform.
Since the E2Q as a function of the coordinate r is energy-
dependent, we average it with respect to the energy by using a
proper weight function, the so-called Laplace transform. This
is described in Sec. III. As a result, the energy-independent
E2Q becomes a 1/r2-type function for r → ∞, which is
described by a power series in a mass ratio. In Sec. IV,
the lowest order is investigated by solving the Schrödinger
equation to obtain a sequence of binding energies. A root mean
square (rms) sequence is also found. Our theory is applied
to the πNN three-body system in Sec. V, where we predict
that the one-pion-exchange Yukawa potential is automatically
accompanied by an additional longer range interaction. Such
a potential generates a level condensation near zero energy
in which the rms radius becomes very large. Finally, our
discussions are presented in Sec. VI.

II. ENERGY-DEPENDENT TWO-BODY QUASIPOTENTIAL
AND ITS FOURIER TRANSFORM

A. Definition of E2Q

In this paper, we assume, for convenience, that two of the
particles are identical (particles α ≡ β), but the theory could
be easily extended to the three identical particle case.

To start with, we recall the Born term of the AGS equation
[3,4] for three particles a, b, and c (a ≡ b).

Zαn,βm(qα, qβ ; E)

= gαn(pα)G0(qα, qβ ; E)gβm(pβ)δαβ

= gαn(pα)gβm(pβ)δαβ

E − q2
α/2mα − q2

β/2mβ − (qα + qβ)2/2mγ

, (1)

where α, β, and γ are the three-body channels—channel 1,
channel 2, and channel 3—denoted by a1-(b2c3), b2-(c3a1),
and c3-(a1b2), respectively. Equation (1) results from the use of
separable two-body potentials with form factors g1(p1), g2(p2),
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and g3(p3), where p1, p2, and p3 are the two-body relative
momenta; q1, q2, and q3 are the three-body relative momenta
while the subscripts n and m correspond to physical states for
the corresponding channel and m1, m2, and m3 are the particle
masses. The Zαn,βm(qα, qβ ; E) is a function in the energy-
momentum (E; qα, qβ, qγ ) plane [in short, (E; qα) plane],
while δαβ ≡ 1 − δαβ . It should be noted that Eq. (1) is valid
for the positive three-body free energy, E > 0, the integral
variable range being 0 � q ′′

α < ∞, in the (E; q ′′
α) plane and

corresponds to the two-body subenergy region of −∞ < z′′
α �

E for the on-shell condition of E = q ′′2
α /2μα + z′′

α with the
reduced mass: μα = mα(mβ + mγ )/(mα + mβ + mγ ). One
could say that the variation of q ′′

α covers the intermediate
energy spectrum in the region of the two-body subsystem
−∞ < z′′

α � E. However, for the negative energy E � 0, the
variation 0 � q ′′

α < ∞ covers the region −∞ < z′′
α � −|E|

only while the two-body bound states in −|E| < z′′
α � 0 are

not covered in Eq. (1). On the other hand, in the energy-
momentum plane between a particle and a pair (Ecm, q ′′)
with Ecm = E + εB , the two-body subsystem could gain more
energy −|E| < z′′

α � −|E| + εB than −∞ < z′′
α � −|E| for

the variation 0 � q ′′ < ∞ in the intermediate region where
the energy breaks the pair virtually and ignites a particle
transfer in the E2Q model. This fact reminds us that the energy
region −|E| < z′′

α � −|E| + εB should be compensated in
Eq. (1) to satisfy the completeness of the intermediate
state.

In order to satisfy the above requirement, we introduce
the E2Q by using a new energy-momentum plane (Ecm; q) ≡
(Ecm; q, q′). The new plane is defined analogously to (E; qα)
plane, i.e.,

E → E ≡ Ecm = E + εB ;

qα → −q, qβ → q′,
qγ = −qα − qβ → q − q′ (2)

pα = qβ + mβ

mβ + mγ

qα → q′ − q/	β = p

pβ = −qα − mα

mγ + mα

qβ → q − q′/	α = p′,

with 	α = (1 + mγ /mα) = 1 + 
α, and 	β = (1 + mγ /

mβ) = 1 + 
β . Here, q − q′ = qγ is the momentum transfer
of the virtual particle with mass mγ in E2Q, where the
three-body center-of-mass system is taken as qα + qβ + qγ =
−q + q′ + (q − q′) = 0.

Therefore, by using the new energy-momentum variables of
Eq. (2), the E2Q could be formulated for the Feynman diagram
(Fig. 1), which denotes the time-delayed virtual three particles
lines. For the E2Q Zαn,βm, we now have

Zαn,βm(−q, q′; E)

= gαn(p)gβm(p′)δαβ

E + εB − q2/2mα − q ′2/2mβ − (q − q′)2/2mγ

= −2gαn(p)mγ gβm(p′)δαβ

−2mγ (E + εB) + 	αq2 + 	βq ′2 − 2qq′ , (3)

FIG. 1. The E2Q of one particle transfer Feynman diagram for an
example of nonrelativistic πNN system. Solid lines denote nucleons,
and the dashed line is the pion.

with qq′ = qq ′x. We may write Eq. (3) in a compact form as

Zαn,βm(−q, q′; E) = C
γ

αn,βm(q, q′)

2qq ′(χ ′ − x)
, (4)

where the form factor function Cc
a,b is given by

C
γ

αn,βm(q, q′) ≡ −2gαn(p)mγ gβm(p′)δαβ, (5)

and the energy-momentum term χ ′ by

χ ′ = −2mγ (E + εB) + 	αq2 + 	βq ′2

2qq ′ . (6)

Although, the E2Q is defined for E < 0, it coincides with the
AGS Born for εB = 0. Therefore, the singularity at E → 0−
with εB = 0, could cause the Efimov effect. It is also noted
that the E2Q has a singularity at E = (E + εB) → 0−, or E →
−(εB)− �= 0, which corresponds to the case of finite scattering
length “a” in the Efimov’s (1/a − E) diagram [6].

B. Fourier Transform

Let us assume, without loss of generality, that mγ < mα =
mβ . Then, we have


α = 
β ≡ 
 < 1

	α = 	β ≡ 	, (7)

and 	α = 	β = 	 ≡ 1 + 
. Therefore, Eq. (6) becomes

χ ′ = −2mγ (E + εB)/	 + q2 + q ′2

2qq ′ 	

= σ 2 + q2 + q ′2

2qq ′ 	 ≡ χ	 (8)

= χ + 
χ, (9)

with

χ ≡ σ 2 + q2 + q ′2

2qq ′ . (10)

Following the idea mentioned in the last paragraph of the
previous subsection, we would like to investigate the case
E = E + εB → 0− [i.e., E reaches 0 from the negative side,
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or E → −(εB)−], then we have for E � −εB ,

σ 2 ≡ −2mγ (E + εB)

	
� 0. (11)

The assumption εB = 0 leads (see our discussion bellow) to the
Efimov effect. In contrast, the case εB �= 0 leads, as we shall
see, to other interesting physical properties for the system.

In Eq. (4), the term (χ ′ − x)−1 is given by

1

χ ′ − x
= 1

(χ ′ − χ ) + (χ − x)

= 2qq ′


[σ 2 + q2 + q ′2] + [σ 2 + (q − q′)2]
. (12)

Here, by using well-known momentum transfer q′ − q = 2K,
and the momentum sum q′ + q = Q, Eq. (12) is rewritten as,

1

χ ′ − x
= 2qq ′


(σ 2 + 2K2 + Q2/2) + (σ 2 + 4K2)

= 2qq ′

(σ 2 + 4K2)(1 + 
H )

= 1

(χ − x)(1 + 
H )
, (13)

with

H ≡ σ 2 + 2K2 + Q2/2

σ 2 + 4K2
= 1

2

[
1 + σ 2 + Q2

σ 2 + 4K2

]
. (14)

If we assume Q = 0, then H becomes,

H = 1

2

[
1 + σ 2

σ 2 + 4K2

]
. (15)

Therefore, 1/(1 + 
H ) can be expanded with respect to 
H ,
and then we obtain Zαn,βm(−q, q′; E) is given by

Zαn,βm(−q, q′; E)

= C
γ

αn,βm(q, q′)

σ 2 + 4K2

∞∑
j=0

(−


2

)j[
1 + σ 2

σ 2 + 4K2

]j

. (16)

Since the form factor function C
γ

αn,βm(q, q′) is a monotonic
function with respect to the variable K in small σ value, then
we can take C

γ

αn,βm(q, q′) as a constant Cαn,βm. Therefore, by
using Eq. (A3) in the Appendix, we obtain for Eq. (16)

Zαn,βm(−q, q′; E)

= Cαn,βm

σ 2 + 4K2

∞∑
k=0

⎡
⎣ ∞∑

j=0

j+kCk

(−


2

)j+k

⎤
⎦[

σ 2

σ 2 + 4K2

]k

= Cαn,βm

σ 2 + 4K2

∞∑
k=0

⎡
⎣ ∞∑

j=0

j+kCkz
j+k

⎤
⎦ yk, (17)

with

z = −
/2 (18)

and

y = σ 2

σ 2 + 4K2
. (19)

By using the “binomial formula” Eq. (A5) and Eq. (18) we
obtain

∞∑
j=0

j+kCkz
j+k = zk

(1 − z)k+1
= 2(−
)k

(2 + 
)k+1
. (20)

Therefore, Eq. (17) becomes

Zαn,βm(−q, q′; E)

= 2Cαn,βm

(2 + 
)(σ 2 + 4K2)

∞∑
k=0

( −


2 + 


)k(
σ 2

σ 2 + 4K2

)k

. (21)

The Fourier transform of the above result in Eq. (21) is given
by

F{Zαn,βm(−q, q′; E)}
= 〈xα|Zαn,βm(qα, qβ ; E)|xβ〉

= 2Cαn,βm

2 + 


∞∑
k=0

( −


2 + 


)k ∫ ∫
dqα

(2π )3

dqβ

(2π )3

× σ 2k

(σ 2 + 4K2)k+1
eiqαxα e−iqβ xβ

= 2Cαn,βm

2 + 


∞∑
k=0

( −


2 + 


)k ∫ ∫
dK

(2π )3

dQ
(2π )3

× σ 2k

(σ 2 + 4K2)k+1
e−iQRe−iKr, (22)

where we adopted some well-known coordinate relations and
the set Eqs. (2),

2K ≡ qα + qβ = q′ − q, (23)

Q = q′ + q, (24)

q′ = Q
2

+ K = qβ, (25)

q = Q
2

− K = −qα (26)

q2 + q ′2 =
(

Q
2

− K
)2

+
(

Q
2

+ K
)2

= 2

(
K2 + Q2

4

)
(27)

qαxα − qβxβ = −qxα − q′xβ

= −
(

Q
2

− K
)

xα −
(

Q
2

+ K
)

xβ

= −Q
(

xα + xβ

2

)
− K(xβ − xα)

= −QR − Kr, (28)
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with

R ≡ xβ + xα

2
, (29)

r ≡ xβ − xα, (30)

R being the center-of-mass coordinate with the corresponding
momentum Q, and r is the relative coordinate with the
corresponding momentum K. In terms of the new coordinates,
the Jacobian is unity, i.e.,

dqαdqβ = ∂(qα, qβ )

∂(K, Q)
dKdQ = dKdQ. (31)

Therefore, the Fourier transform with respect to Q of Eq. (22)
is as follows,

F{Zαn,βm(−q, q′; E)} = 2Cαn,βm

2 + 


∞∑
k=0

( −


2 + 


)k

δ(R)

×
∫

dK
(2π )3

σ 2k

(σ 2 + 4K2)k+1
e−iKr,

(32)

with the center of mass (CM) δ-function factor,

δ(R) =
∫

e−iQR dQ
(2π )3

. (33)

Therefore, the integral part of the Eq. (32) is

J (σ ; k) =
∫

e−iKr

(σ 2 + 4K2)k+1

dK
(2π )3

= 1

2π2r

∫ ∞

0

sin Kr

(σ 2 + 4K2)k+1
KdK (34)

= 1

2π2r

(−1)k

k!

∂k

∂(σ 2)k

(
π

8
e−σr/2

)
. (35)

Therefore, the Fourier transform of Eq. (3) is given [omitting
the CM δ-function factor δ(R) in Eq. (32)] by

F{Zαn,βm(−q, q′; E)}

= 2Cαn,βm

2 + 


∞∑
k=0

(−1)k
(




2 + 


)k

σ 2k

× 1

2π2r

(−1)k

k!

∂k

∂(σ 2)k

(
π

8
e−rσ/2

)

= Cαn,βm

8π (2 + 
)

∞∑
k=0

(



2 + 


)k
σ 2k

k!

∂k

∂(σ 2)k

(
e−rσ/2

r

)

= Cαn,βm

8π (2 + 
)
U (
, σ ; r), (36)

where

U (
, σ ; r) =
∞∑

k=0

(



2 + 


)k
σ 2k

k!

∂k

∂(σ 2)k

(
e−rσ/2

r

)
≡

∞∑
k=0

U (k)(
, σ ; r) =
{

1

r
e−rσ/2 +

(



2 + 


)
σ 2

1!

(−1

4σ

)
e−rσ/2

+
(




2 + 


)2
σ 4

2!

(
(−1)2(rσ/2 + 1)

(2σ )3

)
e−rσ/2 +

(



2 + 


)3
σ 6

3!

(
(−1)3(σ 2r2/2 + 3rσ + 6)

(2σ )5

)
e−rσ/2 + · · ·

}

=
{

1

r
e−rσ/2 +

(



2 + 


)
σ

1!

(−1)

4
e−rσ/2 +

(



2 + 


)2
σ

2!

(
(−1)2(rσ/2 + 1)

23

)
e−rσ/2

+
(




2 + 


)3
σ

3!

(
(−1)3(σ 2r2/2 + 3rσ + 6)

25

)
e−rσ/2 + · · ·

}
. (37)

This means that the first term is an energy-dependent Yukawa-
type potential and the higher terms are proportional to an
exponential function with respect to r and σ (with σ 2 =
−2mγ (E + εB)/	). It should be mentioned that in the zero-
energy limit, with which we are concerned, it becomes a
Coulomb like potential.

III. AN ENERGY AVERAGE BY A LAPLACE TRANSFORM
OF THE E2Q

It is perhaps difficult to understand that a Coulomb-type
potential can be generated in the three-hadron system, be-
cause historically the three-hadron Faddeev calculations didn’t
reveale such a feature. The origin of this curious phenomenon
is caused by the energy dependence of the particle transfer
interaction in the E2Q for Ecm → 0, or the AGS’s Born term
and the kernel in the Faddeev formalism for E → 0 with
εB → 0.

An energy-independent potential is difficult to obtain from a
three-body formalism. We propose here to take the “statistical
average” by using the probability density function with respect
to the possible energy range, which also represents effects of
the structure or the form factors of the composite particles,

Pσ = σ 2γ+1e−aσ
/ ∫ ∞

0
σ 2γ+1e−aσ dσ ≡ σ 2γ+1e−aσ

ρ
, (38)

with

ρ =
∫ ∞

0
σ 2γ+1e−aσ dσ = �(2γ + 2)

a2γ+2
, (39)

where the weight function (or the probability density function)
σ 2γ+1 is adopted, and e−aσ is the damping factor when
σ = √−2mγ (E + εB)/	 or the three-body energy |E| in-
creases. The weight function stems from the dispersion theory;
however, its description is beyond the scope of this paper and
details concerning this function will be presented elsewhere.
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Using the probability density function, the expectation
value of the energy-dependent potential becomes energy
independent. This is the Laplace transform or the Euler integral
of the second kind in the first term of Eq. (37). Therefore, by
using Eqs. (38) and (39), the first order potential with k = 0
in (37) is

L{U (0)(
, σ ; r)} = 1

ρ

∫ ∞

0
σ 2γ+1e−aσ e−σr/2

r
dσ

= a2γ+2

r(r/2 + a)2γ+2
, (40)

where, if one takes γ = 3/2 in Eq. (40), we obtain a Van
der Waals-type potential, which for r 	 a is of the London-
type similar to the potential between two atoms, and of the
Yukawa-type for a 	 r ,

L{U (0)(
, σ ; r)} = a5

r(r/2 + a)5
= a5

0

r(r + a0)5

≈

⎧⎪⎨
⎪⎩

a5
0

r6
for r 	 a,

e−5r/a0

r
for a 	 r,

(41)

with 2a = a0, and also the Casimir-type for γ = 2, with r 	
a, and the Yukawa-type for a 	 r ,

L{U (0)(
, σ ; r)} = a6

r(r/2 + a)6
= a6

0

r(r + a0)6

≈

⎧⎪⎨
⎪⎩

a6
0

r7
for r 	 a,

e−6r/a0

r
for a 	 r.

(42)

Such a short-range Yukawa-type potential comes from a
particle transfer in the three particle system, although the
residual terms of Eq. (37) contribute to the shorter range.

If and only if the weight function is replaced by

σ 2γ+1e−aσ → δ(σ − 2μ0) (43)

with the meson range 1/μ0, then the potential is a Yukawa
potential [18,19],

L{U (0)(
, σ ; r)} = 1

ρ

∫ ∞

0
δ(σ − 2μ0)

e−σr/2

r
dσ

= e−μ0r

r
, (44)

since in this case

ρ =
∫ ∞

0
δ(σ − 2μ0)dσ = 1. (45)

However, the condition Eq. (43) seems to be arbitrary in this
case.

In Eq. (16), if the form factor Cc
a,b, which is defined in

Eq. (5) is energy independent and monotonic for very small
momentum transfer K ≈ 0, the weight function σ 2γ+1 could
be a constant, which means γ = −1/2 in Eq. (40).

In such a case, the energy- or σ -independent E2Q of
Eq. (36) is given, using the coupling constant Cαn,βm/[8π (2 +


)] for the three-body center of mass system by

Vαn,βm(
; r) ≡ LF{Zαn,βm(−q, q′; E)}
= Cαn,βm

8π (2 + 
)
L{U (
, σ ; r)} (46)

= Cαn,βm

8π (2 + 
)

1

ρ

∫ ∞

0
U (
, σ ; r)e−aσ dσ (47)

= Cαn,βm

8π (2 + 
)

{
a0

r(r + a0)

+ (−1)

1!22

(



2 + 


)
2a0

(r + a0)2

+ (−1)2

2!23

(



2 + 


)2[ 2a0

(r + a0)2
+ 22ra0

(r + a0)3

]

+ (−1)3

3!25

(



2 + 


)3[ 6 · 2a0

(r + a0)2
+ 6 · 22ra0

(r + a0)3

+ 3 · 23r2a0

(r + a0)4

]
+ · · ·

}
. (48)

This potential goes to 1/r2 limit for r → ∞, while for r < a0

it reaches the Yukawa-type potential plus an exponential one.
The latter case is not quantitatively correct for the very low
energy case; however, it is correct for the long range case, i.e.,

lim
r→∞ Vαn,βm(
; r)

= Cαn,βm

8π (2 + 
)

{
1 − 1

2

(



2 + 


)

+ 3

8

(



2 + 


)2

− 5

16

(



2 + 


)3

+ · · ·
}

a0

r2

= Cαn,βm

8π (2 + 
)

Sa0

r2
≡ V0a0

r2
, (49)

where the constant S depends on the masses of the three
particles. For the three identical particles case with 
 =
mγ /mα = 1 then S = 0.8634. For the NNπ -system where

 = mγ /mα = Mπ/MN = 0.14703, we obtain S = 0.96741.
This means that the first-order potential approximation in
Eq. (49) is 86.34% correct for the three equal mass case, while
for the NNπ system in one pion transfer is 96.74% correct.

IV. PROPERTIES OF THE 1/R2 POTENTIAL

Adopting the elastic channel in the corresponding state, we
can reduce Eq. (48) with a simple coupling constant V0 ≡
Cαn,βm/[8π (2 + 
)] and by omitting for simplicity channel
notations,

V (
; r) ≡ LF{Zαn,βm(−q, q′; E)}
≈ LF{Z(−q, q′; E)}

= V0L{U (
, σ ; r)} ≡
∞∑

k=0

V (k)(
; r). (50)

In order to make our discussion clearer, let us consider as an
example the nonrelativistic πNN-system at very low energy. In
such a case the heavy particle transfer channels can be omitted
because the kinematic coupling coefficients become smaller
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than the elastic one. Then, we obtain the first-term potential
of Eq. (37) or the Yukawa-type of Eqs. (40), (48), and (50) by
using 2a = a0:

V (0)(
; r) = V0a

r(r/2 + a)
= V0a0

r(r + a0)
. (51)

Therefore, the behavior of this potential is given for small r ,
or for r � a0, as

V (0)(
; r) = V0a0

ra0(1 + r/a0)
≈ V0

e−r/a0

r
. (52)

This potential suggests an important meson exchange potential
in which case the range is a0 or the meson mass m = μ0 ≈
1/a0 for the Yukawa potential.

For large r , or r 	 a0, one has

V (0)(
; r) = V0a0

r2(1 + a0/r)
≈ V0a0

r2
. (53)

The latter potential with a0 � r shows a long-range form with
r−2 in this simple approximation. It should be noted that the
reliability of the first-order approximation could be estimated
in terms of the 
/(2 + 
) value in Eq. (49).

The Schrödinger equation for the potential of Eq. (51) is

− h̄2

2m

d2

dr2
ψl(r) +

[
V0a0

r(r + a0)
+ h̄2

2m

l(l + 1)

r2

]
×ψl(r) = Eψl(r), (54)

where m is the reduced mass between a pair and the rest
particle, or m = MN/2 in the (πN)N-system. E ≡ E + εB is
the three-body energy, which is composed of the three-body
free energy and a pair-binding energy or resonant energy. If
a resonant pair is given by a pair interaction with a very
large scattering length, then the system satisfies the Efimov
condition. However, Eq. (54) is also correct for a bound pair
with the binding energy εB(�0) plus a particle such as N-(πN)
and n-d systems, etc., by E = E + εB . Therefore, being free
from the restriction on two-body interactions for appearance
of the Efimov states, our approach spreads over a more wide
field than the one of Efimov and generates three-body bound
states E = −En one after the other.

In order to look at the long-range behavior, we can reduce
the equation to [

d2

dr2
− κ2 − λ

r2

]
χl(r) = 0 (55)

or to the Bessel’s function differential equation[
d2

dr2
+

(
β2 − ν2 − 1/4

r2

)]
χl(r) = 0, (56)

where κ2 = −β2 = −2mE/h̄2 > 0 for negative energies,
which are verified by the effective potential factor: λ = ν2 −
1/4 = l(l + 1) − 2m|V0|a0/h̄

2 < 0 with V0 < 0 and a0 > 0.
Let us define ν2, which must be negative to have the binding
energies, by

ν2 = 1
4 + λ = 1

4 + l(l + 1) − 2m|V0|a0/h̄
2

= (
l + 1

2

)2 − 2m|V0|a0/h̄
2. (57)

For the case λ < −1/4, or (l + 1
2 )2 < 2m|V0|a0/h̄

2,

ν = i
√

|λ + 1/4|

= i

√
2m|V0|a0/h̄

2 −
(

l + 1

2

)2

≡ iμ, (58)

where

μ2 = 2m

h̄2 |V0|a0 −
(

l + 1

2

)2

. (59)

In this case we have the solution for the modified Bessel
function [20],

χ (r) = √
κrZν(iκr) ≡ √

κrKiμ(κr). (60)

Because of the pure imaginary index ν = iμ, the modified
Bessel function is

Kiμ(κr) = π

2 sin iμπ
{I−iμ(κr) − Iiμ(κr)}. (61)

For small κr , it becomes

Iiμ(κr) = (κr/2)iμ

�(1 + iμ)
+ . . .

= (κr/2)iμ

|�(1 + iμ)|ei arg �(1+iμ)
+ . . .

= ei{μ log(κr/2)−arg �(1+iμ)}

|�(1 + iμ)| {1 + o(κr)}. (62)

Therefore, we have

Kiμ(κr) = π

2 sin iμπ

1

|�(1 + iμ)|
× [e−i{μ log(κr/2)−arg �(1+iμ)}

− ei{μ log(κr/2)−arg �(1+iμ)}]{1 + o(κr)}
= π

sinh πμ

1

|�(1 + iμ)|
× sin

(
μ log

κr

2
− arg �(1 + iμ)

)
{1 + o(κr)}.

(63)

In order to smoothly connect Kiμ(κr) with the full-wave
function ψl(κr) and the potential V (r) = V0a0/[r(r + a0)],
the logarithmic derivative should be employed at sufficiently
large r = a. For the modified Bessel function, it reduces for
small κr to

κr
d{√κrKiμ(κr)}/d(κr)√

κrKiμ(κr)

= 1

2
+ μ cot

[
μ log

κr

2
− arg �(1 + iμ)

]
. (64)

The periodicity of “ cot′′ leads to the relationship

μ log
κa

2
= C − nπ {n = 1, 2, . . . } . (65)

Therefore,

κ = 2

a
e(C−nπ)/μ ≡ κn. (66)
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Therefore, the binding energy −En (for n = 1, 2, . . . ) is

−En = κ2
n

2m
=

(
2

ma2
e2C/μ

)
e−2πn/μ. (67)

This means that one needs n different boundary conditions
to fit the full-wave function smoothly, corresponding to the
different energies En.

From this relationship the energy ratio has a typical
structure for En and Eq. (56),

En

En+1
= e2π/μ, (68)

or

En+1 = Ene
−2π/μ. (69)

In order to fix the parameter μ, for example, we will consider
the NNπ three-body system, where the NN bound state is given
by the π exchange potential. Let us take E0 = −2.2246 MeV
for the deuteron binding energy. It should be stressed here
that the deuteron bound state and other two-body properties
are generated by the short-range potential. Therefore, the ad-
ditional long-range potential V0a0/r(r + a0) − V0e

−r/a0/r ≈
V0a0/r2 should not change these characteristics. One can
smoothly connect the additional potential to the traditional
core potential at a sufficiently long range.

For clarity, we adopt the parameters V0 and a0 to fit the
deuteron binding energy, although one knows that the 3S1-3D1

coupling, with the potential elements Vll′ = V00, V02, V20,
V22, is important to reproduce the deuteron binding energy
(these issues, however, belong to the traditional short-range
potentials). The additional potential mainly contributes to
the diagonal part, but the repulsive centrifugal potential
in the element V22 will be weakened by our additional
attractive V2a2/r2 potential (with D-wave parameters V2, a2).
As a result, the leading term of the long-range potential
should be V00. In this context, we can choose the central
potential: V0 = −50.577 MeV·fm, and a0 = 1.4295 fm, then
we obtain V0a0 = −72.3 MeV·fm2= −0.36641 fm, and 2m =
MN = 938.90 MeV = 4.7583 fm−1 for h̄ = c = 1. Therefore,
Eq. (59) becomes

μ2 = 4.7583 × 0.36641 − (
l + 1

2

)2

= 1.7435 − (
l + 1

2

)2 � 0. (70)

This suggests that only l = 0 supports a bound state, and we
find μ = 1.2221 > 0. However, it is obvious that the bound
state is not an Efimov state because the present example does
not require an infinite value of the scattering length. From the
value μ = 1.2221, the factors e2π/μ and eπ/μ are obtained:

e2π/μ = 170.98 (71)

eπ/μ = 13.076. (72)

The rms radius is calculated by using the wave function of
Eq. (60). Let us define

ξ [c] ≡
∫ ∞

0
dxxcKa(x)2

=
√

π�([1 + c]/2)�([1 − 2a + c]/2)�([1 + 2a + c]/2)

4�(1 + c/2)
.

(73)

In order to obtain the rms radius, we adopt

ξ [3] = 1

κ3

∫ ∞

0
d(κr)(κr)3[Kiμ(κr)]2, (74)

ξ [1] = 1

κ

∫ ∞

0
d(κr)(κr)[Kiμ(κr)]2. (75)

Therefore, the rms radius is given for the modified Bessel wave
function:

〈r2〉n =
∫ ∞

0 drχ∗
l (r)r2χl(r)∫ ∞

0 drχ∗
l (r)χl(r)

= ξ [3]

ξ [1]

= 2

3κ2
(1 + μ2) = (1 + μ2)

−3mEn

, (76)

〈r〉n ≡
√

〈r2〉n =
√

(1 + μ2)

3m|En| =
√

2(1 + μ2)

3MN |En| ≡ rn. (77)

Therefore, we obtain the ratio relation between the rms radius-
ratio and the energy-ratio by using Eq. (76),

En

En+1
=

(
rn+1

rn

)2

= e2π/μ . (78)

Thus,

rn+1 = rne
π/μ. (79)

From this formula, we find that the rms radius becomes larger,
corresponding to the shallower binding energies in the case
eπ/μ = 13.076 � 1.

These formulas for the binding energy and rms radius were
discussed by Sawada for the nucleon-monopole system with
the 1/r2 potential in 1993 [21]. If the condition e2π/μ � 1 is
satisfied, then the series of binding energies for the bound states
will be smaller and smaller, while the rms radius becomes
larger and larger. However, our original potential Eq. (51)
doesn’t satisfy Eq. (76) for small quantum numbers n, because
the modified Bessel function leads to r0 = 5.56619 fm. This
value is much larger than r0 = 2.5155 fm, which is obtained
using our potential with Eq. (51).

Since the above discussions are general, one may apply the
formalism to various systems, such as the 3α cluster model
for the 12C nucleus, the 3N systems for 3H and 3He nuclei,
etc. [22,23].

V. AN APPLICATION FOR THE πNN
THREE-BODY SYSTEM

The Faddeev-Lovelace equation has the form of the many-
channel two-particle Lippmann-Schwinger equation, if one
identifies the Born term Zαn,βm with the potential and τγ s
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with the propagator [3]. The equation was applied to the
3N and Nππ systems. Later on, it was generalized for the
relativistic case [24,25]. Thomas calculated π -d scattering
using the Faddeev-Lovelace equation for the three-body πNN
system and obtained a good fit with the experimental data [26].
Although the major objection to this work was that it did not
provide a covariant theory, Thomas claimed the issue should
not be very important below 100 MeV for the πNN system.

In this section, we would like to evaluate the binding energy
of the πNN three-body system, especially the shallow binding
energy where the root mean square radius is rather large. This
means that the higher momentum components are small, so
that relativistic effects could be smaller than in the triton case.

Assuming that the nucleon is a composite particle (πN),
then the two-nucleon bound state could be investigated by
the three-body rearrangement scattering amplitude, N1 +
(N2π ) → N2 + (πN1). This process could construct “the
meson exchange potential,” where the meson transfer could
be written by the momentum transfer between two nucleons
under the three-body threshold.

Following the Thomas formalism, the Born term is given,
using the pion energy ωπ and mass mπ , and for 0 < E, by

ZNπ,Nπ (qα, qβ ; E)

= gNπ (pα)G0(qα, qβ ; E)gNπ (pβ)δαβ

= gNπ (pα)gNπ (pβ)δαβ

E − q2
α/2mα − q2

β/2mβ − (ωπ − mπ )
, (80)

with

ωπ =
√

q2
γ + m2

π =
√

(qα + qβ)2 + m2
π (81)

≈ mπ + (qα + qβ)2

2mπ

for qγ � mπ. (82)

Therefore, at the very low energy limit, Eq. (80) is essentially
equivalent with Eq. (1), and, moreover, it gives Eq. (3)
for the (Nπ )-bound N-(Nπ )-interaction or nucleon-nucleon
interaction for the case E � −εNπ or E � 0, i.e.,

ZNπ,Nπ (−q, q′; E) = Cπ
Nπ,Nπ (q, q′)

2qq ′(χ ′ − x)
, (83)

with

Cπ
Nπ,Nπ (q, q′) ≡ −2gNπ (p)mπgNπ (p′), (84)

and

χ ′ = −2mπ (E + εNπ )/	 + q2 + q ′2

2qq ′ 	 (85)

= σ 2 + q2 + q ′2

2qq ′ 	 ≡ χ	 = χ + 
χ (86)

σ 2 ≡ −2mπ (E + εNπ )

	
= −2mπE

	
� 0. (87)

	 = (1 + mπ/MN ) = 1 + 
 = 1 + 0.147, (88)

where −εNπ = −mπ is the πN binding energy.
In the framework of the above discussion, the πNN three-

body system reveals a characteristic long range property of the

nucleon-nucleon (or three-body NN) interaction, which should
be discriminated from the two-body NN subsystem (not treated
in this paper). In addition, this 1/r2 potential could have an
infinite number of energy levels at E � 0, which belongs to the
S-wave three-body NN bound states. These bound states are
not equivalent to the Efimov states because any two-body sub-
systems in πNN system do not have infinite scattering length.

It is known that the most important state in the NN system
is the triplet state and that the deuteron bound state mainly
depends on the D state. However, from the discussion under
Eq. (69), if and only if we fit the S wave parameters V0 and a0

to the deuteron binding energy, the first excited state (n = 1)
of the deuteron could be

E1 ≈ E0/e
2π/μ = −2.2246/170.98 ≈ −13 keV, (89)

r1 ≈ r0 × eπ/μ = 1.97 × 13.076 ≈ 26 fm. (90)

Here, for the lower quantum number states (or n = 1, 2, 3)
we may have slight inaccuracies, because one needs the full
wave function to fit the deuteron binding energy. Nevertheless,
it should be pointed out that such an energy region (|E| �
50 keV) for the bound states and the phase shift below the
energy 100 keV have not been measured yet [27].

VI. SUMMARY AND DISCUSSION

We introduced the E2Q in the negative three-body free
energy, where the virtual particle transfer between pairs exists.
After the Fourier transform of this E2Q, an energy average
with respect to the probability density function Pσ leads to
a 1/r2-type potential for a0 � r and γ = −1/2, where the
form factor is monotonic for our reference energy-momentum
region, while for γ = 3/2 we obtain the Van der Waals-type
potential. For this reason, one could say that the distribution
function contains the characteristics of the two-body form
factors. There is a possibility that the Yukawa potential
is accompanied by long-range potentials, which are of the
1/r2 type or of the Van der Waals type, depending on the
energy-dependent particle transfer interaction.

We applied our prediction to the three-body NNπ system,
where N1 + (N2π ) → N2 + (πN1) channel generates the
1/r2 potential at the longer range, which is more important
than the heavy particle transfer, N1 + (N2π ) → π + (N1N2),
because the latter channel rather contributes to the shorter
range potential, and therefore is neglected in this paper.

The deuteron binding energy is used for the energy
scaling and estimating the series of the higher states, En+1 =
e−2π/μEn, and also the rms radius, rn+1 = eπ/μrn. If these
shallow binding energies and large rms radii exist, the reaction
energy could be within the keV region or the chemical reaction
energies, and the size of the compound nucleus could be
enlarged from the picometer to the atomic radius.

One may feel uncomfortable with such a classical meson
theoretical treatment that ignores the quark degrees of freedom
in the modern QCD theory. However, the effects of the
constituent quarks could be realized mainly in the repulsive
hard or soft core of the very short-range NN interaction.
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Besides, our discussion in this paper concerns the longer range
region where one (or more) pion exchange occurs.

Even if the 1/r2 potential does not support bound states
when the condition μ2 � 0 in Eq. (59) is not fulfilled, this
potential could interfere with the centrifugal and the Coulomb
potentials.

The three-body force at very low energy could originate
from this long-range potential, because the explanation in
terms of the 
-isobar-origin of the Fujita-Miyazawa three-
body force is hard to be justified in the very low energy
region. In addition, the 1/r2 potential could affect not only the
final-state interaction in the break-up experiments with respect
to nn, pp, and np, but also a very wide field of other nuclei,
such as the neutron- or proton-rich nuclei [28], unknown
nuclear materials (not nuclear matter) in the universe, and,
moreover, the atomic- and molecular physics.

Finally, by means of the particle transfer type potentials, the
1/r2-type potential structure could universally occur, not only
in three-body systems but also in many-body systems [29–31].
1/r2 is a long-range potential next to the Coulomb; however,
it belongs to the strong interaction, and thus it could pave the
way to a pico-size science together with the deep (short-range)
Coulomb potential.
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APPENDIX: BINOMIAL SERIES

In order to prove Eq. (20), let us consider some relations
for the case |x| < 1:

∞∑
k=0

xk(1 + y)k = 1 + x(1 + y) + x2(1 + y)2

+ x3(1 + y)3 + · · · + xn(1 + y)n + · · ·
= 1 + x + xy + x2[2C0y

0 + 2C1y
1 + 2C2y

2]

+ x3[3C0y
0 + 3C1y

1 + 3C2y
2 + 3C3y

3]

+ · · · + xn

n∑
l=0

nCly
l + · · · (A1)

= y0{1 + x + x2 + x3 + · · · }
+ y{1C1x + 2C1x

2 + 3C1x
3 + · · · }

+ y2{2C2x
2 + 3C2x

3 + 4C2x
4 · · · }

+ y3{3C3x
3 + 4C3x

4 + 5C3x
5 · · · }

+ y4{4C4x
4 + 5C4x

5 + 6C4x
6 + · · · }

+ · · · + yl

∞∑
k=0

k+lClx
k+l + · · · . (A2)

Therefore, we have
∞∑

k=0

xk(1 + y)k =
∞∑
l=0

[ ∞∑
k=0

k+lClx
k+l

]
yl (A3)

=
∞∑
l=0

xl

(1 − x)l+1
yl, (A4)

where we used the formula
∞∑

k=0

k+lClx
k+l = xl

(1 − x)l+1
, (A5)

which is obtained by the formula of the “negative binomial
series” with s − 1 = n,

1

(1 − x)s
=

∞∑
k=0

k+s−1Ckx
k ≡

∞∑
k=0

k+s−1Cs−1x
k

= 1

xn

∞∑
k=0

k+nCnx
k+n ≡ 1

(1 − x)n+1
. (A6)

Using the above relations, we obtain Eq. (A5). Letting x =
−
/2 in Eq. (A5), we obtain for Eqs. (17) and (20),

∞∑
k=0

k+nCnx
k+n = xn

(1 − x)n+1

=
(

2

2 + 


)( −


2 + 


)n

. (A7)
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