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The microscopic description of neutron scattering by 16O below 30 MeV is carried out by means of
the continuum particle-vibration coupling (cPVC) method with the Skyrme nucleon-nucleon (NN ) effective
interaction. In the cPVC method, a proper boundary condition on a nucleon in continuum states is imposed,
which enables one to evaluate the transition matrix in a straightforward manner. Experimental data of the total
and total-elastic cross sections are reproduced quite well by the cPVC method. An important feature of the result
is the fragmentation of the single-particle resonance into many peaks as well as the shift of its centroid energy.
Thus, some part of the fine structure of the experimental cross sections at lower energies is well described by the
cPVC framework. The cPVC method based on a real NN effective interaction is found to successfully explain
about 85% of the reaction cross section, through explicit channel-coupling effects.
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Description of nucleon-nucleus (NA) elastic scattering
based on the fundamental nucleon-nucleon (NN ) interaction
is one of the most challenging subjects of nuclear reaction
studies, and is crucial to the exploration of unstable nuclei,
for which phenomenological optical potentials have not been
established. The most essential quantity for this subject is the
imaginary part W of the optical potential, which is responsible
for a loss of the incident flux due to the existence of nonelastic
channels. Reliability of W can be judged by comparing the
resulting reaction cross section σR with experimental data.

One of the most successful approaches to this goal is the
folding model based on a complex effective NN interaction
and a phenomenological or microscopic nuclear density. In
Ref. [1], for example, the folding model calculation with no
free parameter is shown to reproduce well the differential cross
sections and spin observables for proton elastic scattering on
12C, 16O, 40Ca, 90Zr, and 208Pb at 65–200 MeV, as well as σR

of neutrons on these targets at 20–800 MeV. The agreement
is at almost the same level as that of the well-established
Dirac phenomenology [2,3]. Many studies in this direction
have successfully been done with the coordinate-space repre-
sentation [4–7] and the momentum-space representation [8].
Nowadays, the microscopic description of nucleus-nucleus
(AA) scattering has become a hot topic [9]. In all these
models, W comes from the imaginary part of the effective NN

interaction, for which a Brückner g matrix evaluated in infinite
nuclear matter is often adopted. Despite the great success of
this folding-model approach, it is quite obvious that the use of
the g matrix is not feasible for low-energy scattering, because
individual energy levels of the N + A system near the nucleon
threshold strongly affect the scattering process.

An alternative approach to the microscopic description
of NA elastic scattering is many-body calculation of the
N + A system including channel couplings to the continuum
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states. In this approach, a NN effective interaction with
no imaginary part is used, and W is generated through the
coupling to nonelastic channels that are explicitly taken into
account. One of the most suitable models for this purpose
will be the particle-vibration coupling (PVC) method, which
describes collective vibrations and single-particle motion of
individual nucleons simultaneously. In a recent paper [10], the
microscopic continuum PVC (cPVC) method was proposed
and applied to studies on single-particle (sp) structures in
40Ca, 208Pb, and 24O. In general, the sp states of a nucleus
A are observed in excitation energy spectra in the neighboring
A ± 1 nuclei. It was shown in Ref. [10] that the cPVC
method describes quite well the fragmentation of the sp hole
and particle states as well as the shift of those centroid
energies, in good agreement with experimental data. These
are distinguished features of sp states that are not taken into
account in the standard Hartree-Fock (HF) picture.

The cPVC method is based on the self-consistent micro-
scopic HF and the continuum random-phase approximation
(RPA) [11,12] with the Skyrme effective interaction. In
this framework, the microscopic nucleon optical potential is
characterized by the nucleon self-energy corresponding to
specific energy E in the asymptotic region of the N + A

system; E can be interpreted as the incident energy of the
nucleon on the target nucleus A in the optical model picture.
A great advantage of the cPVC method to other existing PVC
models [13–16] is, as emphasized in Ref. [10], the proper
treatment of the continuum with imposing an explicit boundary
condition on a nucleon in a continuum state. Therefore, it is
quite promising that the cPVC method can be applied to studies
on reaction observables for which boundary conditions play
essential roles in general.

In this Rapid Communication, we apply the cPVC method
to the neutron scattering on 16O below 30 MeV. We see how
the cPVC method can describe the absolute values and energy
dependence of σR in particular. Important aspects of the present
study, in comparison with the preceding works [16,17] along
the same line, are as follows. First, we treat the continuum
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explicitly as mentioned above. Second, we include a very large
model space (various phonon states up to 60 MeV) as described
below. Third, we are interested in the structures, i.e., nontrivial
energy dependence, of σR due to the PVC, expected to appear
at quite lower incident energies.

In the cPVC framework, the scattering wave function of
neutron �PVC(rσ, k) from A, with the relative coordinate r ,
the intrinsic coordinate σ due to the spin degrees of freedom,
and the relative wave number k in the asymptotic region, is
described by the following Lippmann-Schwinger equation:

�
(+)
PVC(rσ, k)

= φF (rσ, k) +
∑
σ ′σ ′′

∫ ∫
d r ′d r ′′G(+)(rσ, r ′σ ′; E)

×[v(r ′σ ′)δ(r ′ − r ′′)δσ ′σ ′′ + �(r ′σ ′, r ′′σ ′′; E)]

×φF (r ′′σ ′′, k), (1)

where φF denotes the neutron free wave and v(r ′σ ′) is
the HF one-body mean-field potential. The PVC Green’s
function and the corresponding self-energy are denoted by
G(+)(rσ, r ′σ ′; E) and �(r ′σ ′, r ′′σ ′′; E), respectively. With the
partial wave expansion, one may find that the transition matrix
(T matrix) of the elastic scattering is given by

T PVC
lj (E) = lim→∞

2i

rh
(+)
l (kr)

∫ ∫
dr ′dr ′′r ′′G(+)

lj (rr ′; E)

×[vlj (r ′)δ(r ′ − r ′′) + �lj (r ′r ′′; E)]jl(kr ′′), (2)

where l (j ) represents the orbital angular momentum (total
single-particle spin) of the neutron, and h

(+)
l (kr) and jl(kr)

are, respectively, the spherical Hankel function with the out-
going asymptotics and the spherical Bessel function. Explicit
expressions of G(+) and � are given by Eqs. (6) and (7) of
Ref. [10], respectively. Note that we use E for the relative
energy between neutron and A, which is denoted by ω in
Ref. [10]. Furthermore, we put (+) in the superscript of �PVC,
G, and Glj , to explicitly represent that these functions satisfy
the outgoing boundary condition. We solve a Dyson equation,
Eq. (10) of Ref. [10], to obtain Glj , and hence T PVC

lj . All other
details can be found in Ref. [10].

The differential elastic cross section dσ/d� is given by

dσ

d�
= |F(θ )|2 + |G(θ )|2, (3)

where

F(θ ) = 1

2ik

∑
lj

2j + 1

2
{−iTlj (E)}Pl(cos θ ), (4)

G(θ ) = sin θ

2k

∑
l(�=0)j

2j + 1

2

j (j + 1) − l(l + 1) − 3/4

l(l + 1)

×{−iTlj (E)}P ′
l (cos θ ). (5)

Here, Pl and P ′
l are, respectively, the Legendre polynomial

and its derivative with respect to cos θ . The total cross
section σtot and the total-elastic cross section σel are given
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FIG. 1. (Color online) Total cross section of neutron scattering by
16O, as a function of the incident energy. The dashed, dotted, solid,
and dash-dotted lines show the results with η = 0.4, 0.2, 0.1, and
0.04 MeV, respectively. Experimental data are taken from Ref. [19].

by

σtot(E) =
∑
lj

2π

k2

2j + 1

2
[Im Tlj (E)] ≡

∑
lj

σtot;lj (E), (6)

σel(E) =
∑
lj

π

k2

2j + 1

2
|Tlj (E)|2 ≡

∑
lj

σel;lj (E). (7)

The reaction cross section σR is defined by

σR(E) = σtot(E) − σel(E). (8)

As one may see from Eqs. (1) and (2), the self-energy � serves
as a dynamical polarization potential. Therefore, the imaginary
part W of the optical potential comes from �, which takes
into account the coupling within the Skyrme continuum-RPA
response function and the HF Green’s function [10]. Note
that we explicitly treat the nonlocality of �, whereas it was
approximately localized in the previous work [16]. The HF T

matrix can be obtained by

T HF
lj (E) = lim

r→∞
2i

rh
(+)
l (kr)

∫
dr ′r ′G(+)

0,lj (rr ′; E)

×vlj (r ′)jl(kr ′), (9)

where G
(+)
0,lj means the HF Green’s function.

In the present calculation, we adopt the Skyrme NN effec-
tive interaction SkM* [18]. Note that, in contrast to Ref. [17],
we do not introduce any other interactions to the calculation of
scattering observables; i.e., a fully consistent treatment of the
effective interaction is carried out. For the cPVC calculation,
as in Ref. [10], the orbital angular momentum cutoff for the
unoccupied continuum states is set at lcut = 7h̄, and we include
phonons associated with the multipolarities λπ of 2+, 3−, 4+,
and 5−, up to 60 MeV of the RPA excitation energy. We choose
the Fermi momentum kF = 1.33 fm−1 for the residual force
in the self-energy function of the PVC calculation. The radial
mesh size is r = 0.2 fm and the maximum value of r is set
to 20 fm, to obtain the T matrix by Eq. (2).

First, we show in Fig. 1 the η dependence of σtot(E) of
neutron scattering by 16O; η is a parameter introduced in the
evaluation of Green’s function and the RPA response function
[10], and corresponds to the resolution scale of E. The dashed,
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FIG. 2. (Color online) Total-elastic cross section of the neutron
scattering by 16O. The solid (dashed) line shows the result of the
cPVC method (HF calculation). Experimental data are taken from
Ref. [19].

dotted, solid, and dash-dotted lines show the results with
η = 0.4, 0.2, 0.1, and 0.04 MeV, respectively. Considering
the experimental situation, E should be an order of eV, which
cannot be achieved because of the computational limitation.
As one sees from the figure, however, σtot(E) for E � 4.0 MeV
converges at η = 0.1 MeV. Thus, in the following discussion
we use η = 0.1 MeV and restrict ourselves for E � 4.0 MeV.

In Fig. 1, the solid line reproduces quite well the energy
dependence of the experimental data [19] except for 10 �
E � 15 MeV. A remarkable feature is the reproduction of the
fine structure of σtot(E) in part, which is the benefit of the PVC.
It is well known that many peaks in the experimental σtot(E)
correspond to the compound resonance. It is quite obvious
that the present cPVC calculation cannot describe such peaks.
Rather than that, the cPVC method is considered to describe
well the so-called doorway states [20]. Keeping this in mind,
we see that the present calculation reasonably reproduces the
energy dependence of σtot(E). Note that we do not tune any
adjustable parameters, although the result can, to some extent,
depend on the Skyrme parameters adopted.

Figure 2 shows the σel(E) calculated by the cPVC method
(solid line) and the HF calculation (dashed line). Results are
plotted in the linear scale. The cPVC method reproduces well
the experimental data [19], whereas the HF calculation over-
shoots them by about 80% above 15 MeV. This shortcoming
of the HF calculation is rather trivial because of the absence of
the imaginary part of the optical potential; absorption effects
become more significant as E, the number of open channels, in
fact, increases. It should be noted that the HF calculation gives
σel(E) = σtot(E) and hence σR(E) = 0. Another important
finding is that the HF result has only one peak around 4.6 MeV,
which turns out to be due to the f7/2 sp orbit. The cPVC method
gives much more complicated shapes of σel(E), as in Fig. 1.
This result clearly shows the importance of the PVC in the
neutron elastic scattering at low energies.

Next we compare the result of σR(E) (solid line) with the
experimental data [19] in Fig. 3. Again, we plot the result
in the linear scale. Although the theoretical σR(E) slightly
undershoots (overshoots) the data for 10 � E � 25 MeV
(E � 6 MeV), some peak structure is reproduced well. On the
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FIG. 3. (Color online) Reaction cross section of neutron for 16O.
The solid, dashed, dotted, and dash-dotted lines correspond to the
calculation with λmax = 5, 4, 3, and 2, respectively. Experimental
data are taken from Ref. [19].

average for 8 � E � 30 MeV, the discrepancy between the
theoretical values and experimental data for σR(E) is about
15%. It should be noted that the present cPVC calculation
describes the σR(E) only though channel-coupling effects,
i.e., with no imaginary part of an effective interaction. It will
be a remarkable achievement that about 85% of the σR(E) is
successfully explained in this manner. It was shown in Ref. [17]
that more than half the σR(E) for proton scattering on 58Ni,
48Ca, and 90Zr is due to a coupling with the deuteron (transfer)
channel. In the present calculation, the deuteron channel seems
to play less important roles; it should be remarked that (i)
theoretical calculation shows good agreement with data for
E � 25 MeV and (ii) we still have undershooting around
10 MeV, where the (n, d) reaction channel is closed.

In Fig. 3, the dependence of σR(E) on the maximum
multipolarity λmax is also shown. The dashed, dotted, and
dash-dotted lines correspond to the calculation with λmax = 4,
3, and 2, respectively; the solid line represents the full
calculation with λmax = 5. One sees a good convergence
at λmax = 4. Another finding is the role of λ = 3, which
essentially generates the many peaks in σR(E); λ = 4 then
gives a slight change in the shapes and positions of the peaks.
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FIG. 4. (Color online) Partial cross sections of σtot. The solid
(dashed) and dotted (dash-dotted) lines represent the results of the
f7/2 and f5/2 orbits obtained by the cPVC method (HF calculation).
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FIG. 5. (Color online) Angular distribution of the neutron elastic
cross section by 16O at 28 MeV. The solid (dashed) line shows the
result of the cPVC method (HF calculation). Experimental data are
taken from Ref. [19].

To see how the PVC gives peaks in the cross section more
clearly, we show in Fig. 4 the partial cross sections of σtot(E),
σtot;lj (E) in Eq. (6), for the f orbits. The cPVC (HF) result for
the f7/2 and f5/2 orbits are shown by the solid (dashed) and
dotted (dash-dotted) lines, respectively. The dashed line has
a resonant peak around 4.6 MeV, which is fragmented by the
PVC as shown by the solid line. Similarly, the PVC changes
the dash-dotted line to the dotted line, generating nontrivial
structures. Thus, the PVC completely changes the shapes of
the partial cross sections. Fragmentation of the sp strength
function is necessary to explain the energy dependence of
experimental data, as shown in Figs. 1–3.

Finally, we show the result of the differential cross section
dσ/d� in Fig. 5. The cPVC and HF results are denoted by the
solid and dashed lines, respectively. The dashed line severely
overshoots the data at backward angles. This issue remains for
the solid line, although the agreement with the experimental
data is significantly improved by including the PVC. This may
indicate that the radial dependence of the optical potential
is not correctly generated by the present framework; further
investigation on this is our future work.

In this study, we applied the continuum particle-vibration
coupling (cPVC) method to the calculation of scattering
observables, i.e., the total σtot, total-elastic σel, and reaction
σR cross sections, of neutrons on the 16O target at 4–30 MeV.

The cPVC method describes the single-particle motion and
collective vibrations simultaneously, with properly treating
the boundary condition of a nucleon in continuum states.
This feature makes the calculation of the transition matrix
(T matrix) straightforward. We used the Skyrme interaction
(SkM*) as an effective nucleon-nucleon (NN ) interaction,
and included phonon states of 16O up to the 5− state with
excitation energy of 60 MeV. The T matrix is evaluated with
the PVC Green’s function, which is obtained by solving the
Dyson equation. The couplings to various collective states
are characterized by the self-energy �. Since the cPVC
method employs a real NN interaction, the imaginary part
of the optical potential purely comes from �. In the present
framework, σR is described as a loss of the incident flux to
various channels that are explicitly taken into account.

The results of the present cPVC calculation satisfactorily
agree well with experimental data of σtot and σel. For σR , the
cPVC method explains about 85% of the experimental data
on average, which will be an important achievement of the
mean-field type calculation for neutron scattering. Another
remarkable feature of the cPVC result is the fragmentation of
a single-particle resonant cross section. This results in good
correspondence with some of the peaks observed, probably
those due to the doorway states. On the other hand, the
Hartree-Fock (HF) calculation was found to give a rather
trivial shape of the cross section and severely overshoot σel

for E � 10 MeV. The cPVC method describes the angular
distribution of the elastic cross section much better than the
HF calculation. However, there still remains a discrepancy
at scattering angles larger than 30◦. This will be due to an
incorrect radial dependence of the optical potential in the cPVC
framework.

In the future, we will apply the cPVC method to other
reaction systems, including proton scattering. Application
to inelastic scattering and photoinduced reactions will also
be important. Another important subject is the interaction
dependence. The scattering observables can be used as new
constraints on the parameters of the Skyrme interaction,
determined to reproduce nuclear bound-state properties. In
addition to that, as discussed in Ref. [10], further investigation
on the treatment of Pauli’s principle in the cPVC framework
will be necessary.
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