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Four-nucleon α-type correlations and proton-neutron pairing away from the N = Z line
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We study the competition between α-type and conventional pair condensation in the ground state of nuclei
with neutrons and protons interacting via a charge-independent pairing interaction. The ground state is described
by a product of two condensates, one of α-like quartets and the other one of pairs in excess relative to the isotope
with N = Z. It is shown that this ansatz for the ground state gives very accurate pairing correlation energies for
nuclei with the valence nucleons above the closed cores 16O, 40Ca, and 100Sn. These results indicate that α-type
correlations are important not only for the self-conjugate nuclei but also for nuclei away from the N = Z line. In
the latter case α-like quartets coexist with the collective Cooper pairs formed by the nucleons in excess.
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It was suggested long ago that in self-conjugate nuclei
proton-neutron pairing can induce, through isospin conser-
vation, four-particle correlations of α type [1]. A related
question, repeatedly discussed by various authors, is whether
the ground state of N = Z nuclei can be described as a
superfluid condensate of α-like quartets. One of the first
models of α-type superfluidity in N = Z nuclei was proposed
by Flowers et al. [2] and it was based on a BCS-like state
made of quartets instead of pairs. Recently, this model has
been extended by including in the BCS state both quartets and
pairs [3]. As any quasiparticle approximation, these models
do not conserve exactly the particle number. For α-type
correlations this is a serious drawback since in this case the
particle number becomes uncertain in units of four particles
at a time. α-type condensation in the ground state of N = Z

nuclei was also studied in particle-number-conserving models
[4–8]. However, the majority of these studies have been done
either with schematic single-particle spectra and schematic
interactions or using approximations justified for a limited
number of quartets. A general calculation scheme for taking
into account α-type quartet correlations, valid for any number
of quartets and for a general charge-independent pairing force,
was proposed recently in Ref. [9]. The calculations done in
Ref. [9] show that the isovector pairing correlations in the
ground state of N = Z nuclei can be described with high
precision by a condensate of α-like quartets built by collective
proton-neutron, neutron-neutron, and proton-proton pairs. In
this Rapid Communication we shall extend the calculation
scheme of Ref. [9] to nuclei away from the N = Z line and
we will study to what extent α-like correlations coexist with
the conventional pairing in nuclei with excess neutrons or
protons. The possibility of coexistence/competition of four-
particle correlations of α type with the usual two-body pairing
correlations was several times discussed in the literature [3,4,7]
but, as far as we know, it was never checked in realistic
microscopic calculations.

In the present study we consider a system of N neutrons and
Z protons moving outside a self-conjugate core and interacting
via a charge-independent pairing force. The corresponding

Hamiltonian is

Ĥ =
∑

i,τ=±1/2

εiτNiτ +
∑

i,j,t=−1,0,1

VijP
+
i,tPj,t , (1)

where εiτ are the single-particle energies associated with the
mean fields of neutrons and protons, supposed invariant to
time reversal. The isovector interaction is expressed in terms
of the isovector pair operators P +

i,1 = ν+
i ν+

ī
, P +

i,−1 = π+
i π+

ī
,

and P +
i,0 = (ν+

i π+
ī

+ π+
i ν+

ī
)/

√
2; the operators ν+

i and π+
i

create, respectively, a neutron and a proton in the state i while
ī denotes the time conjugate of the state i.

In Ref. [9] the ground state of the Hamiltonian (1) for a
system with N = Z = even was described by the trial state

|�〉 = (A+)nq |0〉, (2)

where nq = (N + Z)/4 and A+ is a collective four-nucleon
operator defined by

A+ =
∑
i,j

xijA
+
ij . (3)

A+
ij denotes the noncollective four-nucleon operators con-

structed by coupling two noncollective isovector pairs to the
total isospin T = 0; i.e.,

A+
ij = [P +

i P +
j ]T =0 = 1√

3
(P +

i,1P
+
j,−1 + P +

i,−1P
+
j,1 − P +

i,0P
+
j,0).

(4)

Supposing that the amplitudes xij are separable, i.e., xij =
xixj , the collective four-nucleon operator (3) can be written as

A+ = 2�+
1 �+

−1 − (�+
0 )2, (5)

where �+
t = ∑

i xiP
+
i,t denote, for t = 0, 1,−1, the collective

pair operators for the proton-neutron (pn), neutron-neutron
(nn), and proton-proton (pp) pairs. Due to the isospin
invariance, all the collective pairs have the same mixing
amplitudes xi .
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With the collective four-nucleon operator (5) the state (2)
can be written as

|�〉 = (
2�+

1 �+
−1 − �+2

0

)nq |0〉

=
∑

k

(
nq

k

)
(−1)nq−k2k(�+

1 �+
−1)k�

+2(nq−k)
0 |0〉. (6)

From the equation above it can be seen that the α-like
condensate for a system with N = Z = even is a particular
superposition of nn, pp, and pn pair condensates.

Now we shall consider the case of even-even systems with
an excess of one sort of nucleons, neutrons, or protons. For
these systems we suppose that the excess neutrons or protons
form a pair condensate of conventional type which is appended
to the α condensate. Thus, for an even-even system with an
excess of neutrons we consider the following ansatz for the
ground state:

|�〉 = (�̃+
1 )nN (A+)nq |0〉 = (�̃+

1 )nN
(
2�+

1 �+
−1 − �+2

0

)nq |0〉,
(7)

where nN = (N − Z)/2 is the number of neutron pairs in
excess and nq = (N − 2nN + Z)/4 is the maximum number
of α-like quartets which can be formed by the neutrons and
protons. Since the quartets A+ have zero isospin, the state (7)
has a well-defined total isospin given by the excess neutrons;
i.e., T = nN . The neutron pairs in excess are described by the
collective pair operator �̃+

1 = ∑
i yiP

+
i1 . It can be seen that

the collective pair describing the excess neutrons is taken of
different structure from the collective neutron pair entering
in the collective quartet. This is a requirement imposed
by the Pauli principle in the HF limit. For the particular
case of degenerate single-particle states and a seniority-type
pairing force the state (7) is the exact solution of the
Hamiltonian (1) [7].

It is important to observe that in the state (7) one can identify
two terms which play the role of particle-number-projected
BCS (PBCS) approximations for N > Z systems interacting
with charge-independent pairing forces; i.e.,

|PBCS0〉 = (�̃+
1 )nN (�+

0 )2nq |0〉, (8)

|PBCS1〉 = (�̃+
1 )N/2(�+

−1)Z/2|0〉. (9)

The state (8) is a product between a condensate of proton-
neutron pairs and a condensate of neutron-neutron pairs while

the state (9) is a product of a condensate of neutron-neutron
pairs with a condensate of proton-proton pairs. Both states
have the right number of protons and neutrons but have not a
well-defined total isospin.

The mixing amplitudes xi and yi which define the ground
state (7) are determined from the minimization of 〈�|H |�〉
under the normalization condition 〈�|�〉 = 1. To calculate the
average of the Hamiltonian and the norm we have extended
the recurrence relations method of Ref. [9] by including
the contribution of the excess neutrons. Thus the recurrence
relations are calculated with the following states of arbitrary
numbers of collective nn, pp, and np pairs:

|n1n2n3n4〉 = �
+n1
1 �

+n2
−1 �

+n3
0 �̃

+n4
1 |0〉. (10)

Compared to N = Z systems, these states have two kinds of
neutron collective pairs, corresponding to the extra pairs and
to the pairs which are included in the quartet condensate. The
recurrence relations satisfied by the matrix elements of the
Hamiltonian (1) with the states (10) can be simply related to
the recurrence relations we have used in Ref. [9] for N = Z

systems. Finally, we would like to stress that in the formalism
presented here the Pauli principle is incorporated rigorously,
which is very important when four-body correlations are
calculated.

The model described above, which will be referred to
as quartet condensation model (QCM), as in Ref. [9], is
well suited for studying the competition between the α-
like four-nucleon correlations and the conventional pairing
condensation in nuclei with proton-neutron pairing. As an
illustration we apply it here for three sets of nuclei with the
valence nucleons moving outside the double-magic cores 16O,
40Ca, and 100Sn, which are taken as inert. For each set of
nuclei we start with the N = Z = even isotopes and add
extra neutron pairs. The calculations are done for those nuclei
for which the ground-state energy can be calculated exactly
by diagonalization. To check the accuracy of QCM we have
done calculations using for the single-particle energies and the
pairing force the two different inputs employed in Ref. [9].
Thus we first applied QCM for a charge-independent pairing
interaction of seniority type, with the strength g = 24/A,
acting on protons and neutrons moving in deformed mean
fields. The mean fields are obtained from axially deformed
Hartree-Fock (HF) calculations [10] done with the Skyrme
force SLy4 [11]. From the HF spectrum of the three sets of

TABLE I. Pairing correlations energies for isotopes having as core 16O. The results correspond to exact diagonalization (Exact), quartet
condensation model (QCM), and the PBCS1 approximation (9). Numbers in parentheses are the errors relative to the exact diagonalization.
The calculations are done with an isovector pairing force of seniority type and with axially deformed single-particle states.

Exact QCM PBCS1 Exact QCM PBCS1

20Ne 6.550 6.539 (0.17%) 5.752 (12.18%) 24Mg 8.423 8.388 (0.41%) 7.668 (8.96%)
22Ne 6.997 6.969 (0.40%) 6.600 (5.67%) 26Mg 8.680 8.654 (0.30%) 8.258 (4.86%)
24Ne 7.467 7.426 (0.55%) 7.226 (3.23%) 28Mg 8.772 8.746 (0.30%) 8.531 (2.75%)
26Ne 7.626 7.592 (0.45%) 7.486 (1.84%) 30Mg 8.672 8.656 (0.18%) 8.551 (1.39%)
28Ne 7.692 7.675 (0.22%) 7.622 (0.91%) 32Mg 8.614 8.609 (0.06%) 8.567 (0.55%)
30Ne 7.997 7.994 (0.04%) 7.973 (0.30%) 28Si 9.661 9.634 (0.28%) 9.051 (6.31%)
30Si 9.310 9.296 (0.15%) 9.064 (2.64%) 32Si 9.292 9.283 (0.10%) 9.196 (1.03%)
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TABLE II. The same as in Table I but for isotopes having as core 40Ca and 100Sn.

Exact QCM PBCS1 Exact QCM PBCS1

44Ti 3.147 3.142 (0.16%) 2.750 (12.61%) 48Cr 4.248 4.227 (0.49%) 3.854 (9.27%)
46Ti 3.526 3.509 (0.48%) 3.308 (6.18%) 50Cr 4.461 4.444 (0.38%) 4.230 (5.18%)
48Ti 3.882 3.853 (0.75%) 3.735 (3.79%) 52Cr 4.743 4.721 (0.46%) 4.582 (3.39%)
50Ti 3.973 3.956 (0.43%) 3.889 (2.11%) 54Cr 4.869 4.855 (0.29%) 4.772 (1.99%)
104Te 1.084 1.082 (0.18%) 0.964 (11.07%) 108Xe 1.870 1.863 (0.37%) 1.697 (9.25%)
106Te 1.324 1.321 (0.23%) 1.250 (5.59%) 110Xe 2.191 2.185 (0.27%) 2.058 (6.07%)
108Te 1.713 1.698 (0.88%) 1.642 (4.14%) 112Xe 2.449 2.437 (0.49%) 2.348 (4.12%)
110Te 1.892 1.880 (0.63%) 1.843 (2.59%) 114Xe 2.964 2.954 (0.34%) 2.887 (2.60%)

nuclei we consider in the pairing calculations, respectively,
the lowest 7, 9, and 10 states above the double-magic core.
In the calculations we have neglected the Coulomb interaction
and we have used for N > Z nuclei the same single-particle
energies as for the corresponding N = Z isotope. As shown in
Refs. [12,13], the isospin dependence of the single-particle
energies can be eventually taken into account reasonably
well by adding to the calculated binding energies a term
proportional to T (T + 1).

It is important to mention that the Hamiltonian (1) with a
similar input as employed here, using deformed mean fields
provided by the Nilsson model instead of Skyrme-HF, is
realistic enough for describing the experimental even-even to
odd-odd energy difference as well as the term linear in N-Z
(Wigner energy) in the nuclear binding energy [13].

The results we have obtained for pairing correlations
energies with the input presented above are shown in Tables I
and II. The correlation energies are defined as Ecorr = E0 − E,
where E is the total energy while E0 is the energy obtained
without the pairing interaction. In Tables I and II the QCM
results are compared to the exact results, obtained by direct
diagonalization, and with the results provided by the PBCS1
approximation (9). Since, as in N = Z systems [9,14], the
PBCS0 approximation (8) gives less binding compared to
PBCS1, its prediction are not given here.

Two points emerge immediately from Tables I and II.
First, it can be noticed that QCM describes with very good
accuracy the pairing correlations energies for all calculated
isotopes. Thus for all the isotopes the errors relative to the
exact results (shown in the parentheses) are below 1%. Second,
it can be seen that the PBCS1 approximation, in which it is
supposed that the system splits into two superfluids composed
by neutrons and protons, is less accurate, much less than
the PBCS approximation for like-particle pairing [15]. As
expected, its accuracy increases with the number of pairs in
excess. Since by adding more and more neutron pairs the role
of proton-neutron pairs is diminishing, one may think that
there is a phase transition from a mixed condensate of α-like
quartets and neutron pairs to a standard mixed condensate of
neutrons and protons, as described by the state PBCS1. From
the calculations presented in Tables I and II it appears that this
is not the case.

Apart from correlation energies, we have also checked that
QCM predicts accurate results for occupation probabilities of
single-particle states. As an example in Table III are shown the
results for the isotope 30Mg.

More specific information about the correlations described
by QCM can be extracted from the entanglement properties of
the Cooper pairs which compose the ground states (7). As a
measure of the entanglement we use here the so-called Schmidt
number [16] defined as K = (

∑
i w

2
i )2/

∑
i w

4
i , where wi

are the mixing amplitudes of the two-body function which
describes the entangled particles (for an application of Schmidt
number to like-particle pairing in nuclei see [15]). In the case
of the Cooper pairs �+

t and �̃+
1 the mixing amplitudes wi

are, respectively, xi and yi . As expected, the Schmidt numbers
show that the entanglement of the proton pairs is stronger
when they are included in the quartets than when they form
a pair condensate as in PBCS1. For example, in 30Mg we
obtain K = 1.88 for the protons in the quartet condensate
and K = 1.79 for the protons in the pair condensate. As
for the neutron pairs in excess, they are usually much more
entangled than the ones included in the quartets (e.g., by about
64% in 30Mg).

To check further the accuracy of QCM, we have also
done calculations with more general isovector pairing forces,
extracted from the (T = 1, J = 0) part of standard shell
model interactions, acting on spherical single-particle states.
As an example, in Table IV we present the correlation pairing
energies obtained for the nuclei having as closed core 100Sn.
One can observe that QCM gives very good predictions,
comparable to the calculations done with the seniority-type
force presented in Tables I and II. The calculations have
been done with the isovector pairing force extracted from
the effective G-matrix interaction of Ref. [17] and with the
single-particle energies ε2d5/2 = 0.0, ε1g7/2 = 0.2, ε2d3/2 = 1.5,
ε3s1/2 = 2.8. The intruder state h11/2 was not introduced in
the calculations because with it the exact diagonalizations

TABLE III. Occupation probabilities of single-particle states in
30Mg. Shown are the exact and the QCM results for neutrons (n) and
protons (p).

εi Exact(n) QCM(n) Exact(p) QCM(p)

−16.45 0.995 0.995 0.983 0.983
−13.94 0.993 0.993 0.961 0.963
−10.39 0.987 0.987 0.028 0.026
−8.08 0.971 0.972 0.012 0.017
−6.09 0.921 0.923 0.007 0.007
−3.89 0.087 0.085 0.005 0.005
−2.61 0.045 0.045 0.004 0.004
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TABLE IV. Pairing correlations energies for isotopes having as core 100Sn calculated with the isovector pairing force extracted from the
effective G-matrix interaction of Ref. [17] and with spherical single-particle states. The notations are the same as in Table I.

Exact QCM PBCS1 Exact QCM PBCS1

104Te 3.831 3.829 (0.05%) 3.607 (5.85%) 108Xe 6.752 6.696 (0.83%) 6.311 (6.53%)
106Te 5.156 5.130 (0.50%) 4.937 (4.25%) 110Xe 7.578 7.509 (0.91%) 7.184 (5.20%)
108Te 5.970 5.930 (0.67%) 5.768 (3.38%) 112Xe 8.285 8.208 (0.93%) 7.944 (4.12%)
110Te 6.664 6.616 (0.72%) 6.485 (2.69%) 114Xe 8.446 8.368 (0.92%) 8.167 (3.30%)
112Te 6.815 6.764 (0.75%) 6.665 (2.20%) 116Xe 8.031 7.947 (1.05%) 7.810 (2.75%)

cannot be performed due to the very large matrices (e.g,
186 billion for 116Xe). It is worth mentioning that the
intruder state, which has a significant influence for the heavier
isotopes shown in Table IV, can be simply accounted for
in QCM. In fact, as any approach based on variational
principle, the QCM can be applied for nuclei and model spaces
which are far beyond the capability of present shell model
codes.

To conclude, in this Rapid Communication we have shown
that four-nucleon correlations of α type are very important in
systems with neutron-proton pairing. This is true not only for
systems with N = Z but also for systems with excess neutrons.
It means that, whenever possible, the protons and neutrons
prefer to couple together in α-like quartets which are forming
an α-like condensate. When not all neutrons can be included
in the α-like quartets, the excess neutrons form a typical

condensate of collective pairs which is appended to the α-like
condensate. We have found that the α-type correlations coexist
with the conventional pairing of excess neutrons irrespective to
the number of excess neutrons. To the best of our knowledge,
these are the first realistic microscopic calculations which point
to the coexistence of α-like quartets and conventional Cooper
pairs in nuclei away from the N = Z line.
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