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Pesudoscalar transition form factors within the light-front quark model
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We study the transition form factors of the pesudoscalar mesons (π, η, and η′) as functions of the momentum
transfer Q2 within the light-front quark model. We compare our results with the recent experimental data by
CELLO, CLEO, BaBar and Belle collaborations. By considering the possible uncertainties from the quark
masses, we illustrate that our predicted form factors can fit with all the data, including those at the large Q2

regions.
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Recently, the Belle Collaboration [1] published its data
on the transition form factor (Fπγ ) of π0 → γ ∗γ , previously
measured by BaBar [2], CLEO [3], and CELLO [4] collabora-
tions. However, for the momentum transfer Q2 above 10 GeV2

the new data by Belle seem to be much lower than those
by BaBar. As a result, the argument for the violation of the
QCD asymptotic limit [5] is weakened despite the extensive
theoretical studies in the literature [6–30].

In addition, following the pion data [2], the transition form
factors [F(η,η′)γ (Q2)] of η, η′ → γ ∗γ have been reported by
the BaBar Collaboration [31] for Q2 up to about 35 GeV2.
Many theoretical works on the η(′) transition form factors
have been also done [32–42] and the results are in agreement
with the data by BaBar [31]. In particular, some of the
studies have also tried to combined the analyses on the
three pseudoscalar mesons of π0, η, and η(′) to fit all data
simultaneously.

Motivated by the Belle data, in this Brief Report we
reexamine the transition form factor of the pion along with
those of η and η′ within the light-front quark model (LFQM)
by including uncertainties of quark masses to check if we
can accommodate all the data. Similar studies in other QCD
models have been performed recently in Refs. [43–47].

We will use the phenomenological light-front (LF) me-
son wave function [48,49] to evaluate Q2|Fη(′) (Q2)| in all
allowed kinematic regions. The LF wave function can be
constructed by the simple structure of the meson constituent
in terms of a quark-antiquark (QQ̄) pair [49]. The decay
amplitude of QQ̄ → γ ∗γ ∗ with Lorentz structure is given
by [50]

A(QQ̄(P ) → γ ∗(q1, ε1)γ ∗(q2, ε2))

= ie2FQQ̄
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where FQQ̄(q2
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2 ) is a symmetric function under the
interchange of q2
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2 , which can be found to
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be [48,49]
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where Nc = 3 is the number of colors, eQ = 2/3(−1/3) for
Q = u(d, s), mQ is the quark mass, and 
QQ̄(x, k2

⊥) is the
meson wave function, defined by
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with N = 4(π/ω2
QQ̄
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3
4 , �k = (k⊥, kz), kz = (x + 1/2)M0, and

ωQQ̄ the parameter related to the physical size of the
pseudoscalar meson (P = ∑

QQ̄) in the wave function. If
q1 or q2 is on mass shell, the form factor of QQ̄ → γ ∗γ can
be written as

FQQ̄→γ ∗γ (Q2, 0)
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(7)

where Q2 = q2
1 or q2

2 is the momentum transfer. From Eq. (7),
by summing up the relevant Fock states we obtain the transition
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for the transition form factors of P → γ ∗γ to be

FP→γ ∗γ (Q2) ≡ FPγ (Q2) =
∑

FQQ̄→γ ∗γ (Q2, 0) . (8)

For the π0 meson, we use |π0〉 = |uū − dd̄〉/√2 and mu =
md = mq . The states of η and η′ can be expressed in terms
of the two orthogonal states of |ηq〉 and |ηs〉, parametrized
as [51–54]( |η〉

|η′〉
)

=
(

cos φ − sin φ

sin φ cos φ

) ( |ηq〉
|ηs〉

)
, (9)

where |ηq〉 = |uū + dd̄〉/√2 and |ηs〉 = |ss̄〉. The mixing
angle has been studied in various decay processes and
constrained to be φ � 37◦ ∼ 42◦ [54]. Under this scheme,
the valence states of η(′) can be written as

|η〉 = cos φ
|uū + dd̄〉√

2
− sin φ|ss̄〉 ,

(10)

|η′〉 = sin φ
|uū + dd̄〉√

2
+ cos φ|ss̄〉 .

Consequently, the transition form factors of η(′) → γ ∗γ have
the forms

Fηγ = cos φFηq
− sin φFηs

,
(11)

Fη′γ = sin φFηq
+ cos φFηs

.

To numerically calculate the transition form factors of
P → γ ∗γ , we need to specify the parameters appearing in
φQQ̄(x, k⊥). To constrain the quark masses of mu,d,s and
the meson scale parameters of ωQQ̄ in Eq. (5), we use the
branching ratios of P → 2γ and the decay constants of the
QQ̄ states, defined by

B(P → 2γ ) = (4πα)2

64π�P
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respectively, where Q = q or s denotes the quark in the Fock
state. Explicitly, we use [55]

B(P → 2γ )

= (98.832 ± 0.034), (39.30 ± 0.20), (2.12 ± 0.14)%,

(14)

which lead to |F (0, 0)P→2γ | ≡ |FPγ (0)| = 0.274, 0.260, and
0.341 in GeV−1 for P = π0, η, and η′, respectively. For the
decay constants, we take [36]

fπ = 132, fqq̄ = 140, fss̄ = 168 MeV . (15)

To illustrate the pion transition form factor, we have to
specify the up and down quark masses. In our previous study
in Ref. [49], we fixed mq = 0.24 GeV (q = u, d). To fit all
the experimental data including the new data from Belle, we
would like to include the uncertainty from the quark masses.

FIG. 1. (Color online) Q2Fπγ (Q2) as a function of Q2 in the
LFQM with mq = 0.22 ∼ 0.30 GeV.

Explicitly, we revise our input with a possible range of mq ,
i.e., mq = 0.22 ∼ 0.30 GeV. As a result, we can derive various
meson scale parameters of ωπ from the pion decay constant and
Fπγ (0) from the decay rate of π0 → γ γ . In Fig. 1, we show the
Q2 dependence of the π0 transition form factor Q2Fπγ (Q2) in
the LFQM (gray band) with mq = 0.22 ∼ 0.30 GeV, where we
have also plotted the experimental data of BaBar [2], Belle [1],
CELLO [4], and CLEO [3] collaborations. Note that the upper
and lower edges of the gray band in Fig. 1 correspond to
mq = 0.30 and 0.22 GeV, respectively. From the figure, we see
that either the experimental data by CELLO, CLEO, and BaBar
or those by CELLO, CLEO, and Belle can be simultaneously
fitted well in the LFQM.

FIG. 2. (Color online) Q2Fηγ (Q2) as a function of Q2 in the
LFQM, where the dark-gray band represents the inputs of mq =
0.22 ∼ 0.30, ms = 0.40 ∼ 0.45 in GeV and φ = 40◦, while the light-
gray one stands for those of mq = 0.25, ms = 0.45 GeV and φ =
37 ∼ 42◦.
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FIG. 3. (Color online) Same as Fig. 2, but for the lower Q2 region
of Q2 < 30 GeV2.

We emphasize that to reproduce the BaBar (Belle) high-Q2

tail, the higher (lower) quark mass is required.
In our numerical calculations of η and η′, the first term in

Eq. (7) dominates for the lower region of Q2 and thus, it can
be used to describe the experimental data of CLEO [56] and
BaBar [31] with Q2 � 10 GeV2. The second one in Eq. (7),
related to the nonvalence quark contributions, is quite small for
a small Q2. In general, this term can be neglected in the low Q2

region, but it may enhance the form factors of Q2Fη(′)γ at the
high values of Q2. Hence, we will take into account this term in
our calculations. Similar to the pion case, we will also consider
the uncertainties from the quark masses. Explicitly, we use
mq = 0.22 ∼ 0.30 and ms = 0.40 ∼ 0.45 in GeV. Moreover,
we will examine a possible range of φ = 37 ∼ 42◦ for the
mixing angle in Eq. (11). In Fig. 2, we show our results
for the Q2 dependence of the η transition form factor in
terms of Q2Fηγ (Q2), where the dark-gray band represents
the inputs of mq = 0.22 ∼ 0.30, ms = 0.40 ∼ 0.45 in GeV
and φ = 40◦, while the light-gray one stands for those of
mq = 0.25, ms = 0.45 GeV and φ = 37 ∼ 42◦. An enlarged
view of Fig. 2 for the lower Q2 region of Q2 < 30 GeV2 is
given in Fig. 3. In Fig. 4, we draw Q2Fη′γ (Q2) as a function
of Q2, where the dark-gray and light-gray bands represent
the inputs of mq = 0.22 ∼ 0.30, ms = 0.40 ∼ 0.45 GeV and
φ = 40◦ and mq = 0.25, ms = 0.45 GeV and φ = 37◦–42◦,
respectively.

As shown in Figs. 2–4, our results for Q2Fη(′)γ (Q2) are in
good agreement with the experimental data. Note that the upper
(lower) edges of the dark-gray bands in Figs. 2–4 correspond to

FIG. 4. (Color online) Same as Fig. 2, but for η′.

mq = 0.30 (0.25) and ms = 0.45 (0.4) GeV, while those of the
yellow bands φ = 37◦ (42◦). We remark that the form factors
Q2Fη(′)γ increase (decrease) with quark masses mq (the mixing
angle φ), whereas the effect from the uncertainty from ms is
small due to the small quark charge. It is interesting to point
out that the form factors can be better fitted for a larger mq

with a fixed φ or φ = 40◦ with a fixed mq in the lower Q2

region.
In summary, motivated by the recent experimental measure-

ments, we have shown the transition form factors of π0, η, and
η′ → γ ∗γ as functions of the momentum transfer Q2 within
the LFQM. We have recalculated Fπγ (Q2) by considering the
allowed possible range of mq = 0.22 ∼ 0.30 GeV. We have
illustrated that our result of the pion transition form factor in
the LFQM can fit either the experimental data by CELLO,
CLEO, and BaBar collaboratons or those by CELLO, CLEO,
and Belle for a fixed quark mass. In particular, we have found
that to reproduce the BaBar and the recent Belle high-Q2 tails,
the higher and lower quark masses are needed, respectively.
With the same set of model parameters as the pion, we
have also studied the form factors of Fη(′)γ by considering
the possible ranges of the quark masses: mq = 0.22 ∼ 0.30
and ms = 0.40 ∼ 0.45 in GeV and the η − η′ mixing angle:
φ = 37◦ ∼ 42◦, and we have found that our results agree well
with the CLEO and BaBar data in the η and η′ cases.
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