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Background: Inelastic neutrino-nucleus scattering through the weak neutral-current plays an important role
in a stellar environment where the transport of neutrinos determines the rate of cooling. Since there are no
direct experimental data on neutral-current neutrino-nucleus cross sections available, only the modeling of these
reactions provides the relevant input for supernova simulations.
Purpose: To establish a fully self-consistent framework for neutral-current neutrino-nucleus reactions based on
a relativistic nuclear energy density functional.
Methods: Neutrino-nucleus cross sections are calculated using a weak Hamiltonian and nuclear properties of
initial and excited states are obtained with a relativistic Hartree-Bogoliubov model and a relativistic quasiparticle
random phase approximation that is extended to include pion contributions for unnatural parity transitions.
Results: Inelastic neutral-current neutrino-nucleus cross sections for 12C, 16O, 56Fe, 56Ni, and even isotopes
92−100Mo as well as respective cross sections averaged over distribution of supernova neutrinos.
Conclusions: The present study provides insight into neutrino-nucleus scattering cross sections in the neutral
channel, their theoretical uncertainty in view of recently developed microscopic models, and paves the way for
systematic self-consistent large-scale calculations involving open-shell target nuclei.
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I. INTRODUCTION

Nuclear weak interaction processes play an important role
in the evolution of supernova collapse, e.g., electron capture,
β decay, and neutrino-nucleus reactions [1]. Neutrino-nucleus
scattering through the weak neutral current could provide
contributions of relevance in a stellar environment where
the transport of neutrinos determines the rate of cooling
[1–3]. Recently, inelastic neutrino-nucleus scattering has been
introduced in supernova simulations as a novel mode of energy
exchange between neutrinos and matter [4–6]. Although this
process has no large effect on collapse trajectories, it has a
significant contribution to increasing the neutrino opacities,
and it strongly reduces the high-energy tail of the neutrino
spectrum emitted in the neutrino burst at shock breakout [5].
To date, only a single microscopic framework for the neutral-
current neutrino-nucleus scattering, based on the hybrid model
[7], has been included in supernova simulations [1]. Since
the calculations of weak interaction processes in various
theoretical models can result in differences in the reaction
rates and cross sections, sometimes larger than an order of
magnitude [8–11], providing insight into the neutral-current
neutrino-nucleus cross sections from independent models
is paramount for assessing the impact of the uncertainties
in nuclear structure models on the outcomes of supernova
simulations.

Modeling neutrino-induced reactions is also important
in view of studies on modern detectors based on neutrino
scattering on hadrons and nuclei. The ongoing and planned
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neutrino detector facilities involve a variety of target materials,
induced reactions, and scientific objectives. These include
MOON [12], MiniBooNE [13], NEMO [14], MINOS [15],
SNO + [16], OPERA [17], LVD (large volume detector) [18],
the ORLaND experiment at the Spallation Neutron Source
(SNS) [19], NOvA neutrino experiment [20], etc. In addition
to charged-current neutrino-induced processes in detectors,
another possible reaction channel includes neutral-current
neutrino scattering on hadrons and nuclei, resulting, e.g., in
small showers of secondary γ radiation and the creation of
electron-positron pairs. Although the cross sections in the
neutral channel are smaller than in the case of charge-exchange
reactions, the understanding of complete detector response
necessitates consistent microscopic insight into all relevant
processes involved.

Over the past years, several theoretical frameworks have
been developed to provide a description of the inelastic
neutrino-nucleus scattering in the neutral channel. Due to
considerable progress in the shell model Hamiltonians, a
number of neutrino-induced reactions have been described,
also including various decay channels [21–26]. Random phase
approximation (RPA) based on Landau-Migdal force has
been employed in calculations of neutrino-induced reaction
rates for r-process nuclei, including those in the neutral
channel [27,28]. The hybrid model combines the shell model
for allowed transitions, with the RPA to account for the
forbidden transitions, allowing systematic calculations for
a large number of target nuclei [7,25,29,30]. The Hartree-
Fock + RPA based fully on the Skyrme functional has been
employed in studies of the cross sections for 12C, 16O, and
208Pb [31,32]. In view of developing neutrino detectors and the
astrophysical role of neutrino-nucleus reactions, the relevant
nuclear matrix elements have recently been revisited in
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Ref. [33], and employed in studies involving target nuclei
40Ar, 56Fe, 92–100Mo, and 128,130Te, based on quasiparticle RPA
(QRPA) [34–37]. In another recently developed framework
based on the Hartree-Fock-Bogoliubov (HFB) model and
QRPA, the Brueckner G matrix is employed for a two-body
interaction by solving the Bethe-Salpeter equation based on the
Bonn CD potential, and pairing correlations have also been
taken into account [38–40]. Supernova neutrino-56Fe cross
sections in the neutral channel have also been explored in
the local density approximation taking into account the Pauli
blocking and Fermi motion effects [41]. Relativistic theoretical
approaches have been employed in modeling neutral-current
neutrino-nucleus cross sections, including the quasielastic
regime and covering energy span up to a GeV range of neutrino
energies [42–44].

Whereas for the charged-current neutrino-nucleus reactions
some experimental data are available for 12C and 56Fe [45–48],
in the case of neutral-current inelastic neutrino-nucleus scat-
tering there are no experimental data available, except for
the ground state transition to the 15.11 MeV state (T = 1)
in 12C [49,50]. The indirect experimental insight into the
inelastic neutrino-nucleus cross sections can be obtained from
inelastic electron scattering. As shown in Ref. [51], magnetic
dipole strength distributions for several iron group nuclei are
dominated by isovector Gamow-Teller transitions that can be
translated into inelastic neutral-current neutrino-nucleus cross
sections. Due to a lack of direct experimental data on these
cross sections, modeling by various approaches is crucial.
In this way one can provide not only the relevant input for
supernova simulations, but also the insight into theoretical
uncertainties in a description of the cross sections in the neutral
channel.

In this paper we introduce the framework for the neutral-
current neutrino-nucleus inelastic scattering based on the
relativistic nuclear energy density functional. Within this
framework the nuclear ground state and various excitations
induced in nuclei by the incoming neutrinos are described
in a fully self-consistent approach, i.e., a universal effective
interaction is employed without introducing any adjustments
to the specific properties of target nuclei or neutrino energies
involved. Although the energy density functional has already
been employed in the nonrelativistic framework using Skyrme

parametrizations [31,32], the present study provides the
first self-consistent framework to describe neutrino-induced
reactions in the neutral channel, involving open-shell target
nuclei that necessitate explicit implementation of the pairing
correlations. The relativistic nuclear energy density func-
tional has been successfully employed in studies of giant
resonances and exotic modes of excitation [52–54], β-decay
rates of r-process nuclei [55], muon capture [56] and stellar
electron capture rates [11], and in constraining the neutron
skin in nuclei [57]. In Refs. [9,58] the relativistic proton-
neutron QRPA has been employed in modeling charged-
current neutrino-nucleus reactions. In the present analysis of
neutrino-induced reactions in the neutral channel, the model
necessitates further development of the relativistic QRPA
outlined in Ref. [59] in order to allow taking into account
both natural and unnatural parity excitations in the neutral
channel.

The paper is organized as follows. In Sec. II we introduce
the basic formalism for the neutrino-nucleus cross sections
in the neutral channel based on weak Hamiltonian and
relativistic nuclear energy density functional. The respective
cross sections have been explored in detail for a set of target
nuclei in Sec. III. The conclusions of the present work are
summarized in Sec. IV.

II. THEORETICAL BACKGROUND

The weak process to be considered is inelastic neutral-
current neutrino-nucleus reaction,

νe +Z XN → νe +Z X∗
N, (1)

where the incoming electron neutrino (νe) scatters on target
nucleus X(Z,N ) which absorbs part of the neutrino energy.
The interaction between the neutrino and nucleus is described
by a weak Hamiltonian, while the properties of initial and
final states of target nucleus are described by an effective
nuclear interaction, in this particular case formulated using a
relativistic energy density functional. The formalism leading to
the expression for the cross section is given in Refs. [60,61].
The general expression for the neutrino-nucleus differential
cross section is derived in terms of relevant multipoles of the
nuclear weak currents,

(
dσν

d�

)
= G2

F ε2

2π2

4π

2Ji + 1

⎧⎨
⎩

∑
J�0

{(1 − ν̂ · β) + 2(ν̂ · q̂)(β · q̂)〈Jf ||L̂J ||Ji〉|2 + (1 + ν̂ · β)〈Jf ||M̂J ||Ji〉|2

− 2q̂(ν̂ + β)Re〈Jf ||L̂J ||Ji〉〈Jf ||M̂J ||Ji〉∗} +
∑
J�1

{
(1 − (ν̂ · q̂)(β · q̂))[|〈Jf ||T̂ MAG

J ||Ji〉|2 + |〈Jf ||T̂ EL
J ||Ji〉|2]

+ 2q̂ · (ν̂ − β)Re〈Jf ||T̂ MAG
J ||Ji〉〈Jf ||T̂ EL

J ||Ji〉∗
}
⎫⎬
⎭, (2)

where GF is Fermi constant for the weak interaction and ε denotes the energy of outgoing neutrino. The momentum
transfer q = ν − k is defined as the difference between the incoming (ν) and outgoing (k) neutrino momenta, q̂ and
ν̂ denote the corresponding unit vectors, and β = k/ε. The transition matrix elements between the nuclear initial and
final states include transition operators of various multipoles: charge M̂J , longitudinal L̂J , transverse electric T̂ EL

J , and
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transverse magnetic T̂ MAG
J multipole operators, expressed in

terms of spherical Bessel functions, spherical harmonics, and
vector spherical harmonics [60,61]. A complete calculation of
inelastic neutrino-nucleus scattering necessitates the inclusion
of a number of multipoles J . Although higher-order multipoles
have rather small contributions at low incoming neutrino
energies, these cannot be neglected at energies about tens of
MeV [31,32,40]. In the present study, multipoles up to J = 5
contributing to the cross section in Eq. (2) will be included
in calculations. In the specific case of the neutrino-nucleus
scattering in the neutral channel, the transition operators listed
above include the following form factors [33,62]:

(i) Vector form factors FV
1 , μV = FV

1 − 2MFV
2 ,

F
V (n)
1 (q2) = −1

2

(
1 + q2

(840 MeV)2

)−2

, (3)

F
V (p)
1 (q2) = 1

2
(1 − 4 sin2 θW )

(
1 + q2

(840 MeV)2

)−2

, (4)

μV (n,p)(q2) = μV (n,p)(0)

(
1 + q2

(840 MeV)2

)−2

. (5)

(ii) Axial vector form factor

F
(n,p)
A (q2) = ∓1

2
FA(0)

(
1 + q2

(1032 MeV)2

)−2

. (6)

(iii) Pseudoscalar form factor

F
(n,p)
P (q2) = 2mNF

(n,p)
A (q2)

q2 + m2
π

. (7)

The indices n, p denote the respective form factors for neutrons
and protons, θW denotes the Weinberg angle, sin2 θW =
0.2325, and the static values are FA(0) = −1.2617, μV (n)(0) =
−1.463, and μV (p)(0) = 1.054. In the present analysis the
strange quark content in the form factors has been neglected.
By employing the full operator structures in the transition
matrix elements, the inelastic neutrino-nucleus cross section
is evaluated using Eq. (2), with an additional quenching factor
included in the free-nucleon axial-vector coupling constant,
resulting in FA(0) = 1.0. This quenching corresponds to
additional factor 0.8 in FA [Eq. (6)]. The value of the
quenching depends on the effective interactions and the
model space under consideration, e.g., in the hybrid model
a quenching factor of 0.74 has been used [7], while 0.8
represents a reasonable value for the framework employed
in the present study [9]. In a recent study [9], the shell
model and nonrelativistic and relativistic (Q)RPA, prior to
the implementation to neutrino-induced reactions, have been
tested in modeling the GT+ and GT− transition strengths. It
has been shown that both in the GT+ and GT− channels the
quenching factor 0.8 in the axial vector coupling constant is
necessary to reach the experimentally measured GT strengths
(and the results from the shell model calculations which
include the quenching factor 0.74). Therefore we employ
FA(0) = 1.0 in neutrino-nucleus interaction studies in this
work.

The transition matrix elements between the initial and final
states in Eq. (2) are determined in a fully self-consistent

framework based on a relativistic nuclear energy density func-
tional [63,64]. Therein the nuclear ground state is described
with the relativistic Hartree-Bogoliubov (RHB) model, and
excited states are calculated using the relativistic quasipar-
ticle random phase approximation (RQRPA) [53,59]. The
application of relativistic nuclear energy density functional
is realized in terms of the self-consistent mean field theory
for nucleons and a minimal set of meson fields; isoscalar-
scalar σ meson (Jπ = 0+, T = 0), isoscalar-vector ω meson
(Jπ = 1−, T = 0), and the isovector-vector ρ meson (Jπ =
1−, T = 1), supplemented with the electromagnetic field.
The meson-nucleon interaction is included with a minimal
set of the interaction terms, where the vertex functionals
include an explicit dependence on the vector density. The
details of the RHB model based on this class of effective
density-dependent interactions are given in Ref. [65]. For
the model parameters that determine the density-dependent
coupling strength and the meson masses we employ the values
of the DD-ME2 parametrization, obtained by simultaneous
adjustment of the effective interaction to the binding energies,
charge radii, differences between radii of neutron and proton
density distributions for 12 spherical nuclei, and nuclear matter
properties at saturation density [66]. The pairing correlations
in open shell nuclei are described by the finite range Gogny
interaction, with parametrization D1S [67].

The RQRPA is formulated in the canonical single-nucleon
basis of the RHB model, and the residual interaction is derived
from the same nuclear energy density functional as in the RHB
model [59,68]. In applications to finite nuclei, the relativistic
models are used in the no-sea approximation, i.e., the Dirac
sea of states with negative energies does not contribute to
the densities and currents. In principle, one should also take
into account the negative energy states, i.e., allow for a
polarization of the vacuum. This leads to divergent terms,
which have to be removed by a proper renormalization. In the
case of finite nuclei, a local density approximation has been
introduced [69], and semiclassical extensions of this method
have been been used [70,71]. Recent approaches to the Dirac
sea include, e.g., the implementation of the imaginary time step
method [72] and construction of a no-sea effective theory from
the underlying quantum field theory [73]. One should note that
if one takes into account vacuum polarization, the parameter
set of the Lagrangian has to be readjusted, and with new force
one finds approximately the same results as in the case of
neglecting vacuum polarization. This means that by fitting the
parameters of the Lagrangian in the no-sea approximation a
large part of the effect of the vacuum polarization is already
taken into account. Most of the previous applications of the
relativistic mean field theory to finite nuclei are done in
the no-sea approximation [64], and the same approach is
employed in this work. Accordingly, the RQRPA includes not
only configurations composed from two-quasiparticle states
of positive energy, but also pair-configurations formed from
the fully or partially occupied states of positive energy and
empty negative-energy states from the Dirac sea. In the
implementation in modeling the weak interaction processes,
the major advantage of the RHB + RQRPA model is that it is
fully consistent in view of the effective interactions employed.
In the particle-hole (ph) and pairing (pp) channels, the same
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interactions are used in the RHB equations that determine the
canonical quasiparticle basis, and in the matrix equations of the
RQRPA. In this way, one can employ the same nuclear energy
density functional in a description of the weak processes
throughout the nuclide map without any additional adjustments
of the model parameters.

In the present study we further extend the RQRPA frame-
work outlined in Ref. [59] by including the pion contributions
in order to account both for the natural, (−1)J = π , and
unnatural, (−1)J+1 = π , parity excitations that take part in in-
elastic neutrino-nucleus scattering. As shown in Refs. [38,40],
unnatural parity excitations play an important role in the
overall neutrino-nucleus cross sections in the neutral channel,
and should be included in a framework aiming to provide
consistent and reliable results. Excitations of unnatural parity
states necessitate the inclusion of the residual interaction term
generated by the π meson (Jπ = 0−, T = 1) exchange. At
the Hartree level, i.e., in the RHB, the pion does not contribute
because it carries unnatural parity and the corresponding mean
field breaks parity. The pion major effect comes from the
second- and higher-order diagrams in the correlated two-pion
exchange. The quantum hadrodynamics model (QHD II)
included, in addition to (σ, ω, ρ) meson fields, a pseudoscalar
pion field as well. However, as pointed out in the RRPA
study in Ref. [74], the pseudoscalar pion couples too strongly,
resulting in total disruption of the ordering of the lowest excited
states. The RRPA analysis showed that the implementation of
pseudovector pion-nucleon coupling improves the spectrum in
comparison to experiment, especially for the pion-like states
Jπ = 0−, 2−, 4−.

Although the QHD has originally been introduced as
a renormalizable quantum field theory, for the purpose of
practical applications it is formulated as an effective, non-
renormalizable quantum field theory representing the low-
energy limit of the fundamental theory of strong interactions,
namely, quantum chromodynamics (QCD) [75]. In order to
allow a pseudovector pion-nucleon coupling, we drop the
requirement of renormalizability. As pointed out in Ref. [76],
a system of hadrons may in practice be better described
by non-renormalizable or nonlocal field theory than a local
renormalizable one. The pion-nucleon interaction with pseu-
dovector coupling is given in the Lagrangian density as

L(pv)
π = fπ

mπ

ψ̄γ5γ
μ∂μ �π �τψ (8)

and the propagator for the residual two-body interaction reads

D(pv)
π (q) = − 1

q2 + m2
π

. (9)

The standard value for the pseudovector pion-nucleon cou-
pling is f 2

π /4π = 0.08, while the measured pion mass amounts
mπ = 138 MeV. Since the one-boson-exchange interaction
with pseudovector coupling (8) contains a contact term,
one accounts an additional term for the δ force to remove
its contribution [53]. The two-body matrix elements of the
one-pion exchange interaction and the δ force in pseudovector
coupling are calculated in the momentum space representation
according to a detailed formalism given in Ref. [77]. When
calculating the neutrino-nucleus cross sections in Eq. (2),

for each transition operator ÔJ the matrix elements between
the ground state and the final state of target nucleus are
expressed in terms of single-particle matrix elements between
quasiparticle canonical states, the corresponding occupation
factors vμ,uμ and forward- and backward-going ampli-
tudes X, Y , obtained by the diagonalization of the RQRPA
matrix [59],

〈Jf ||ÔJ ||Ji〉 =
∑
μμ′

{
XJ0

μμ′ 〈μ||ÔJ ||μ′〉 + (−1)jμ−jμ′ +J

×Y J0
μμ′ 〈μ′||ÔJ ||μ〉 }

(uμvμ′ + (−1)J vμuμ′).

(10)

All relevant transitions between the |0+〉 ground state and |J±
f 〉

final states are taken into account in the following calculations.

III. RESULTS AND DISCUSSION

We have employed the framework introduced in Sec. II in
modeling the neutral-current neutrino-nucleus scattering for a
set of target nuclei of interest for neutrino detector response
and understanding the role of neutrinos in supernova evolution.
In particular, the cross sections have been calculated as a
function of the incoming neutrino energies for 12C, 40Ar, 56Fe,
56Ni, and 92−100Mo isotopes. The nuclear matrix elements are
obtained using the energy density functional with DD-ME2
parametrization [66], supplemented by the Gogny force D1S
to account for the pairing correlations in open shell nuclei
[67]. The overall cross section Eq. (2) includes a summation
over transitions to all possible final states characterized by
multipoles up to J = 5 with both positive and negative parity.

In Fig. 1 the calculated electron neutrino-nucleus cross
sections are showed for the inelastic scattering 12C(νe, ν

′
e)12C∗

for the range of neutrino energies Eν = 0–100 MeV. A
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FIG. 1. (Color online) Dependence of the neutrino-nucleus cross
sections for the scattering process 12C(νe, ν

′
e)

12C∗ on the incoming
neutrino energy. The cross sections with separate contributions from
various multipoles Jπ = 0±–3± and the total cross sections, including
Jπ = 0±–5± states, are shown. The overall cross sections (stars) are
shown in comparison to the QRPA based results (full circles) from
Ref. [38].
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FIG. 2. (Color online) The same as in Fig. 1, but for the scattering
process 40Ar(νe, ν

′
e)

40Ar∗. The overall cross sections (stars) are shown
in comparison to the QRPA based results (full circles) from Ref. [40].

complete set of multipole states Jπ = 0±–5± is taken into
account in the overall cross section. Various contributions
from the most relevant multipole states Jπ = 0±–3± to the
cross sections are also displayed separately. For comparison,
Fig. 1 also shows recent results for the overall cross sections
for 12C target, based on a QRPA with Bonn CD potential [38].
As one can observe in this figure, at low neutrino energies
the overall cross sections are dominated by 1+ transitions.
However, as the energy increases to 100 MeV, the role of
other multipoles becomes important, in particular those of 1−,
2−, and smaller contributions from 2+ states. In the specific
case of neutrino energy Eν = 50 MeV, the present results are at
variance with Ref. [31], where the multipole contribution from
Jπ = 1− dominates over 1+. On the other hand, the multipole
composition of the cross sections is in qualitative agreement
with a recent study based on the QRPA [38]. The total cross
sections from the present study appear systematically larger
than the respective values obtained using the QRPA [38].
We turn to this discrepancy later in a discussion of the cross
sections.

In Fig. 2 the cross sections are shown for the scattering
process 40Ar(νe, ν

′
e)40Ar∗. In comparison to 12C, the interplay

between various multipoles becomes more involved. Although
at low energies 1+ transitions dominate, at Eν above ≈
40 MeV, 1− and 2− multipoles have the largest contributions.
Neutrino-induced reactions with 40Ar have been studied in
detail in a recent work based on QRPA [40], in view of their
relevance for detecting core-collapsing supernovae neutrinos.
For comparison, the respective QRPA results from Ref. [40] are
also shown in Fig. 2. The total cross sections from the present
analysis appear up to an order of magnitude larger than the
QRPA [40] ones. Even though a variety of advanced theoretical
frameworks have been developed over the past years, one
can observe considerable theoretical uncertainty inherent in
the modeling of the neutral-current neutrino-nucleus cross
sections. These uncertainties originate to a large extent to
differences in single-particle spectra and respective transitions
induced by incoming neutrinos. In Ref. [32] it has been
shown that even within the same model, Hartree-Fock +
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FIG. 3. (Color online) The same as in Fig. 1, but for the scattering
process 56Fe(νe, ν

′
e)

56Fe∗.

RPA based on Skyrme functional, only a small adjustment
of single-particle parameters resulted in a 30% increase of
the overall neutral-current neutrino-nucleus cross sections.
Therefore, it is not surprising that an implementation of various
models using independent effective interactions could result
in large differences. Consequently, it is important to provide
a reasonable quantitative estimate of theoretical uncertainty
in the cross sections and to critically assess its effect in
modeling supernova evolution and neutrino detector response.
In a recent analysis of charged-current neutrino-nucleus cross
sections [9], by employing a variety of microscopic models and
effective interactions, it has been shown that one can provide a
reasonable estimate of the theoretical uncertainty in modeling
weak interaction processes.

Figures 3 and 4 show the neutral-current neutrino-56Fe and
-56Ni cross sections, respectively. Although the multipole com-
position of the cross sections appear in qualitative agreement,
some smaller differences can be noted due to differences in
neutron and proton numbers and respective excitation spectra.
However, one can conclude as a general property that J = 1
states are the most dominant, at lower energies Jπ = 1+
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FIG. 4. (Color online) The same as in Fig. 1, but for the scattering
process 56Ni(νe, ν

′
e)

56Ni∗.
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TABLE I. The cross sections for the 56Fe(νe, ν
′
e)

56Fe∗ process,
given in units of 10−42 cm2. The results of the present analysis without
(second column) and with the quenching factor (0.8) in FA (third
column) are compared with the results of the hybrid model [30]
(fourth column) and QRPA based model from Ref. [34] (fifth column).

Eν [MeV] w/o quench. w quench. Hybrid [30] QRPA [34]

10 2.91( −1) 1.87( −1) 1.91( −1) 1.01( +0)
20 1.51( + 1) 9.78( + 0) 6.90( + 0) 5.79( + 0)
30 6.26( + 1) 4.08( + 1) 2.85( + 1) 1.87( + 1)
40 1.57( + 2) 1.05( + 2) 7.86( + 1) 5.51( + 1)
50 3.24( + 2) 2.16( + 2) 1.72( + 2) 1.43( + 2)
60 5.76( + 2) 3.89( + 2) 3.20( + 2) 3.09( + 2)
70 9.29( + 2) 6.33( + 2) 5.25( + 2) 5.63( + 2)
80 1.40( + 3) 9.59( + 2) 7.89( + 2) 8.82( + 2)
90 2.00( + 3) 1.38( + 3) 1.11( + 3) 1.22( + 3)
100 2.76( + 3) 1.92( + 3) 1.49( + 3) 1.52( + 3)

dominates while at Eν � 65 MeV transitions Jπ = 1− have
the major contribution. In addition, at higher energies the
Jπ = 2− state also competes with Jπ = 1− for dominance.
At high-end neutrino energy ≈100 MeV other multipole
transitions also contribute to the overall cross sections, e.g.,
Jπ = 2±, 3±. The calculated cross sections for the scattering
process 56Fe(νe, ν

′
e)56Fe∗ are explored in detail in comparison

with the hybrid model [30] and QRPA based framework [34].
In Table I the RQRPA cross sections are given for a selection of
neutrino energies up to 100 MeV. For comparison, the results
are shown both with and without quenching in FA [Eq. (6)]. It
is interesting to observe that at low neutrino energies, where
the cross sections are rather sensitive on the fine details of the
transition spectra, the RQRPA (with quenching) and hybrid
model results are in excellent agreement. Although the cross
sections from the three models appear in the overall qualitative
agreement, in the energy region of relevance for the supernova
neutrino processes (≈20–40 MeV) the RQRPA cross sections
are up to a factor ≈1.5 (2.0) larger than the hybrid model and
QRPA results, respectively. It is interesting to note that a very
recent QRPA study resulted in averaged cross sections for 56Fe
roughly a factor of two larger than for the hybrid model [37].

The scattering cross sections in the neutral channel have
also been explored for a set of Mo isotopes, that recently
became interesting due to ongoing and future applications of
molybdenum in terrestrial neutrino detectors, MOON [12] and
NEMO [14], related to neutrino studies and search for the
events of neutrinoless double β decay. In the present analysis
the cross sections have been explored for the most abundant
even molybdenum isotopes, 92Mo, 94Mo, 96Mo, 98Mo, and
100Mo. The major contribution in natural molybdenum comes
from 98Mo, amounting 24.13%. Table II shows the neutral-
current neutrino-nucleus cross sections for even isotopes
92−100Mo in the range of incoming neutrino energy Eνe

=
10–100 MeV. By inspecting the numbers, one can observe a
rather small but systematic increase in the cross section values
for all neutrino energies. As can be expected, 100Mo has the
largest cross section of all shown so far simply by virtue of a
large number of active nucleons contributing to the collective
nuclear response in the scattering process. The respective

TABLE II. The total neutral-current neutrino-nucleus cross sec-
tions for even isotopes 92−100Mo, given in units of 10−42 cm2.

Eν [MeV] 92Mo 94Mo 96Mo 98Mo 100Mo

10 6.32( −2) 3.58( −1) 5.25( −1) 6.67( −1) 7.82( −1)
20 9.68( +0) 1.14( +1) 1.21( +1) 1.26( +1) 1.29( +1)
30 4.98( +1) 5.42( +1) 5.59( +1) 5.73( +1) 5.84( +1)
40 1.46( +2) 1.55( +2) 1.59( +2) 1.63( +2) 1.67( +2)
50 3.22( +2) 3.39( +2) 3.47( +2) 3.56( +2) 3.64( +2)
60 5.89( +2) 6.16( +2) 6.32( +2) 6.47( +2) 6.61( +2)
70 9.49( +2) 9.88( +2) 1.01( +3) 1.03( +3) 1.06( +3)
80 1.40( +3) 1.45( +3) 1.48( +3) 1.51( +3) 1.54( +3)
90 1.92( +3) 1.99( +3) 2.03( +3) 2.07( +3) 2.11( +3)
100 2.52( +3) 2.61( +3) 2.66( +3) 2.71( +3) 2.75( +3)

cross sections for 98Mo and their multipole compositions are
displayed in Fig. 5. For neutrino energies below 10 MeV
both 0− and 1+ states have relevant contributions. At Eν ≈
45 MeV one can observe the intersection between the main
components in the cross sections: 1+ at lower energies and 1−,
2− which dominate at higher energies. When comparing the
overall cross sections to those of other recent studies based
on QRPA [37,40], the present results are systematically larger,
but within an order of magnitude.

In order to explore theoretical uncertainties in modeling
neutral-current neutrino-nucleus reactions in more detail, in
Figs. 6 and 7 partial multipole contributions to the cross
sections for 96Mo target are shown at incoming electron
neutrino energies Eνe

= 20 and 100 MeV, respectively. The
results of the present study (RQRPA) are shown in comparison
with the cross sections recently obtained using QRPA (Balasi
et al., Ref. [37]). Although the total RQRPA cross sections are
somewhat larger than those of QRPA, one can observe to a
large extent excellent qualitative agreement between the two
models based on rather different backgrounds. At low neutrino
energy (Fig. 6) in both cases a largely dominant excitation
channel is 1+. The distribution over various multipoles appears
rather involved at Eνe

= 100 MeV. The main contribution is
obtained for 1− transitions, but other multipoles also show
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FIG. 5. (Color online) The same as in Fig. 1, but for the scattering
process 98Mo(νe, ν

′
e)

98Mo∗.
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FIG. 6. (Color online) Contributions of multipole transitions
J π = 0±–5± in the cross sections for the reaction 96Mo(νe, ν

′
e)

96Mo∗

at incoming electron neutrino energy Eνe
= 20 MeV. The results

of the present analysis (RQRPA) are compared with QRPA based
calculations (Balasi et al., Ref. [37]).

considerable effects, ranked in the order of importance as
follows: 1−, 2+, 2−, 1+, 3+, 3−, etc. The models based on
RQRPA and QRPA result in excellent agreement in relative
contributions of various multipoles, except for the anomaly
for the QRPA 1+ channel.

An important application of microscopic models of
neutrino-nucleus reactions is a description of the cross sections
for stellar neutrinos of relevance for the neutrino detectors
that could provide better insight into fascinating events in
the universe that produce neutrinos. The calculated cross
sections given as functions of the incoming neutrino energy
can be averaged over supernova neutrino flux, that is usually
described by the Fermi-Dirac distribution,

f (Eν) = 1

T 3

E2
ν

exp[(Eν/T ) − α] + 1
. (11)

Especially interesting is modeling the reaction rates of
neutrinos scattering on nuclei that can be used as targets

FIG. 7. (Color online) The same as in Fig. 6, but for the neutrino
energy Eνe

= 100 MeV.
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FIG. 8. (Color online) Neutral-current neutrino-nucleus cross
sections averaged over the supernova neutrino flux in the temperature
interval Tν = 2–10 MeV. Results are shown for 12C, 40Ar, 56Fe, 56Ni,
and 98Mo target nuclei.

for the supernova neutrino detectors, e.g., 40Ar, 56Fe, 56Ni,
Mo isotopes, etc. In this way, one can predict an expected
number of events in the detector that originate from a specific
stellar environment which determines the production of low-
energy neutrinos. In this work we calculate the neutral-current
neutrino-nucleus cross sections averaged over the supernova
neutrino flux in the range of temperatures Tν = 2–10 MeV, and
for the chemical potential α = 0. Figure 8 shows the respective
flux-averaged cross sections for a set of target nuclei, 12C,
40Ar, 56Fe, 56Ni, and 98Mo. As the temperature increases,
neutrinos with higher energies have larger contributions in
the averaged cross sections. The reason is twofold: (i) the
Fermi-Dirac distribution shifts toward higher energies with
increased temperature, and (ii) the neutrino-nucleus cross
sections increase with neutrino energy and contributions of
higher multipole transitions become significant. In general,
for heavier target nuclei the overall cross sections are more
pronounced. In view of the modern neutrino detectors based
on molybdenum, it is interesting to inspect the results of mi-
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FIG. 9. (Color online) The same as in Fig. 8 but for
92,94,96,98,100Mo target nuclei.
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croscopic calculations for the processes induced by supernova
neutrinos in the most abundant Mo isotopes. In Fig. 9 the
respective cross sections, obtained by folding with the Fermi-
Dirac distribution (11) for α = 0, are shown as a function
of temperature for even isotopes 92−100Mo. In accordance
with the cross sections shown in Table II, the averaged cross
sections increase with the number of neutrons in the Mo
isotope chain. However, the differences between the averaged
cross sections are more pronounced at lower temperatures due
to a larger sensitivity of the cross sections to the transitions
involved. For example, the ratio 〈σ (100Mo)〉/〈σ (92Mo)〉 =
(2.46, 1.31, 1.18, 1.14, 1.13) for the set of temperatures T =
(2, 4, 6, 8, 10) MeV, respectively.

IV. CONCLUSION

In summary, modeling of the neutrino-nucleus scattering
through the weak neutral current provides important data for
simulations of supernova evolution and detector response to
neutrinos emerging from explosive stellar events. Due to a lack
of experimental data, it is necessary to provide independent
microscopic insights into the properties of neutrino-induced
processes, and assess the theoretical uncertainty inherent to
the implementation of various nuclear effective interactions
which determine the transition matrix elements contribut-
ing to the neutrino-nucleus cross sections in the neutral
channel.

In this work the self-consistent framework for inelas-
tic neutral-current neutrino-nucleus scattering is introduced,
based on a systematic implementation of the relativistic
nuclear energy density functional with density dependent
meson-nucleon couplings. The cross sections have been for-
mulated using the weak interaction Hamiltonian and nuclear
properties of initial and excited states are obtained by using
the RHB + RQRPA, thus allowing studies of open shell target
nuclei that necessitate the explicit inclusion of the pairing
correlations. In order to include a complete set of natural
and unnatural parity excited states, the RQRPA residual
interaction has been extended using the pion contributions with
pseudovector coupling. In the present analysis, the neutral-
current neutrino-nucleus cross sections have been calculated
for the set of target nuclei, 12C, 40Ar, 56Fe, and 56Ni. In addition,
in view of the MOON [12] and NEMO [14] experiments
based on molybdenum detectors, the present study covered
the respective neutrino-nucleus cross sections in the neutral

channel for the most abundant even isotopes 92−100Mo. In
addition to Tables I and II presented in this work, complete
tables of all calculated cross sections with a small step in
neutrino energy are available on request.

A comparison of the cross sections and their multipole
composition appear to be in reasonable agreement with
previous studies, however, some quantitative differences have
been observed. From the comparison with calculations based
on the hybrid model and QRPA, the present analysis provides
an estimate of the theoretical uncertainty in modeling the cross
sections in the neutral channel due to the implementation of
various theoretical frameworks and nuclear effective interac-
tions. In the case of 56Fe, it is shown that the overall cross
sections exhibit variations, i.e., at some neutrino energies
the cross sections based on RQRPA, QRPA, and the hybrid
model can differ by a factor ≈2. This result, together with
discrepancies up to an order of magnitude between the RQRPA
and QRPA calculations shown for 12C and 40Ar, indicates
that in future studies one could critically assess the effect of
uncertainties emerging from the calculated cross sections on
supernova evolution models or neutrino detector response.

The main advantage of the present approach to the
neutrino-nucleus cross sections in the neutral channel is
the self-consistent modeling of all relevant transition matrix
elements involving open-shell nuclei, without any additional
adjustments of the model parameters to the nuclear target
under consideration. In this way, the present study paves
the way for systematic self-consistent large-scale calculations
of stellar neutrino-nucleus scattering in the neutral channel.
However, this goal would also necessitate a further extension
of the model, in order to include the finite temperature effects
in a description of nuclei and their excited states in the
supernova environment. As shown in Refs. [7,23], at finite
temperature the cross sections become somewhat enhanced
at lower neutrino energies. In the forthcoming study, the
present theoretical framework will be extended to include finite
temperature effects, typical for the supernova environment.
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