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Inclusive neutrino scattering off the deuteron from threshold to GeV energies
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Background: Neutrino-nucleus quasi-elastic scattering is crucial to interpret the neutrino oscillation results in
long baseline neutrino experiments. There are rather large uncertainties in the cross section, due to insufficient
knowledge on the role of two-body weak currents.
Purpose: Determine the role of two-body weak currents in neutrino-deuteron quasi-elastic scattering up to GeV
energies.
Methods: Calculate cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-
changing weak currents, from threshold up to GeV energies, using the Argonne v18 potential and consistent
nuclear electroweak currents with one- and two-body terms.
Results: Two-body contributions are found to be small, and increase the cross sections obtained with one-body
currents by less than 10% over the whole range of energies. Total cross sections obtained by describing the
final two-nucleon states with plane waves differ negligibly, for neutrino energies �500 MeV, from those in
which interaction effects in these states are fully accounted for. The sensitivity of the calculated cross sections to
different models for the two-nucleon potential and/or two-body terms in the weak current is found to be weak.
Comparing cross sections to those obtained in a naive model in which the deuteron is taken to consist of a free
proton and neutron at rest, nuclear structure effects are illustrated to be non-negligible.
Conclusion: Contributions of two-body currents in neutrino-deuteron quasi-elastic scattering up to GeV are
found to be smaller than 10%. Finally, it should be stressed that the results reported in this work do not include
pion production channels.
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I. INTRODUCTION

In the last few years, inclusive neutrino scattering from
nuclear targets has become a hot topic. Interest has been
spurred by the anomaly observed in recent neutrino quasielas-
tic scattering data on 12C [1,2], i.e., the excess, at relatively
low energies, of measured cross sections relative to theoretical
calculations. Analyses based on these calculations have led
to speculations that our present understanding of the nuclear
response to charge-changing weak probes may be incomplete
[3], and, in particular, that the momentum transfer dependence
of the axial form factor of the nucleon, specifically the cutoff
value of its dipole parametrization [4], may be quite different
from that obtained from analyses of pion electroproduction
data [5] and measurements of the reaction n(νμ, μ−)p in
the deuteron at quasielastic kinematics [6,7] and of νμp and
νμp elastic scattering [8] (�A � 1.20 GeV vs. �A � 1 GeV).
However, it should be emphasized that the calculations on
which these analyses are based use rather crude models of
nuclear structure—Fermi gas or local density approximations
of the nuclear matter spectral function—as well as simplistic
treatments of the reaction mechanism and should, therefore,
be viewed with skepticism.

*gshen@uw.edu

In this paper, we calculate cross sections for inclusive
neutrino scattering off the deuteron over a wide energy range,
from threshold up to 1 GeV. The motivations for undertaking
such a work are twofold. The first is to provide a benchmark
for studies of electroweak inclusive response in light nuclei
we intend to carry out in the near-future. The second
motivation has to do with plans [9], still under development, to
determine the neutrino flux in accelerator-based experiments
from measurements of inclusive cross sections on the deuteron.
In particular, in charged-current neutrino capture on deuterons,
the final states ppl− can be measured, in principle, very well.
Clearly, accurate predictions for these cross sections are crucial
for a reliable determination of the flux.

A number of studies of neutrino-deuteron scattering at low
and intermediate energies (�150 MeV) have been carried out
in past decades; see Ref. [10] for a review of work done up to
the mid 1990s. These efforts culminated in Nakamura et al.’s
2001 and 2002 calculations of the cross sections for neutrino
disintegration of the deuteron induced by neutral weak currents
(NCs) and charge-changing weak currents (CCs). These
calculations were based on bound- and scattering-state wave
functions obtained from last-generation realistic potentials
and used a realistic model for the nuclear weak current,
including one- and two-body terms. The vector part of this
current was shown to provide an excellent description of
the np radiative capture cross section for neutron energies
up to 100 MeV [11], while the axial part was constrained
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to reproduce the Gamow-Teller matrix element in tritium
β decay [12]. The Nakamura et al. studies have played an
important role in the analysis and interpretation of the Sudbury
Neutrino Observatory (SNO) experiments [13], which have
established solar neutrino oscillations and the validity of the
standard model for the generation of energy and neutrinos in
the sun [14].

In the present work, we use the same theoretical framework
as the authors of Refs. [11,12], but include refinements in the
modeling of the weak current—which, however, as shown in
Sec. V, will turn out to have a minor impact on the predicted
cross sections—and extend the range of neutrino energies up to
1 GeV. While the theoretical approach is essentially the same,
the way in which the calculations are carried out in practice
is rather different from that used in those earlier papers,
which relied on a multipole expansion of the weak transition
operators and evaluated the cross section by summing over a
relatively large number of final two-nucleon channel states.
In contrast, we evaluate, by direct numerical integrations, the
matrix elements of the weak current between the deuteron
and the two-nucleon scattering states labeled by the relative
momentum p (and in given pair spin and isospin channels), thus
avoiding cumbersome multipole expansions. Differential cross
sections are then obtained by integrating over p (and summing
over the discrete quantum numbers) appropriate combinations
of these matrix elements, i.e., by calculating the weak response
functions. The techniques developed here for the deuteron
should prove valuable when we attempt the Green’s function
Monte Carlo calculation of these response functions (or, rather,
their Laplace transforms [15]) in A > 2 nuclei.

This paper is organized as follows. In Sec. II and
Appendix A we present the neutrino and antineutrino differ-
ential cross sections expressed in terms of response functions,
while in Sec. III we provide a succinct description of the NC
and CC model. In Sec. IV we outline the methods used to obtain
the two-nucleon bound and continuum states and discuss the
numerical evaluation of the response functions. A variety
of results for the neutral-current processes 2H(νl, νl)pn and
2H(νl, νl)pn and the charge-changing processes 2H(νe, e

−)pp

and 2H(νe, e
+)nn are presented in Sec. V, including the

sensitivity of the calculated cross sections to (i) interaction
effects in the final states, (ii) different short-range behaviors of
the two-body axial weak currents, and (iii) different potential
models to describe the two-nucleon bound and continuum
states. In order to illustrate the effects of nuclear structure, we
compare these cross sections to those obtained in a naive model
in which the deuteron is taken to consist of a free proton and
neutron (the free nucleon cross sections are listed for reference
in Appendix B). Concluding remarks and an outlook are given
in Sec. VI.

II. INCLUSIVE NEUTRINO SCATTERING
OFF THE DEUTERON

The differential cross section for neutrino (ν) and antineu-
trino (ν) inclusive scattering off the deuteron, specifically the
processes

νl + d −→ νl + p + n, νl + d −→ νl + p + n, (2.1)

induced by NCs, and the processes

νl + d −→ l− + p + p, νl + d −→ l+ + n + n, (2.2)

induced by CCs, can be expressed as(
dσ

dε′d�

)
ν/ν

= G2

2π2
k′ε′ F (Z, k′) cos2 θ

2

[
R00 + ω2

q2
Rzz − ω

q
R0z

+
(

tan2 θ

2
+ Q2

2 q2

)
Rxx+yy ∓ tan

θ

2

√
tan2 θ

2
+ Q2

q2
Rxy

]
,

(2.3)

where G = GF for NC processes and G = GF cos θC for
CC processes, and the minus (plus) sign in the last term is
relative to the ν (ν) initiated reactions. Following Ref. [12], we
adopt the value GF = 1.1803 × 10−5 GeV−2 as obtained from
an analysis of super-allowed 0+ → 0+ β decays [16]—this
value includes radiative corrections—while cos θC is taken as
0.97425 from [17]. The initial neutrino four-momentum is
kμ = (ε, k), the final lepton four-momentum is kμ′ = (ε′, k′),
and the lepton scattering angle is denoted θ . We have also
defined the lepton energy and momentum transfers as ω =
ε − ε′ and q = k − k′, respectively, and the squared four-
momentum transfer as Q2 = q2 − ω2 > 0. The Fermi function
F (Z, k′) with Z = 2 accounts for the Coulomb distortion
of the final lepton wave function in the the charge-raising
reaction, and is given by

F (Z, k′) = 2 (1 + γ ) (2 k′ rd )2 γ−2 exp (π y)

∣∣∣∣�(γ + i y)

�(1 + 2 γ )

∣∣∣∣
2

,

γ =
√

1 − (Z α)2; (2.4)

it is set to 1 otherwise. Here y = Z α ε′/k′, �(z) is the gamma
function, rd is the deuteron radius (rd = 1.967 fm), and α

is the fine structure constant. Radiative corrections for the
CC and NC processes owing to bremsstrahlung and virtual
photon and Z exchanges have been evaluated by the authors
of Refs. [18,19] at the low energies (∼10 MeV) relevant for
the SNO experiment, which measured the neutrino flux from
the 8B decay in the sun. These corrections are neglected in
the present work, as its focus is on scattering of neutrinos
with energies higher than 100 MeV. We are not (or not yet,
at least) concerned with providing cross section calculations
with percentage accuracy in this regime. Finally, the nuclear
response functions are defined as

R00(q, ω)= 1

3

∑
M

∑
f

δ(ω + md − Ef )〈f |j 0(q, ω)|d,M〉

× 〈f |j 0(q, ω)|d,M〉∗, (2.5)

Rzz(q, ω)= 1

3

∑
M

∑
f

δ(ω + md − Ef )〈f |jz(q, ω)|d,M〉

× 〈f |jz(q, ω)|d,M〉∗, (2.6)
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R0z(q, ω)= 2

3

∑
M

∑
f

δ(ω + md − Ef )

× Re[〈f |j 0(q, ω)|d,M〉〈f |jz(q, ω)|d,M〉∗],

(2.7)

Rxx+yy(q, ω)= 1

3

∑
M

∑
f

δ(ω + md − Ef )

× [〈f |jx(q, ω)|d,M〉〈f |jx(q, ω)|d,M〉∗
+ 〈f |jy(q, ω)|d,M〉〈f |jy(q, ω)|d,M〉∗],

(2.8)

Rxy(q, ω)= 2

3

∑
M

∑
f

δ(ω + md − Ef )

× Im[〈f |jx(q, ω)|d,M〉〈f |jy(q, ω)|d,M〉∗],

(2.9)

where |d,M〉 and |f 〉 represent, respectively, the initial
deuteron state in spin projection M and the final two-nucleon
state of energy Ef , and md is the deuteron rest mass. The
three-momentum transfer q is taken along the z axis (i.e., the
spin-quantization axis), and jμ(q, ω) is the time component
(for μ = 0) or space component (for μ = x, y, z) of the NC
or CC.

The expression above for the CC cross section is valid in
the limit ε′ � k′, in which the lepton rest mass is neglected.
At a low incident neutrino energy, this approximation is not
correct. Inclusion of the lepton rest mass leads to changes
in the kinematical factors multiplying the various response
functions. The resulting cross section is given in Appendix A.

III. NEUTRAL AND CHARGE-CHANGING
WEAK CURRENTS

We denote NCs and CCs as j
μ

NC and j
μ

CC, respectively. The
former is given by

j
μ

NC = −2 sin2θWj
μ

γ,S + (1 − 2sin2θW )jμ
γ,z + jμ5

z , (3.1)

where θW is the Weinberg angle (sin2θW = 0.2312 [17]), j
μ

γ,S

and j
μ
γ,z denote, respectively, the isoscalar and isovector pieces

of the electromagnetic current, and j
μ5
z denotes the isovector

piece of the axial current (the z on the isovector terms indicates
that they transform as the z component of an isovector under
rotations in isospin space). Isoscalar contributions to j

μ

NC
associated with strange quarks are ignored, as experiments
at Bates [20] and JLab [21] have found them to be very small.

The CC is written as the sum of polar- and axial-vector
components,

j
μ

CC = j
μ
± + j

μ5
± , j± = jx ± ijy. (3.2)

The conserved-vector-current (CVC) constraint relates the
polar-vector components j

μ

b of the CC to the isovector
component j

μ
γ,z of the electromagnetic current via[

Ta, j
μ
γ,z

] = iεazbj
μ

b , (3.3)

where Ta are isospin operators. We now turn to a discussion
of the one- and two-body contributions to the NC and CC.

A. One-body terms

The isoscalar components of the one-body electromagnetic
current are given by

j 0
γ,S(i) =

[
GS

E(Q2)

2
√

1 + Q2/(4 m2)

− i
2 GS

M (Q2) − GS
E(Q2)

8 m2
q · (σ i × pi)

]
ei q·ri ,

(3.4)

j⊥γ,S(i) =
[
GS

E(Q2)

2 m
p⊥

i − i
GS

M (Q2)

4 m
q × σ i

]
ei q·ri , (3.5)

j
‖
γ,S(i) = j 0

γ,S(i) ω/q, (3.6)

and the corresponding isovector components of j
μ
γ,z are

obtained by the replacements

GS
E(Q2) −→ GV

E(Q2) τi,z, GS
M (Q2) −→ GV

M (Q2) τi,z,

(3.7)

where G
S/V

E and G
S/V

M are the isoscalar/isovector combinations
of the proton and neutron electric (E) and magnetic (M) form
factors, ri and pi are the position and momentum operators of
nucleon i, σ i and τi,z are its Pauli spin and isospin matrices,
and m is the nucleon mass (0.9389 GeV). Note that we have
decomposed jγ,S and jγ,z into transverse (⊥) and longitudinal
(‖) components to the momentum transfer q and have used
current conservation to relate the latter to the isoscalar
and isovector charge operators j 0

γ,S and j 0
γ,z. The isovector

components of the axial weak neutral current j
μ5
z are given by

j 05
z (i) = −GA(Q2)

4 m
τi,z σ i · [pi , ei q·ri ]+, (3.8)

j5
z(i) = −GA(Q2)

2
τi,z

[
σ i e

i q·ri − 1

4 m2

(
σ i

[
p2

i , ei q·ri
]
+

− [(σ i · pi) pi , ei q·ri ]+ − 1

2
σ i · q [pi , ei q·ri ]+

− 1

2
q [σ i · pi , ei q·ri ]+ + i q × pi ei q·ri

)]
, (3.9)

where GA is the nucleon axial form factor, and [. . . , . . .]+
denotes the anticommutator. The operators above include
terms of order (v/c)2 in the nonrelativistic expansion of the
single-nucleon covariant currents. These have been neglected
in Ref. [12]. The proton and neutron electromagnetic and
nucleon axial form factors are parametrized as

G
p

E(Q2) = GD(Q2), Gn
E(Q2) = −μn

Q2

4 m2

GD(Q2)

1 + Q2/m2
,

(3.10)

G
p

M (Q2) = μp GD(Q2), Gn
M (Q2) = μn GD(Q2), (3.11)

GD(Q2) = 1

(1 + Q2/�2)2
, GA(Q2) = gA(

1 + Q2/�2
A

)2 ,

(3.12)

from which the isoscalar and isovector combinations are
obtained as G

S/V

E,M = G
p

E,M ± Gn
E,M . The proton and neutron
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magnetic moments are μp = 2.793 and μn = −1.913 in units
of nuclear magnetons (n.m.), and the nucleon axial-vector
coupling constant is taken to be gA = 1.2694 [17]. The values
for the cutoff masses � and �A used in this work are 0.833
and 1 GeV, respectively. The former is from fits to elastic
electron scattering data off the proton and deuteron [22], while
the latter is from an analysis of pion electroproduction [5]
and neutrino scattering [6–8] data. Uncertainties in the Q2

dependence of the axial form factor, in particular, the value
of �A, could significantly impact predictions for the neutrino
cross sections under consideration. As mentioned earlier,
recent analyses of neutrino quasielastic scattering data on
nuclear targets [4] quote considerably larger values for �A, in
the range (1.20–1.35) GeV.

The polar-vector (jμ
±) and axial-vector (jμ5

± ) components
of the CC are obtained, respectively, from j

μ
γ,z and j

μ5
z by

replacing

τi,z/2 −→ τi,± = (τi,x ± τi,y)/2. (3.13)

However, in the case of j
μ5
± , in addition to the terms entering

Eqs. (3.8) and (3.9), we also retain the induced pseudoscalar
contribution, given by

j
μ5
± (i; PS) = −GPS(Q2)

2 m mμ

τi,± qμ σ i · q eiq·ri , (3.14)

where the induced pseudoscalar form factor GPS is
parametrized as

GPS(Q2) = − 2 mμ m

m2
π + Q2

GA(Q2). (3.15)

This form factor is not well known [23]. The parametrization
above is consistent with values extracted [24,25] from precise
measurements of muon-capture rates on hydrogen [26] and
3He [27], as well as with the most recent theoretical predictions
based on chiral perturbation theory [28]. This contribution
vanishes in NC-induced neutrino reactions.

B. Two-body terms

Two-body terms in NCs and CCs have been discussed in
considerable detail in Refs. [29–31] (and references therein).
We list the terms included in the present study—i.e., the subset
of those derived in the above references expected to give the
dominant two-body contributions to the processes of interest
here—in the following two subsections for clarity of presen-
tation and future reference in Sec. V. Unless stated otherwise,
they are given in momentum space, and configuration-space
expressions follow from

O(q) =
∫

ki

∫
Ki

∫
kj

∫
Kj

(2π )3 δ(ki + kj − q) ei ki ·(r′
i+ri )/2

× ei Ki ·(r′
i−ri )ei kj ·(r′

j +rj )/2ei Kj ·(r′
j −rj )O(ki , Ki , kj , Kj ),

(3.16)

where ki = p′
i − pi and Ki = (p′

i + pi)/2, pi and p′
i are the

initial and final momenta of nucleon i, and∫
p

≡
∫

dp
(2π )3

. (3.17)

These configuration-space operators are used in the calcula-
tions reported below.

1. Two-body vector terms

The two-body isovector current operator jγ,z(ij ) consists
of pseudoscalar- and vector-meson (referred to as π -like and
ρ-like) exchange and �-excitation terms,

jγ,z(ij ) =
∑

c=π, ρ, �

[ jγ,z(ij ; c) + i ⇀↽ j ]. (3.18)

The π -like and ρ-like exchange currents read

jγ,z(ij ; π ) = i GV
E(Q2)(τ i × τ j )z vπ (kj )

×
[
σ i − ki − kj

k2
i − k2

j

(σ i · ki)

]
σ j · kj , (3.19)

jγ,z(ij ; ρ) = −i GV
E(Q2)(τ i × τ j )z

[
vρ(kj ) σ i × (σ j × kj )

+ vρ(kj )

k2
i − k2

j

[(ki − kj )(σ i × ki) · (σ j × kj )

+ (σ i × ki) σ j · (ki × kj )

+ (σ j × kj ) σ i · (ki × kj )]

− vρS(kj )
ki − kj

k2
i − k2

j

]
, (3.20)

where

vπ (k) = vστ (k) − 2 vtτ (k), vρ(k) = vστ (k) + vtτ (k),

vρS(k) = vτ (k), (3.21)

and

vτ (k) = 4π

∫ ∞

0
r2dr j0(kr)vτ (r), (3.22)

vστ (k) = 4π

k2

∫ ∞

0
r2dr [j0(kr) − 1] vστ (r), (3.23)

vtτ (k) = 4π

k2

∫ ∞

0
r2dr j2(kr)vtτ (r). (3.24)

Here vτ (r), vστ (r), and vtτ (r) are the isospin-dependent
central, spin-spin, and tensor components of the two-nucleon
interaction (the AV18 in the present study), and jl(kr) are
spherical Bessel functions. The factor j0(kr) − 1 in the
expression for vστ (k) ensures that its volume integral vanishes.
In a one-boson-exchange (OBE) model, in which the isospin-
dependent central, spin-spin, and tensor interactions are caused
by π - and ρ-meson exchange, the functions vπ (k), vρ(k), and
vρS(k) simply reduce to

vπ (k) −→ − f 2
π

m2
π

h 2
π (k)

k2 + m2
π

, (3.25)

vρ(k) −→ −g2
ρ (1 + kρ)2

4 m2

h 2
ρ (k)

k2 + m2
ρ

, (3.26)
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vρS(k) −→ g2
ρ

h 2
ρ (k)

k2 + m2
ρ

, (3.27)

where mπ and mρ are the meson masses, fπ , gρ and κρ are
the pseudovector πNN , and vector and tensor ρNN coupling
constants, and the hadronic form factors are parameterized as

hα(k) = �2
α − m2

α

�2
α + k2

, α = π, ρ. (3.28)

While the AV18 interaction is not an OBE model, the effective
propagators vπ (k), vρ(k), and vρS(k) projected out of its vτ (k),
vστ (k), and vtτ (k) components are quite similar to those listed
above, with cutoff masses in the range (1.0–1.5) GeV. We
note that the π -like and ρ-like currents with the vπ (k), vρ(k),
and vρS(k) defined in Eq. (3.21) satisfy by construction the
current conservation relation with the AV18 τ , στ , and tτ

interaction components (for a discussion of the issue of current
conservation in relation to the momentum-dependent terms of
the AV18, see Ref. [31]).

The isovector �-excitation current is written in configura-
tion space as (for a derivation based on a perturbative treatment
of �-isobar degrees of freedom in nuclear wave functions, see
Ref. [29])

jγ,z(ij ; �) = −i
GγN�(Q2)

2 m (m − m�)
eiq·ri

×[v†
�N (ij ) q × Si Ti,z + adjoint], (3.29)

where S and T are spin- and isospin-transition operators
converting a nucleon into a � isobar and satisfying the identity

S† · A S · B = 2

3
A · B − i

3
σ · (A × B) , (3.30)

v�N (ij ) is the NN -to-�N transition potential,

v�N (ij ) = [
vστ

�N (rij ) Si · σ j + vtτ
�N (rij ) S�N

ij

]
Ti · τ j , (3.31)

S�N
ij is the tensor operator obtained by replacing σ i with Si ,

the regularized spin-spin and tensor radial functions vστ
�N (r)

and vtτ
�N (r) are defined as

vστ
�N (r) = fπf ∗

π

4π

mπ

3

e−x

x

(
1 − e−λ x2)

, (3.32)

vtτ
�N (r) = fπf ∗

π

4π

mπ

3

(
1 + 3

x
+ 3

x2

)
e−x

x

(
1 − e−λx2)2

, (3.33)

x = mπr , f ∗
π is the πN� coupling constant (f ∗

π = 2.19 fπ

from the width of the �), and the parameter in the short-
range cutoff function is taken as λ = 4.29 (from the AV18).
Finally, the γN� electromagnetic transition form factor GγN�

is parameterized as

GγN�(Q2) = μγN�(
1 + Q2/�2

�,1

)2
√

1 + Q2/�2
�,2

, (3.34)

where the transition magnetic moment μγN� is 3 n.m., as
obtained in an analysis of γN data in the �-resonance region
[32]. This analysis also gives ��,1 = 0.84 GeV and ��,2 =
1.2 GeV.

The two-body isoscalar current operator jγ,S(ij ) considered
in the present study only includes the contribution associated

with the ρπγ transition mechanism,

jγ,S(ij ) = jγ,S(ij ; ρπ ) + i ⇀↽ j, (3.35)

where

jγ,S(ij ; ρπ ) = −i Gρπγ (Q2) gρπγ

fπ

mπ

gρ

mρ

τ i · τ j

hρ(ki)

k2
i + m2

ρ

× hπ (kj )

k2
j + m2

π

(ki × kj ) σ j · kj , (3.36)

The combination of coupling constants gρπγ fπgρ is taken as
1.37, and the cutoff masses �π and �ρ as 0.75 and 1.25 GeV,
respectively, from a study of the deuteron magnetic form factor
[33]. The Q2 dependence of the electromagnetic transition
form factor Gρπγ (Q2) is modeled by using vector-meson
dominance,

Gρπγ (Q2) = 1

1 + Q2/m2
ω

, (3.37)

where mω is the ω-meson mass.
The two-body isovector and isoscalar electromagnetic

charge operators j 0
γ,z and j 0

γ,S consist of terms associated with
π -like and ρ-like exchanges,

j 0
γ,z/S(ij ) =

∑
c=π, ρ

[
j 0
γ,z/S(ij ; c) + i ⇀↽ j

]
, (3.38)

where

j 0
γ,z(ij ; π ) = FV

1 (Q2)

2 m
τz,j vπ (kj ) (σ i · q) (σ j · kj ), (3.39)

j 0
γ,z(ij ; ρ) = FV

1 (Q2)

2 m
τz,j vρ(kj ) (σ i × q) · (σ j × kj ) (3.40)

and

j 0
γ,S(ij ; π ) = FS

1 (Q2)

2 m
τ i · τ j vπ (kj ) (σ i · q) (σ j · kj ),

(3.41)

j 0
γ,S(ij ; ρ) = FS

1 (Q2)

2 m
τ i · τ j vρ(kj ) (σ i × q) · (σ j × kj ),

(3.42)

with vπ (k) and vρ(k) as defined in Eqs. (3.21). The nucleon
electromagnetic Dirac and Pauli form factors F

S/V

1 and
F

S/V

2 are obtained from

F
S/V

1 (Q2) = G
S/V

E (Q2) + η G
S/V

M (Q2)

1 + η
, (3.43)

F
S/V

2 (Q2) = G
S/V

M (Q2) − G
S/V

E (Q2)

1 + η
, (3.44)

with η = Q2/(4 m2).
The polar-vector components j

μ
± of the CC j

μ

CC are obtained
from j

μ
γ,z via CVC, which implies the replacements

(τ i × τ j )z −→ (τ i × τ j )± = (τ i × τ j )x ± i (τ i × τ j )y
(3.45)

in Eqs. (3.19) and (3.20),

Ti,z/2 −→ Ti,± = (Ti,x ± i Ti,y)/2 (3.46)
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in Eq. (3.29), and the replacement (3.13) in Eqs. (3.39)
and (3.40). Only the transverse components (perpendicular to
q) of the vector part of the NC and CC are explicitly included in
the calculations to follow. Their longitudinal components have
already been effectively accounted for by the replacement in
Eq. (3.6) (and the similar one for the isovector terms). Finally,
we note that in the study in Ref. [12] the ρ-meson exchange
and ρπ transition contributions to the two-body vector current
and π - and ρ-exchange contributions to the two-body vector
charge have been neglected. Furthermore, the π -exchange
and �-excitation currents are regularized by introducing a
monopole form factor (�π = 4.8 fm−1), which naturally leads
to a short-range behavior of these currents different from that
obtained here.

2. Two-body axial terms

The axial parts of NC and CC operators consist of
contributions associated with π - and ρ-meson exchanges, the
axial ρπ transition mechanism, and a �-excitation term

j5
a(ij ) =

∑
c=π, ρ, ρπ, �

[
j5
a(ij ; c) + i ⇀↽ j

]
, (3.47)

where the isospin component a is either z for NC or ± for
CC. The π - and ρ-meson exchange and ρπ transition axial
currents read, respectively,

j5
z(ij ; π ) = GA(Q2)

2 m

f 2
π

m2
π

h2
π (kj )

k2
j + m2

π

[(τ i × τ j )z σ i × kj

− τj,z(q + 2 i σ i × Ki)] σ j · kj , (3.48)

j5
z(ij ; ρ) = −GA(Q2)

2 m

g2
ρ (1 + kρ)2

4 m2

h 2
ρ (kj )

k2
j + m2

ρ

[(τ i × τ j )z

× [q σ i · (σ j × kj ) + 2 i (σ j × kj ) × Ki

− [σ i × (σ j × kj )] × kj ]

+ τj,z[(σ j × kj ) × kj

− 2 i[σ i × (σ j × kj )] × Ki]], (3.49)

j5
z(ij ; ρπ ) = −GA(Q2)

m
g2

ρ

hρ(ki)

k2
i + m2

ρ

hπ (kj )

k2
j + m2

π

(τ i × τ j )z

× [(1 + κρ) σ i × ki − 2 i Ki] σ j · kj , (3.50)

while the �-excitation axial current is obtained from [29]

j5
z(ij ; �) = − G∗

A(Q2)

2 (m − m�)
eiq·ri [v†

�N (ij ) Si Ti,z + adjoint],

(3.51)

where the (unknown) N -to-� axial form factor is parameter-
ized as

G∗
A(Q2) = g∗

A(
1 + Q2/�2

A

)2 . (3.52)

The charge-changing axial currents follow by replacing the
isospin operators as in Eqs. (3.13), (3.45) and (3.46). The
values for the π - and ρ-meson coupling constants are taken
from the CD-Bonn OBE model [34], f 2

π /(4 π ) = 0.075,
g2

ρ/(4 π ) = 0.84, and κρ = 6.1, while two different sets of

TABLE I. Contributions to the Gamow-Teller matrix element
in tritium β decay. The one-body (1-b) non-relativistic (NR) and
relativistic correction (RC) contributions are, respectively, from the
leading and 1/m2 terms in Eq. (3.9); the two-body (2-b) contributions
are from Eqs. (3.48)–(3.51). Set I (II) corresponds to the cutoff choices
�π = �ρ = 1.2 GeV (�π = 1.72 GeV and �ρ = 1.31 GeV). The
N -to-� axial coupling constant g∗

A for each set is obtained by fitting
the experimental value of the Gamow-Teller matrix element, given
by 0.955 ± 0.002 [25].

Set I Set II

1-b
NR +0.9213 +0.9213
RC −0.0085 −0.0085

2-b
π +0.0078 +0.0123
ρ −0.0042 −0.0055
ρπ +0.0123 +0.0196
� +0.0263 +0.0159

g∗
A/gA 0.614 0.371

cutoff masses �π and �ρ are used in the present work:
�π = �ρ = 1.2 GeV (set I), in line with the cutoff masses
extracted from the π -like and ρ-like exchanges associated with
the AV18 model; and �π = 1.72 GeV and �ρ = 1.31 GeV
(set II) from the CD-Bonn model. In the N -to-� axial current,
the Q2 dependence of the form factor is taken to be the
same as that of the nucleon; however, the value for the
transition axial coupling constant g∗

A is determined by fitting
the Gamow-Teller matrix element of tritium β decay [25] in a
calculation based on trinucleon wave functions corresponding
to the AV18/UIX Hamiltonian and the present model for the
axial current. The values corresponding to sets I and II of cutoff
masses are listed in Table I.

Finally, in the present study the axial charge operator is
taken to include only the pion-exchange term, whose structure
and strength are determined by soft-pion theorem and current
algebra arguments [35]

j 05
a (ij ) = j 05

a (ij ; π ) + i ⇀↽ j, (3.53)

where

j 05
a (ij ; π ) = −i

GA(Q2)

4 F 2
π

h2
π (ki)

k2
i + m2

π

(τ i × τ j )a σ i · ki , (3.54)

Fπ is pion-decay amplitude (Fπ = 93 MeV), and the Q2

dependence of the associated form factor is assumed to be the
same as in the nucleon. We conclude by noting that the model
described above for the two-body axial charge and current
operators is essentially the same as that used in Ref. [12],
apart from differences in the values of the cutoff masses for
the hadronic form factors of the meson-exchange terms and a
different treatment of the �-excitation current. However, it is
important to stress that both here and in Ref. [12] the two-body
axial currents are constrained to reproduce the experimental
tritium β-decay rate.
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IV. CALCULATION

The two-body scattering- and bound-state problems are
solved in momentum space with the methods discussed
in Ref. [36], which facilitates calculations with a nonlocal
potential such as CD-Bonn. We briefly summarize them in
the next two subsections for clarity. In the last subsection we
discuss the calculation of the weak-current matrix elements,
response functions, and cross sections.

A. The scattering-state problem in momentum space

In the case of scattering (setting aside the treatment of the
Coulomb interaction for the time being), we solve for the K

matrix in channel JST [hereafter, L is the relative orbital
angular momentum, S and T are the total spin and isospin,
and J is the total angular momentum, and (−1)L+S+T = −1],

KJST
L′L (p′; p) = vJST

L′L (p′; p) + 4μ

π

∫ ∞

0
dk k2

×
∑
L′′

vJST
L′L′′ (p′; k)

P
p2 − k2

KJST
L′′L (k; p), (4.1)

where μ is the two-nucleon reduced mass, P denotes a
principal-value integration, and vJST

L′L (p′, p) are the p-space
matrix elements of the potential, projected in channel JST

[36]. We should note the presence of the somewhat uncon-
ventional phase factor iL−L′

included in the matrix elements
vJST

L′L (p′; p) [36], which makes the states used here differ by a
factor iL from those usually adopted in nucleon-nucleon scat-
tering analyses. The integral equations (4.1) are discretized,
and the resulting systems of linear equations are solved by
direct numerical inversion. The principal-value integration is
eliminated by a standard subtraction technique [37]. Phase
shifts in channel JST are easily obtained from the on-shell S

matrix related to the (on-shell) K matrix by

SJST (p) = [1 + 2 i μp KJST (p; p)]−1

× [1 − 2 i μp KJST (p; p)], (4.2)

while r-space wave functions follow from

zJST
L′L (r; p)

=
[
j (pr) + 4μ

π

∫ ∞

0
dk k2 j (kr)

P
p2 − k2

KJST (k; p)

]
L′L′′

× [1 + 2 i μp KJST (p; p)]−1
L′′L, (4.3)

where the matrix [j (pr)]L′L ≡ δL′L jL(pr) has been intro-
duced for convenience. The (complex) radial wave functions
zJST
L′L (r) behave in the asymptotic region r → ∞ as

zJST
L′L (r; p) � 1

2

[
δL′Lh

(2)
L (pr) + h

(1)
L′ (pr)SJST

L′L (p)
]
, (4.4)

where the functions h
(1,2)
L (pr) are defined in terms of the

regular and irregular (nL) spherical Bessel functions as

h
(1,2)
L (y) = jL(y) ± i nL(y). (4.5)

In the calculation of the response functions that follows,
scattering wave functions with incoming-wave boundary

condition (−) are required. These are written as

ψ
(−)
SMS,T MT

(r; p) = 4π
√

2
∑

JMJ ,J�Jmax

∑
LL′

iL
′
Z

JMJ ∗
LSMS

(p̂)

× [
zJST ∗
L′L (r; p) − δL′L jL(pr)

]
YMJ

L′SJ (r̂) ηT
MT

+ 1√
2

[ei p·r − (−)S+T e−i p·r]χS
MS

ηT
MT

,

(4.6)

where χS
MS

and ηT
MT

are two-nucleon spin and isospin states,

respectively, YMJ

LSJ are standard spin-angle functions,

Z
JMJ

LSMS
(p̂) ≡

∑
ML

〈LML, SMS |JMJ 〉YLML
(p̂), (4.7)

and 〈LML, SMS |JMJ 〉 are Clebsch-Gordan coefficients. Note
that the wave function in Eq. (4.6) retains interaction effects
only in channels with J � Jmax and reduces to plane waves
for J > Jmax.

When the Coulomb interaction is present, we use the
method developed originally in Ref. [38], which allows us
to solve the pp scattering problem in momentum space [39].
It consists essentially in separating the potential into short-
and long-range parts vS and vL, where vL only includes the
Coulomb potential vC , and vS includes, in addition to vC ,
the nuclear potential v. Then the standard momentum-space
technique outlined earlier can be used to solve the problem
with vS , and the corresponding radial wave functions behave
as

zJS1
S;L′L(r; p) � aL

2

[
δL′Lh

(2)
L (pr) + h

(1)
L′ (pr)SJS1

S;L′L(p)
]
, (4.8)

where SJS1
S is the S matrix in this case (with T = 1), and

the aL are normalization constants. The wave functions zJS1
S;L′L

should match smoothly those relative to vS + vL, which behave
asymptotically as

zJS1
L′L (r; p) � 1

2

[
δL′Lh

(2)
L (ξ, pr) + h

(1)
L′ (ξ, pr) SJS1

L′L (p)
]
, (4.9)

where

h
(1,2)
L (ξ, y) = [FL(ξ ; y) ∓ GL(ξ ; y)] /y, ξ = α μ/p,

(4.10)

and FL and GL are the regular and irregular Coulomb
functions. Carrying out the matching for the functions and their
first derivatives leads to a relation between SJS1

S and SJS1 and
a determination of the normalization constants [39]. Finally,
pp scattering wave functions with incoming-wave boundary
conditions are written as in Eq. (4.6) with T ,MT = 1, 1 and
the replacement

zJS1∗
L′L (r; p) −→ e−i σL zJS1∗

L′L (r; p), (4.11)

where σL is the Coulomb phase shift,

σL = arg [�(L + 1 + i ξ )] . (4.12)

Hence, Coulomb interaction effects are retained only in
channels with J � Jmax and are ignored in those with J >

Jmax.
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B. The bound-state problem in momentum space

The deuteron wave function is written in r space as

ψM (r) =
∑

L=0,2

iL uL(r)YM
L11(r̂) η0

0, (4.13)

and the radial wave functions uL(r) (L = 0, 2) follow from

uL(r) = 2

π

∫ ∞

0
dp p2 jL(pr) uL(p). (4.14)

The p-space wave functions uL(p) are obtained from solution
of the homogeneous integral equations

uL(p) = 1

Ed − p2/(2μ)

2

π

∫ ∞

0
dk k2

∑
L′=0,2

v110
LL′(p; k) uL′(k).

(4.15)

Here, v110
L′L is the nuclear potential in the JST = 110 channel,

and Ed is the deuteron energy (Ed = −2.225 MeV). We again
note the unconventional phase iL in Eq. (4.13).

C. Matrix elements, response functions, and cross sections

The deuteron wave function in Eq. (4.13) is written, for
each spatial configuration r, as a vector in the spin-isospin
space of the two nucleons,

ψM (r) =
8∑

n=1

ψ
(n)
M (r)|n〉, (4.16)

where |n〉 = (p ↑)1 (n ↑)2, (n ↑)1 (p ↑)2, . . . , (n ↓)1 (p ↓)2

and ψ
(n)
M are the components of ψM in this basis. In NC-induced

processes, the scattering wave function in Eq. (4.6) is expanded
on the same basis; however, in CC-induced processes the
pp or nn scattering wave functions are expanded on the
(spin-only) basis |m〉 = ↑↑, ↓↑, ↑↓, and ↓↓ for pp or nn.
Matrix elements of the weak-current operators are written
schematically as

〈f |O|d,M〉 =
∫

dr
∑
n′,n

ψ
(n′) ∗
f (r) On′,n(r) ψ

(n)
M (r), (4.17)

where the momentum- and energy-transfer dependence is
understood. The spin-isospin algebra is performed exactly with
techniques similar to those developed in Ref. [40], while the
r-space integrations are carried out efficiently by Gaussian
quadratures. Note that no multipole expansion of the transition
operators is required. When momentum operators are present,
they are taken to act on the right (deuteron) wave function. For
example, the one-body axial charge operator is written as

O(r) ψM (r) −→ −GA(Q2)

4 m
[ei q·r/2 σ 1 · (−2 i∇ + q) τ1,z

+ 1 ⇀↽ 2]ψM (r), (4.18)

and the derivatives are evaluated numerically as

∇αψM (r) � ψM (r + δ êα) − ψM (r − δ êα)

2 δ
, (4.19)

where êα is a unit vector in the α direction, and δ is a small
increment. Once the matrix elements have been computed,

response functions are evaluated (in the laboratory frame) via

Rab(q, ω) = 1

3

∑
M

∑
SMS,T

∫
dp

(2π )3

1

2
δ(ω + md − E+ − E−)

× f
SMS,T MT ;M
ab (q, p), (4.20)

with

f
SMS,T MT ;M
ab (q, p) = 〈q, p; SMS, T MT | Oa(q, ω) |d,M〉

× 〈q, p; SMS, T MT | Ob(q; ω) |d,M〉∗,
(4.21)

where |q, p; SMS, T MT 〉 represents the final two-nucleon
scattering state with total momentum q and relative momentum
p, md is the deuteron rest mass, and E± are the nucleons’
energies in the final state,

E± =
√

(q/2 ± p)2 + m2. (4.22)

The factor 1/2 in Eq. (4.20) is to avoid double-counting the
contribution of the final states (which are antisymmetrized),
and the pair isospin T assumes the values T = 0, 1 with MT =
0 for NC processes, and T = 1 with MT = 1 or −1 for CC
processes. The δ function is integrated out, and

Rab(q, ω) = 1

24 π2

∑
M

∑
SMS,T

∫ +1

−1
dx p2

×
∣∣∣∣p + x q/2

E+
+ p − x q/2

E−

∣∣∣∣
−1

× f
SMS,T MT ;M
ab (q, p, x), (4.23)

where x = q̂ · p̂, and the magnitude p of the relative momen-
tum is fixed by energy conservation. This magnitude depends
on q, ω, and x. However, in order to reduce the computational
effort, the scattering states entering the product of matrix
elements fab are obtained at the energy

4 (p 2 + m2) = (ω + md )2 − q2, (4.24)

TABLE II. Total cross sections (in cm2) for NC- and CC-induced
processes on the deuteron as a function of the initial neutrino energy
ε, obtained with the AV18 potential and the inclusion of one- and
two-body terms in the weak current. The number in parentheses
(“−x”) denotes 10−x ; for instance, the entry 9.561( − 44) stands for
9.561×10−44 cm2.

ε (MeV) νl-NC νl-NC νe-CC νe-CC

5 9.561( −44) 9.363( −44) 3.427( −43) 2.831( −44)
10 1.104( −42) 1.053( −42) 2.680( −42) 1.242( −42)
20 6.965( −42) 6.285( −42) 1.547( −41) 9.562( −42)
30 1.833( −41) 1.568( −41) 4.058( −41) 2.508( −41)
40 3.555( −41) 2.885( −41) 7.995( −41) 4.685( −41)
50 5.892( −41) 4.546( −41) 1.348( −40) 7.403( −41)
60 8.839( −41) 6.495( −41) 2.338( −40) 1.057( −40)
70 1.240( −40) 8.699( −41) 2.949( −40) 1.409( −40)
80 1.657( −40) 1.111( −40) 4.036( −40) 1.790( −40)
90 2.131( −40) 1.369( −40) 5.320( −40) 2.191( −40)
100 2.657( −40) 1.640( −40) 6.631( −40) 2.606( −40)
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TABLE III. Total cross sections (in cm2) for NC-induced processes on the deuteron as a function of the initial neutrino energy ε, obtained
with the AV18 potential and the inclusion of one-body (1) and (one + two)-body (1 + 2) terms in the weak current. Results corresponding to
continuum final states (C) and plane-wave final states (PW) are listed.

ε (MeV) νl(1,C) νl(1 + 2,C) νl(1,PW) νl(1 + 2,PW) νl(1,C) νl(1 + 2,C) νl(1,PW) νl(1 + 2,PW)

100 2.577( −40) 2.657( −40) 2.469( −40) 2.510( −40) 1.604( −40) 1.640( −40) 1.607( −40) 1.619( −40)
150 5.720( −40) 5.935( −40) 5.626( −40) 5.752( −40) 3.003( −40) 3.075( −40) 3.096( −40) 3.124( −40)
200 9.435( −40) 9.846( −40) 9.384( −40) 9.650( −40) 4.345( −40) 4.460( −40) 4.526( −40) 4.576( −40)
250 1.324( −39) 1.389( −39) 1.324( −39) 1.369( −39) 5.531( −40) 5.695( −40) 5.778( −40) 5.858( −40)
300 1.683( −39) 1.772( −39) 1.689( −39) 1.754( −39) 6.546( −40) 6.762( −40) 6.842( −40) 6.962( −40)
350 2.003( −39) 2.116( −39) 2.014( −39) 2.101( −39) 7.420( −40) 7.687( −40) 7.752( −40) 7.917( −40)
400 2.279( −39) 2.414( −39) 2.295( −39) 2.403( −39) 8.186( −40) 8.504( −40) 8.545( −40) 8.760( −40)
450 2.509( −39) 2.664( −39) 2.531( −39) 2.660( −39) 8.856( −40) 9.221( −40) 9.255( −40) 9.520( −40)
500 2.703( −39) 2.874( −39) 2.727( −39) 2.874( −39) 9.503( −40) 9.916( −40) 9.906( −40) 1.023( −40)
550 2.861( −39) 3.046( −39) 2.888( −39) 3.051( −39) 1.010( −39) 1.056( −39) 1.052( −39) 1.089( −39)
600 2.989( −39) 3.185( −39) 3.019( −39) 3.196( −39) 1.068( −39) 1.118( −39) 1.110( −39) 1.153( −39)
650 3.093( −39) 3.299( −39) 3.125( −39) 3.315( −39) 1.124( −39) 1.178( −39) 1.166( −39) 1.214( −39)
700 3.176( −39) 3.390( −39) 3.210( −39) 3.411( −39) 1.178( −39) 1.237( −39) 1.221( −39) 1.275( −39)
750 3.243( −39) 3.463( −39) 3.278( −39) 3.489( −39) 1.232( −39) 1.295( −39) 1.275( −39) 1.333( −39)
800 3.297( −39) 3.522( −39) 3.333( −39) 3.552( −39) 1.284( −39) 1.352( −39) 1.327( −39) 1.391( −39)
850 3.340( −39) 3.570( −39) 3.377( −39) 3.603( −39) 1.337( −39) 1.408( −39) 1.379( −39) 1.448( −39)
900 3.374( −39) 3.608( −39) 3.412( −39) 3.644( −39) 1.388( −39) 1.463( −39) 1.430( −39) 1.504( −39)
950 3.403( −39) 3.639( −39) 3.440( −39) 3.678( −39) 1.440( −39) 1.518( −39) 1.481( −39) 1.559( −39)
1000 3.425( −39) 3.663( −39) 3.461( −39) 3.704( −39) 1.490( −39) 1.572( −39) 1.530( −39) 1.613( −39)

which only depends on q and ω. Finally, Gauss points (∼50)
are used to perform the x integration accurately. Extensive
and independent tests of the computer programs have been
completed successfully.

Total cross sections are obtained by direct integration of
Eq. (2.3) by evaluating the differential cross sections on a
grid of Gauss points in ε′ (the lepton final energy) and θ

(its scattering angle). There are kinematical constraints on the

allowed values for ε′ and θ , which follow from the requirement
p 2 � 0:

ε

√
ε′ 2 − m2

l cos θ � (ε + md ) (ε′ − ε),
(4.25)

ε = md (ε − εth) + ml(ml + 2 m)

ε + md

,

TABLE IV. Same as Table III, but for CC-induced processes.

ε (MeV) νe(1,C) νe(1 + 2,C) νe(1,PW) νe(1 + 2,PW) νe(1,C) νe(1+2,C) νe(1,PW) νe(1 + 2,PW)

100 2.567( −40) 2.606( −40) 2.362( −40) 2.370( −40) 6.424( −40) 6.631( −40) 5.908( −40) 6.023( −40)
150 4.688( −40) 4.751( −40) 4.487( −40) 4.491( −40) 1.516( −39) 1.574( −39) 1.440( −39) 1.477( −39)
200 6.736( −40) 6.830( −40) 6.555( −40) 6.568( −40) 2.605( −39) 2.719( −39) 2.525( −39) 2.603( −39)
250 8.677( −40) 8.822( −40) 8.520( −40) 8.567( −40) 3.775( −39) 3.958( −39) 3.699( −39) 3.833( −39)
300 1.059( −39) 1.082( −39) 1.044( −39) 1.056( −39) 4.928( −39) 5.186( −39) 4.854( −39) 5.052( −39)
350 1.254( −39) 1.286( −39) 1.239( −39) 1.261( −39) 5.981( −39) 6.315( −39) 5.923( −39) 6.189( −39)
400 1.455( −39) 1.499( −39) 1.441( −39) 1.475( −39) 6.920( −39) 7.320( −39) 6.876( −39) 7.210( −39)
450 1.663( −39) 1.722( −39) 1.650( −39) 1.698( −39) 7.778( −39) 8.248( −39) 7.704( −39) 8.102( −39)
500 1.879( −39) 1.952( −39) 1.865( −39) 1.930( −39) 8.524( −39) 9.053( −39) 8.410( −39) 8.868( −39)
550 2.100( −39) 2.189( −39) 2.087( −39) 2.169( −39) 9.064( −39) 9.636( −39) 9.005( −39) 9.519( −39)
600 2.323( −39) 2.428( −39) 2.309( −39) 2.410( −39) 9.556( −39) 1.017( −38) 9.504( −39) 1.007( −38)
650 2.548( −39) 2.671( −39) 2.537( −39) 2.656( −39) 9.966( −39) 1.062( −38) 9.920( −39) 1.053( −38)
700 2.777( −39) 2.916( −39) 2.766( −39) 2.905( −39) 1.031( −38) 1.098( −38) 1.027( −38) 1.091( −38)
750 3.005( −39) 3.161( −39) 2.995( −39) 3.152( −39) 1.059( −38) 1.129( −38) 1.055( −38) 1.124( −38)
800 3.232( −39) 3.403( −39) 3.223( −39) 3.399( −39) 1.082( −38) 1.154( −38) 1.079( −38) 1.150( −38)
850 3.456( −39) 3.645( −39) 3.448( −39) 3.643( −39) 1.101( −38) 1.176( −38) 1.099( −38) 1.173( −38)
900 3.678( −39) 3.882( −39) 3.671( −39) 3.885( −39) 1.118( −38) 1.193( −38) 1.116( −38) 1.192( −38)
950 3.896( −39) 4.116( −39) 3.890( −39) 4.122( −39) 1.131( −38) 1.208( −38) 1.129( −38) 1.208( −38)
1000 4.109( −39) 4.343( −39) 4.105( −39) 4.356( −39) 1.142( −38) 1.221( −38) 1.141( −38) 1.222( −38)
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FIG. 1. (Color online) Electromagnetic responses: longitudinal at q = 300 MeV (a); longitudinal at q = 500 MeV (b): transverse at
q = 300 MeV (c); transverse at q = 500 MeV (d). These are obtained with the AV18 potential and the inclusion of one-body (dashed line)
and (one + two)-body (solid line) terms in the nuclear electromagnetic charge operator and are compared to data. Also shown are the results
obtained with plane-wave (PW) final states.

where εth is the threshold energy for the initial neutrino (ε >

εth),

εth = (ml + 2 m)2 − m2
d

2 md

, (4.26)

ml is the rest mass of the final lepton (ml = 0 in the NC case),
and m = (mp + mn)/2 for NC reactions or m = mp (mn) for
charge-raising (charge-lowering) reactions. These kinematical
constraints imply

ml � ε′ � ε′
− for − 1 � cos θ � 0, (4.27)

ml � ε′ � ε′
+ for 0 � cos θ � 1, (4.28)

where the limits ε′
± are defined as

ε′
± =

ε ±
√

ε 2 − (1 − β 2 cos2 θ )(ε 2 + m2
l β 2 cos2 θ )

1 − β 2 cos2 θ
,

(4.29)

β = 1

1 + md/ε
.

In the case of NC reactions (ml = 0), they are simply given by

0 � ε′ � ε

1 − β cos θ
for − 1 � cos θ � 1. (4.30)

TABLE V. Total cross sections (in cm2) for NC- and CC-induced processes on the deuteron obtained in Ref. [12] and in the present work at
selected initial neutrino energies. Note that the values under the heading “this work” are slightly different from those reported in Table II, for
the reasons explained in the text.

ε

5 MeV 50 MeV 100 MeV

Ref. [12] This work Ref. [12] This work Ref. [12] This work

νl-NC 9.570( −44) 9.601( −44) 5.944( −41) 5.942( −41) 2.711( −40) 2.703( −40)
νl-NC 9.364( −44) 9.403( −44) 4.535( −41) 4.589( −41) 1.647( −40) 1.674( −40)
νe-CC 3.463( −43) 3.440( −43) 1.376( −40) 1.367( −40) 6.836( −40) 6.735( −40)
νe-CC 2.836( −44) 2.842( −44) 7.372( −41) 7.475( −41) 2.618( −40) 2.659( −40)
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FIG. 2. (Color online) Total cross sections for NC-induced
processes on the deuteron, obtained with the AV18 potential and
the inclusion of one-body (dashed line) and (one + two)-body (solid
line) terms in the weak current. Also shown are the total cross sections
obtained by retaining only the axial piece of the weak current. See
text for explanation.

V. RESULTS

Cross-section values obtained with the AV18 interaction
and the one- and two-body terms in the electroweak current
discussed in Sec. III are listed in Tables II–IV for initial
neutrino energies in the range (5–1000) MeV. The two-body
axial currents are those corresponding to set I in Table I. The
two-nucleon (NN ) scattering states are written as in Eq. (4.6):
they include interaction effects in channels with J � Jmax = 5
and reduce to spherical Bessel functions (i.e., plane waves) for
J > Jmax. The relative kinetic energy T = 2 (p2 + m2)1/2 −
2 m, where p is defined in Eq. (4.24), changes over a wide range
as the initial neutrino energy increases up to 1 GeV and the
final lepton energy and scattering angle vary over the allowed
kinematical regions: at ε = 50 MeV, 0 � T � 48 MeV; at

100 200 300 400 500 600 700 800 900 1000
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σ 
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m
2 )

Continuum
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ν NC

ν NC
_

FIG. 3. (Color online) Total cross sections for NC-induced
processes on the deuteron, obtained with the AV18 potential and
the inclusion of (one + two)-body terms in the weak current. Also
shown are the total cross sections obtained with plane-wave (PW)
final states.
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FIG. 4. (Color online) Same as Fig. 2, but for CC-induced
processes on the deuteron.

ε = 500 MeV, 0 � T � 445 MeV; and at ε = 1000 MeV,
0 � T � 819 MeV. These relative energies (at the larger
values of ε) are well beyond the range of applicability of all
modern realistic interactions, which are typically constrained
to fit NN scattering data up to pion production threshold
(T � 150 MeV). This is also the case for the AV18 of course,
although it is known [41] that this interaction reproduces quite
well phase shifts (at least in those channels where inelasticities
are small) up to T � 300 MeV.

As an additional caveat, we note that the present
theory cannot describe the inclusive cross section in the
pion-production region, for example, the �-excitation peak
region, as no mechanisms for (real) single- or multipion
production are included in it. However, it does reproduce
quite well the observed d(e, e′) inclusive cross section in
the quasielastic peak region at intermediate values of the
three-momentum transfer. This is illustrated in Figs. 1(a)–1(d),
where the longitudinal and transverse response functions RL

and RT obtained at Bates [42] by Rosenbluth separation of
(e, e′) data at momentum transfers of 300 and 500 MeV are
compared with theory. In these figures, we show separately the

100 200 300 400 500 600 700 800 900 1000
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10-38
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m
2 )
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PW

νe CC

νe CC
_

FIG. 5. (Color online) Same as Fig. 3, but for CC-induced
processes on the deuteron.
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TABLE VI. Total cross sections (in cm2) for NC- and CC-induced processes on the deuteron at selected initial neutrino energies, obtained
with the AV18 potential and the inclusion of one-body and set I or set II two-body terms in the weak current.

ε (MeV) νl-NC νl-NC νe-CC νe-CC

Set I Set II Set I Set II Set I Set II Set I Set II

5 9.561( −44) 9.541( −44) 9.363( −44) 9.344( −44) 3.427( −43) 3.421( −43) 2.831( −44) 2.826( −44)
50 5.892( −41) 5.873( −41) 4.546( −41) 4.530( −41) 1.348( −40) 1.353( −40) 7.403( −41) 7.380( −41)
100 2.657( −40) 2.652( −40) 1.640( −40) 1.636( −40) 6.631( −40) 6.621( −40) 2.606( −40) 2.600( −40)

response functions calculated with an electromagnetic current
including one-body only and (one + two)-body terms, as well
as those obtained by replacing the fully interacting NN states
of Eq. (4.6) with plane waves (curves labeled PW). Two-body
terms in RL give negligible contributions; those in RT lead to
an increase in the transverse strength over the whole quasielas-
tic region, which amounts to a few percent at the top of the
peak but becomes sizable (relative to the one-body response)
as the energy transfer ω increases well beyond the quasielastic
peak energy ωqe = (q2 + m2)1/2 − m. At these momentum
transfers, the quasielastic and � peaks in RT , the latter at ω� =
(q2 + m2

�)1/2 − m (m� = 1232 MeV), are well separated;
note, however, the rise seen in the data at q = 500 MeV and the
highest ω’s, presumably owing to (transverse) strength creep-
ing in from the �-peak region. Interaction effects in the NN

continuum states are important, particularly at low momentum
transfers and/or for energy transfers close to the threshold for
deuteron breakup. However, at the larger q values plane-wave
states provide response functions in the quasielastic region,
which are fairly close to those predicted by the exact scattering
states. Finally, we note that at q = 500 MeV and quasielastic
energies, theory overpredicts the measured longitudinal
response. As a consequence, the total integrated longitudinal
strength—the Coulomb sum rule—obtained from these
data [40] is smaller than calculated. On the other hand, there is
excellent agreement between the theoretical and the measured
Coulomb sum rules at q = 300 (and 400) MeV [40].

In Table II the columns labeled νl-NC and νl-NC refer to
the NC-induced reactions in Eq. (2.1), those labeled νe-CC
and νe-CC refer to CC-induced reactions in Eq. (2.2), and the
initial neutrino energy is between 5 MeV (close to threshold)
and 100 MeV. In this energy range the cross sections change
rapidly, by 3–4 orders of magnitude, and interaction effects
in the final scattering states are important. Two-body terms
in the vector and axial pieces of the weak current increase

the one-body cross section typically by 2–3% for both NC-
and CC-induced reactions, in agreement with the results in
Ref. [12].

There are differences between the present calculations and
those of Nakamura et al. [12]—mostly having to do with the
model for the weak current—which, however, lead to only
small numerical differences in the predicted cross-section
values, as shown below. As remarked in Sec. III B, the authors
of that work ignore the relativistic corrections proportional
1/m2 in the one-body axial current (3.9) and use a different
short-range parametrization for the two-body vector and
axial currents than adopted here. In addition, the cutoff
masses entering the nucleon form factors have values slightly
different from those listed in Sec. III A. In order to have a
more meaningful comparison with the results of that work,
we carried out a calculation of the NC- and CC-induced cross
sections at three representative initial neutrino energies, in
which we removed the relativistic correction in the one-body
axial current and changed the cutoff mass values in the nucleon
form factors so as to match those used in Ref. [12]. Inspection
of Table V shows that the two calculations are typically within
less than 1% of each other. This level of agreement should be
viewed as satisfactory, given the different ways in which the
two calculations are carried out in practice. The authors of
Ref. [12] rely on a multipole expansion of the cross section,
whereas we compute the matrix elements entering the various
response functions by direct numerical integrations, which
avoid the need for introducing (cumbersome) multipole expan-
sions of the weak transition operators. Of course, the present
calculations are computationally intensive: evaluation of the
NC cross sections requires about 40 min per neutrino energy on
512 processors and similar times for each of the two CC cross
sections.

The calculated cross sections for NC- and CC-induced re-
actions are listed, respectively, in Tables III and IV for incident

TABLE VII. Total cross sections (in cm2) for NC-induced processes on the deuteron at selected initial neutrino energies, obtained with
the AV18 or CD-Bonn (CDB) potentials and the inclusion of one-body terms (1) only and both one- and two-body terms (1 + 2) in the weak
current.

ε (MeV) νl-NC νl-NC

AV18(1) CDB(1) AV18(1 + 2) CDB(1 + 2) AV18(1) CDB(1) AV18(1 + 2) CDB(1 + 2)

50 5.747( −41) 5.791( −40) 5.892( −41) 5.847( −40) 4.449( −41) 4.484( −40) 4.546( −41) 4.519( −40)
100 2.577( −40) 2.597( −40) 2.657( −40) 2.638( −40) 1.604( −40) 1.617( −40) 1.640( −40) 1.633( −40)
500 2.703( −39) 2.715( −39) 2.874( −39) 2.858( −39) 9.503( −40) 9.553( −40) 9.916( −40) 9.895( −40)
1000 3.425( −39) 3.442( −39) 3.663( −39) 3.659( −39) 1.490( −39) 1.496( −39) 1.572( −39) 1.572( −39)
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FIG. 6. (Color online) Differential cross section for NC-induced
processes on the deuteron, obtained with the AV18 potential and the
inclusion of one- and two-body terms in the nuclear weak current, as
a function of the final lepton energy. The incident neutrino energy is
100 MeV. The final lepton angle is indicated in each panel. The solid
(black) curve represents neutrino-induced processes; the dashed (red)
curve, antineutrino-induced processes.

neutrino energies between 100 and 1000 MeV. The columns
labeled (1,C) and (1 + 2,C) [(1,PW) and (1 + 2,PW)] list re-
sults obtained by including fully interacting (plane-wave) NN

final states and one-body only or (one + two)-body terms in the
weak current. These results are also displayed in Figs. 2–5. The
two-body contributions are small, less than 10% over the whole
energy range. Interaction effects in the final states are found
to be even smaller, which suggests that realistic estimates for
these cross sections on the deuteron (and possibly nuclei with
A > 2) at high energies may be obtained by approximating
the final nuclear states by plane waves, i.e., by employing the
nucleon momentum distribution in the deuteron (or the spectral
function in A > 2 nuclei). Finally, in Figs. 2 and 4 we also show
the results obtained by including only the axial piece in the
weak current. In this case, the interference response function
Rxy vanishes, and consequently, the νl and νl cross sections are
the same. For CC-induced reactions, owing to the charge de-
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FIG. 7. (Color online) Same as Fig. 6, but the incident neutrino
energy is 500 MeV.
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FIG. 8. (Color online) Same as Fig. 6, but the incident neutrino
energy is 900 MeV.

pendence of the NN final state (pp or nn) the neutrino-induced
CC reaction has a slightly larger cross section (a few percent)
even with only the axial piece in the weak current. We display
the axial contribution in the antineutrino-induced CC reactions
in Fig. 4. Axial contributions are larger than vector at low ener-
gies, �400–500 MeV, but become smaller than vector at higher
energies.

The sensitivity of the results on the model used for the
two-body axial current (set I or set II) and NN potential (AV18
or CD-Bonn) is investigated, respectively, in Tables VI and VII.
In both cases, the model dependence is found to be negligible.
The two-body vector currents are taken from the AV18, and
therefore their short-range behavior is not consistent with the
CD-Bonn interaction. This inconsistency, though, is of little
numerical import. Furthermore, because interaction effects in
the two-nucleon continuum appear to be negligible for neutrino
energies �100 MeV, the agreement of the calculated cross
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FIG. 9. Differential cross section for electron antineutrino-
induced CC processes on the deuteron, obtained with the AV18
potential and the inclusion of one- and two-body terms in the nuclear
weak current, as a function of the final lepton energy. The incident
antineutrino energy is 100 MeV. The final lepton angle is indicated
in each panel.
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FIG. 10. Same as Fig. 9, but the incident neutrino energy is
500 MeV.

sections between the AV18 and CD-Bonn merely reflects
the fact that the momentum distributions predicted by these
two potential models are very close to each other for relative
momenta �400 MeV.

In Figs. 6–14 we show the differential cross sections for
NC- and CC-induced reactions as a function of the final lepton
energy ε′ and scattering angle θ at three incident neutrino
energies, ε = 100, 500, and 900 MeV. The quasielastic peak
is located at a final energy ε′

qe given by

ε′
qe = ε

1 + (2 ε/m) sin2θ/2
, (5.1)

where we have neglected the lepton mass in the case of
CC processes. Therefore as θ changes from the backward
to the forward hemisphere, the quasielastic peak moves to
the right, i.e., towards higher and higher energies. Indeed, at
forward angles it merges with the threshold peak owing to the
quasibound 1S0 state. The latter peak is very pronounced at
low ε but becomes more and more suppressed by the form
factor ∼〈1S0|j0(q r/2)|d〉 as ε increases.
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FIG. 11. Same as Fig. 9, but the incident neutrino energy is
900 MeV.
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FIG. 12. Differential cross section for electron neutrino-induced
CC processes on the deuteron, obtained with the AV18 potential and
the inclusion of one- and two-body terms in the nuclear weak current,
as a function of the final lepton energy. The incident neutrino energy
is 100 MeV. The final lepton angle is indicated in each panel.

Finally, it is interesting to compare the results above with
those obtained in a naive model, in which the deuteron is
taken to consist of a free proton and neutron initially at rest.
The laboratory-frame cross sections of NC-induced processes
on the nucleon, and of CC-induced processes n(νe, e

−)p and
p(νe, e

+)n in the limit in which the final electron/positron mass
and proton-neutron mass difference are neglected, read [43](

dσ

dε′d�

)NC/CC

ν/ν

= G2 m2

8π2

(
ε′

ε

)2

δ(ε′ − ε′
qe)

[
ANC/CC

∓ s − u

m2
BNC/CC + (s − u)2

m4
CNC/CC

]
,

(5.2)

where G = GF or GF cosθC for NC or CC, the minus (plus)
sign in the second term is relative to the ν (ν) initiated reactions,
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FIG. 13. Same as Fig. 12, but the incident neutrino energy is
500 MeV.
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FIG. 14. Same as Fig. 12, but the incident neutrino energy is
900 MeV.

ε′
qe has been defined in Eq. (5.1), and s − u = 4mε − Q2 with

Q2 = 4εε′ sin2 θ/2. The structure functions A(Q2), B(Q2),
and C(Q2) for both NC and CC are given in terms of nucleon
form factors in Appendix B.

In the naive model, the ν- and ν-deuteron NC cross sections
are simply given by the sum of the corresponding proton and
neutron (NC) cross sections, while the ν-deuteron (ν-deuteron)
CC cross section is identified with the n(νe, e

−)p [ p(νe, e
+)n ]

cross section. The “model” differential cross sections as a
function of the final lepton scattering angle (after integrating
out the energy-conserving δ function) are illustrated in Fig. 15
at three incident energies (ε = 100, 500, and 900 MeV). The ν

and ν cross sections are about the same at forward angles, for
which Q2 is small; at backward angles, as ε and Q2 increase,
they both decrease owing to the fall-off in the form factors.
However, this fall-off is much more pronounced (orders of
magnitude) for the ν than for the ν cross sections. (At the
low energy of 100 MeV, the form factors do not change much
with angle and the variation with angle in the differential cross
section is mild; still, it decreases more in the ν than in the
ν channel.) These features are reflected in the deuteron cross
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_ |

FIG. 16. (Color online) The “model” (P + N) NC cross sections
for neutrino and antineutrino are compared with plane-wave one-body
(PW 1-body) results; see the text for explanation. Inset: Ratio of
neutrino NC to antineutrino NC cross section.

sections displayed in Figs. 6–14 (incidentally, in each panel of
these figures the “model” cross sections would be represented
by a δ function located at ε′

qe, corresponding to the energy of
the quasielastic peak).

In order to illustrate nuclear correlation effects in the
initial deuteron state, we compare the “model” ν and ν NC
cross sections with the plane-wave one-body results, shown in
Fig. 16, for which we use the physical deuteron state, plane
waves for the two-nucleon continuum states, and one-body
currents. In both ν and ν NC reactions, inclusion of nuclear
correlations in the initial state reduces the cross sections from
the naive model. In fact, a similar reduction in cross section
(owing to nuclear correlations) at about nuclear density for
uniform nuclear matter has been noticed, for example, in
Refs. [44,45]. However, these correlations increase the ratio
of ν to ν NC cross sections, as shown in the inset in Fig. 16.
Similar effects are also found in the ν and ν CC reactions at
low neutrino energies, as shown in Fig. 17. At higher energies,
nuclear correlations hardly affect these cross sections, and the
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FIG. 15. (Color online) The “model” NC (left) and CC (right) differential cross sections for neutrino (solid lines) and antineutrino (dashed
lines) energies of 100, 500, and 900 MeV, as functions of the final lepton scattering angle.
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FIG. 17. (Color online) Same as Fig. 16, but for CC cross sections.

naive and realistic models are in better agreement with each
other. The ratio of ν to ν CC cross sections is also increased
owing to nuclear correlations (see inset in Fig. 17). This fact
may have interesting implications for long-baseline neutrino
experiments aimed at extracting CP violating signals from
the detection of differences in the neutrino and antineutrino
channels.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have studied inclusive neutrino scattering
on the deuteron up to neutrino energies of 1 GeV, by using
a realistic description of two-nucleon interactions and weak
currents. Two-body terms in the latter increase the calculated
cross sections with one-body currents by less than 10% over the
whole energy region for both NC- and CC-induced processes.
Interaction effects in the two-nucleon continuum final state are
found to be negligible for neutrino energies �500 MeV. This
suggests that fairly realistic estimates for these cross sections
in light nuclei (and at relatively high neutrino energies) may
be obtained in calculations based on the plane-wave impulse
approximation. Even calculations in this limit, however, cannot
presently be carried out, as they require knowledge of nuclear
spectral functions over a wide range of missing momenta
and energies, and these are not yet available in light nuclei.
Nuclear correlation effects in the initial deuteron state are
found to be important. They reduce the ν and, to a larger
extent, ν cross sections over the whole range of energies
studied in this work and, therefore, significantly increase the
ν to ν cross-section ratio for both NC and CC reactions. In the
present work the pion-production channels are not included.
Experimentally they produce distinctive final states and make
important contributions to total neutrino cross sections above
pion-production threshold. It would be interesting to include
these channels in future.

It should be possible to use quantum Monte Carlo methods
[15] to study neutrino response functions, and associated sum
rules, in light nuclei within the same (realistic) dynamical
framework adopted here. Indeed, “exact” calculations of this
type [46] led to a quantitatively accurate description of the
quasielastic electromagnetic response functions measured in

A = 3 and 4 nuclei. In particular, they showed that the
charge-exchange character of the nucleon-nucleon interaction
leads to shifts of longitudinal and transverse strength at higher
excitation energies, thus providing a quenching of the response
in the quasielastic peak region. This mechanism, however,
is more than offset in the transverse channel by two-body
currents, in particular, those associated with pion exchange,
and hence the response is enhanced over the entire quasielastic
spectrum. It will be interesting to see the extent to which
these considerations remain valid in the weak sector probed in
neutrino scattering and will possibly provide an explanation
for the observed anomaly in the 12C data.
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APPENDIX A

The cross section for CC processes at low incident neutrino
energies in which the lepton mass cannot be neglected reads(

dσ

dε′d�

)
ν/ν

= G2

8 π2

k′

ε
F (Z, k′)[v00 R00 + vzz Rzz − v0z R0z

+ vxx+yy Rxx+yy ∓ vxy Rxy], (A1)

where the kinematical factors are given by

v00 = 2 ε ε′
(

1 + k′

ε′ cos θ

)
, (A2)

vzz = ω2

q2

[
m2

l + 2 ε ε′
(

1 + k′

ε′ cos θ

)]

+ m2
l

q2

[
m2

l + 2 ω (ε + ε′) + q2
]
, (A3)

v0z = ω

q

[
m2

l + 2 ε ε′
(

1 + k′

ε′ cos θ

)]
+ m2

l

ε + ε′

q
,

(A4)

vxx+yy = Q2 + Q2

2 q2

[
m2

l + 2 ε ε′
(

1 + k′

ε′ cos θ

)]

− m2
l

q2

[
m2

l

2
+ ω

(
ε′ + ε

)]
, (A5)

vxy = Q2 ε + ε′

q
− m2

l

ω

q
, (A6)

ml is the final lepton mass, and the response functions are
defined as in Eqs. (2.5)–(2.9). Note that

ε + ε′ =
√

2 m2
l + (k + k′)2 + Q2, (A7)
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and the cross section above is easily shown to reduce to
Eq. (2.3) in the limit ml = 0 and Q2 = 4εε′sin2θ/2.

APPENDIX B

In this Appendix, the structure functions entering NC- and
CC-induced processes on the nucleon are expressed in terms
of (nucleon) form factors. In the NC case, they read

ANC = 4 η
[
(1 + η)

(
F

N

A

)2 − (1 − η)
(
F

N

1

)2

+ η (1 − η)
(
F

N

2

)2 + 4 η F
N

1 F
N

2

]
, (B1)

BNC = 4 η F
N

A

(
F

N

1 + F
N

2

)
, (B2)

CNC = 1
4

[(
F

N

A

)2 + (
F

N

1

)2 + η
(
F

N

2

)2]
, (B3)

and η = Q2/(4 m2). The nucleon form factors F
N

i and F
N

A for
N = p or n are defined as

2 F
p/n

i = (1 − 4 sin2 θW ) F
p/n

i − F
n/p

i , (B4)

2 F
p/n

A = ∓GA, (B5)

where the proton and neutron electromagnetic form factors are,
respectively, F

p

i = (FS
i + FV

i )/2 and Fn
i = (FS

i − FV
i )/2,

with F
S/V

i defined in Eqs. (3.43) and (3.44) and the axial form
factor GA (with – for p and + for n) as defined in Eq. (3.12).
In the limit in which the final lepton mass and proton-neutron
mass difference are both neglected, the relations for the A,
B, and C structure functions remain valid for the CC case,
provided

F
N

i −→ FV
i , F

N

A −→ GA. (B6)
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