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Equation of state in a strongly interacting relativistic system
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We study the evolution of the equation of state of a strongly interacting quark system as a function of the
diquark interaction strength. We show that for the system to avoid collapsing into a pressureless boson gas at
sufficiently strong diquark coupling strength, the diquark-diquark repulsion has to be self-consistently taken into
account. In particular, we find that the tendency at zero temperature of the strongly interacting diquark gas to
condense into the system ground state is compensated by the repulsion between diquarks if the diquark-diquark
coupling constant is higher than a critical value λC = 7.65. Considering such diquark-diquark repulsion, a positive
pressure with no significant variation along the whole strongly interacting region is obtained. A consequence of
the diquark-diquark repulsion is that the system maintains its BCS character in the whole strongly interacting
region.
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I. INTRODUCTION

Shortly after the discovery of asymptotic freedom in QCD
[1], it was noted [2] that the superdense matter might consist of
weakly interacting quarks rather than of hadrons. Asymptotic
freedom implies that at very high baryon density, QCD is
amenable to perturbative techniques [3], and since the cores
of neutron stars are formed by superdense matter, possible ap-
plications of those results to astrophysics [2] were envisioned.
Later on, however, it was understood that the ground state of the
superdense quark system, a Fermi liquid of weakly interacting
quarks, is unstable with respect to the formation of diquark
condensates [4], a nonperturbative phenomenon essentially
equivalent to the Cooper instability of BCS superconductivity.
In QCD, one gluon exchange between two quarks is attractive
in the color-antitriplet channel. Thus, at sufficiently high
density and sufficiently small temperature T , quarks should
condense into Cooper pairs, which are color antitriplets. These
color condensates break the SU(3) color gauge symmetry
of the ground state producing a color superconductor. In
the late 90s the interest in color superconductivity (CS) was
regained once it was shown, on the basis of different effective
theories for low-energy QCD [5], that a color-breaking diquark
condensate of much larger magnitude than originally thought
may exist already at relatively moderate densities (of the order
of a few times the nuclear matter density) and therefore it
might be realized in compact stars. At densities much higher
than the masses of the u, d, and s quarks, one can assume the
three quarks as massless. In this asymptotic region the favored
state results to be the so-called color-flavor-locking (CFL)
state [5], characterized by a spin-zero diquark condensate
antisymmetric in both color and flavor.

Nevertheless, this picture breaks down at intermediate
densities due to the mismatch between the Fermi momenta
of different quarks produced by the strange quark mass Ms

and the constraints imposed by electric and color neutralities
[6]. That is, although the validity of the CFL phase at
asymptotically large densities is well established, the next
phase down in density is still a puzzle since, as a consequence
of the pairings with mismatched Fermi surfaces, the phase
exhibits chromomagnetic instabilities [7].

One possible scenario where this instability can be avoided
occurs if, in the region of moderate-low densities, the strong
coupling constant becomes sufficiently high (GD ≈ GS ≈
1/�2, with GD and GS denoting the diquark and quark-
antiquark coupling constants, respectively) [8,9]. On the
other hand, the increase of the coupling constant strength at
low density can modify the properties of the ground state
as indicated by the significant decrease of the Cooper-pair
coherence length, which can reach values of the order of the
interquark spacing [10]. As already found in other physical
contexts [11], this fact strongly suggests the possibility of
a crossover from a color-superconducting BCS dynamics
to a Bose-Einstein condensate (BEC) one [12–15], where
although the symmetry breaking order parameter (the diquark
condensate) is the same, the quasiparticle spectra in the two
regions are completely different. As we will show by numerical
calculations, in the BCS region, where the diquark coupling
is relatively weak, the energy spectrum of the excitations
has a fermionic nature, while in the strong-coupling region,
formed by the BEC molecules, the energy spectrum of the
quasiparticles is bosonic.

As mentioned above, the combination of high densities
and relatively low temperatures could exist in the dense cores
of compact stars. The cores of neutron star remnants from
supernovae collapse have densities several times larger than the
saturation density of nuclear matter and temperatures several
orders smaller than the superconducting gap. Under these
conditions diquark pairs can form and resist the evaporation
due to thermal effects. Then, it is natural to ask if a BEC of
diquark pairs can take place at the moderately high density
that the inner core of neutron stars can reach.

In this paper, we will show, through the mean-field analysis
of the equation of state (EoS) of a simple system with four-
fermion interactions, that by increasing the diquark coupling
strength the matter pressure decreases up to negative values
once the crossover from the BCS region to the BEC one takes
place. This result would hint that if the density decreases to
values where the coupling becomes sufficiently strong, the
matter pressure turns to be negative and the system becomes
unstable under the effect of gravity. Nevertheless, this is a
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naive picture that ignores the diquark-diquark interactions.
As was pointed out in Ref. [16], together with the fact that
there exists an attractive channel between quarks that favors
the diquark formation, there is, as a corollary, a diquark-
diquark repulsion. This repulsion is due to the cross-channel
unfavorable correlations between the quarks belonging to
different diquarks. Hence, when the diquark repulsion is
self-consistently taken into account in the EoS of this system,
the instability previously found in the strong coupling region
is removed, and the pressure is stabilized with no significant
variation throughout that region. The increase of the diquark
repulsion, which is produced by the lifting of the energy gap
in the strong coupling region, compensates the effect of the
decay of the chemical potential, that as known, makes an
important contribution to the EoS [17]. Yet, the price of the
stabilizing effect produced by the diquark repulsion is that
the Bose-Einstein nature of the strongly interacting system
under study is lost, as we will discuss below. Our finding is
calling attention on one hand to the necessity of including
the diquark-diquark repulsive potential in the studies of the
BCS-BEC crossover of strongly interactions, something that
has been ignored up to now in previous works, and on the
other hand, it is indicating that to include the diquark-diquark
repulsion can completely change the understanding of this
phenomenon in the context of strong interactions.

II. BCS-BEC CROSSOVER AND
QUASIPARTICLE SPECTRUM

Our main goal in this section is to determine through
a numerical analysis the threshold value of the attractive
coupling constant between quarks that marks the crossover
from the BCS to the BEC region in the frame of the simple
model under consideration.

For our investigation, we consider a simplified pure fermion
system represented by the four-fermion interaction Lagrangian
density of Ref. [12]:

L = ψ̄(iγ μ∂μ + γ0μ − m)ψ + g

4
(ψ̄iγ5Cψ̄T )(ψT Ciγ5ψ).

(1)

In Eq. (1), C = iγ0γ2 is the charge-conjugation matrix, m the
fermion mass, μ the chemical potential defining the Fermi
energy, and g the attractive coupling constant in the JP = 0+
channel that parametrizes the strength of the interaction.
Varying the strength of g yields the crossover from BCS
(for a weak g) to BEC (for a strong g). The results we will
obtain should not qualitatively change when additional internal
fermion degrees of freedom, other than spin, are considered.
It is due to the fact that the essence of the phenomenon under
investigation is uniquely related to the change in the nature of
the spectrum of the quasiparticles, which is determined by the
variation of the diquark-pair binding energy as a function of
the coupling constant strength.

After introducing the Hubbard-Stratonovich transformation
with gap parameter � = 〈gψT Ciγ5ψ/2〉, we have that the
system free energy at finite temperature in the mean-field

approximation is

�T = − 1

β

∞∑
n=0

∫
d3k

(2π )4 T r ln[βG−1 (iωn, k)] + �2

g
, (2)

where G−1(iωn, k) is the inverse propagator in Nambu-
Gor’kov space in the field basis �T = (ψ,ψC), with ψC =
Cψ

T
being the charge-conjugate spinors,

G−1(iωn, k) = (ωn + μσ3)γ0 − γ · k − m + iγ5�σ+
+ iγ5�

∗σ−. (3)

Here, ωn = (2n + 1)π/β are the fermion Matsubara fre-
quencies, and σ± = σ1 ± iσ2, with σ1 and σ2 denoting the
corresponding Pauli matrices. After taking the trace and the
sum in Matsubara frequencies in Eq. (2) it is obtained in the
zero-temperature limit

�0 = −
∑
e=±1

∫
�

d3k

(2π )3 εe
k + �2

g
, (4)

where � is an appropriate momentum cutoff to regularize the
momentum integral in the ultraviolet, and the quasiparticle
energy spectrum, εe

k , is given by

εe
k =

√
(εk − eμ)2 + �2, εk =

√
k2 + m2, e = ±. (5)

The spectra corresponding to different e = ± values denote
the particle (e = +) and antiparticle (e = −) contributions.

A stable phase must minimize the free energy with respect
to the variation of the gap parameter ∂�0/∂� = 0. Then, from
Eq. (4) we obtain the gap equation

1 = g

∫
�

d3k

(2π )3

[
1

2ε+
k

+ 1

2ε−
k

]
. (6)

As usual in the study of the BCS-BEC crossover we will
consider a canonical ensemble where the particle number
density nF = −∂�0/∂μ is fixed through the Fermi momentum
PF as nF = P 3

F /3π2. Then, from Eq. (4) we get

P 3
F

3π2
= −

∫
�

d3k

(2π )3

[
ξ+
k

ε+
k

− ξ−
k

ε−
k

]
, (7)

with

ξ±
k = εk ∓ μ. (8)

Now, we solve numerically the system of Eqs. (6) and (7)
to find the gap � and chemical potential μ, which correspond
to different values of the coupling constant g. We scale the
theory parameters so to guarantee a relativistic regime that
simulates a quark gas at moderate densities. That is, PF /� =
0.3, m/� = 0.2. The results for � and μ as functions of
g, in the interval 0.06 > g̃ > 2, with g̃ = g�2, and for � =
602.3 MeV, are shown in Figs. 1 and 2, respectively. From
Fig. 1 we see that with increasing coupling strength, the energy
gap � becomes larger. This suggests that the binding energy
of the diquark condensate approaches that of a Bose-Einstein
condensate (with a smaller coherence length ξ ∼ 1/�) at
stronger coupling. To corroborate that this is the case, we
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FIG. 1. (Color online) Energy gap � vs the coupling constant
g̃ = g�2 for a free-diquark gas.

should observe the behavior of the chemical potential with
increasing coupling strength in Fig. 2.

As known, the condition μ < m is characteristic of a
relativistic Bose gas [18]. From Fig. 2 we see that for this
simple model there exists a critical value for the coupling
constant g̃cr ∼ 1.1 beyond which the condition μ < m is
satisfied. Hence, the quasiparticle spectrum corresponding to
coupling constants smaller and larger than g̃cr should corre-
spond to fermion-like and boson-like behaviors, respectively.
In Fig. 3, we have plotted the quasiparticle spectra, ε+

k ,
corresponding to different values of the coupling constant. The
gap � and chemical potential μ entering in the quasiparticle
spectrum (5) are obtained as solutions of Eqs. (6) and (7)
for each value of g. From their graphical representations
in Fig. 3, we can see that, for the spectra corresponding to
g̃ = 0.06 and 0.9, the minimum of their dispersion relations
occurs at k = (μ2 − m2)1/2, with excitation energy given
by the gap �, a behavior characteristic of quasiparticles
in the BCS regime. On the other hand, for g̃ = 2, the
minimum of the corresponding spectrum occurs at k = 0,
with excitation energy [(μ − m)2 + �2]1/2, which is typical
of bosonic-like quasiparticle. Therefore, it is corroborated that
g̃cr is the threshold value for the BCS-BEC crossover in this
model. In other words, for g̃ < g̃cr , we have μ > m and the
quasiparticles exhibit fermionic-like modes, while for g̃ > g̃cr ,
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FIG. 2. (Color online) Chemical potential μ and mass m vs g̃ =
g�2 for a free-diquark gas.
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FIG. 3. (Color online) ε+
k vs k plotted for different g̃ = g�2 values.

we have μ < m and the quasiparticles are characterized by
bosonic-like modes.

We should underline that the obtained value of the critical
coupling for the BCS-BEC crossover (g̃cr ∼ 1.1) is in the
allowed range of values for the strong coupling regime of QCD,
where g̃ = g�2 is expected to be of the order of the quark-
antiquark coupling GS�

2 [8]. As found in Ref. [19], once fixed
the up and down quark masses with equal values mu = md =
5.5 MeV, the four observables of vacuum QCD with values,
mπ = 135.0 MeV, mK = 497.7 MeV, mη′ = 957.8 MeV, and
fπ = 92.4 MeV, are obtained for � = 602.3 MeV (which is
the value used in our calculations) and GS�

2 = 1.835.

III. UNSTABLE BEC FREE-DIQUARK REGION

To find the system EoS it is necessary to find the system
energy density and pressure. In the case we are investigat-
ing those magnitudes will depend on the coupling-constant
strength. Therefore, varying the values of g from g < gcr to
g > gcr we will be able to describe the EoS corresponding to
the BCS and BEC regimes, respectively.

The energy density and pressure are obtained respectively
from the 〈T00〉 and 〈Tii〉 components of the quantum-statistical
average of the energy momentum tensor. For an isotropic
system, as the one we are considering, the covariant structure
of the 〈Tμν〉 tensor is given as [20]

T

V
〈Tμν〉 = (�0 + B) gμν + (μnF + T S) uμuν, (9)

where V is the system volume, T the absolute temperature,
S the entropy, and uμ the medium 4-velocity with value
uμ = (1,

−→
0 ) in the rest frame. In Eq. (9) we introduced the bag

constant B to account for the energy difference between the
perturbative vacuum and the true one. In that way, we are mod-
eling what occurs in the case of quark matter, where the asymp-
totically free phase of quarks forms a perturbative regime
(inside a bag) which is immersed in the nonperturbative
vacuum. This scenario is what is called the MIT bag model
[21]. The creation of the bag costs free energy. Then, in the
energy density, the energy difference between the perturbative
vacuum and the true one should be added. Essentially, that is
the bag constant B characterizing a constant energy per unit
volume associated with the region where the quarks live. From
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FIG. 4. (Color online) Energy density ε and pressure p vs the
coupling strength g̃ = g�2 for a free-diquark gas.

the point of view of the pressure, B can be interpreted as an
inward pressure needed to confine the quarks into the bag.
In the numerical calculations we will take B1/4 = 145 MeV,
which is a value compatible with that found in the MIT model.

Then, the energy density and pressure of the system in the
zero-temperature limit are respectively calculated from

ε = �0 + μnF + B, p = −�0 − B. (10)

The results for ε and p are plotted in Fig. 4 versus the
coupling-constant strength g̃. There, we can see that the system
energy density is increasing with the coupling strength, while
the pressure is decreasing up to get negative values at coupling
constants corresponding to the BEC regime. The appearance
of a negative pressure for the diquark free gas in the BEC
region indicates that the free-diquark system is unstable.

IV. EQUATION OF STATE OF SELF-INTERACTING
DIQUARKS

The system pressure decay in the BEC region obtained in
Fig. 4 is an expected result since the absence of repulsion
between the diquarks makes their Bose-Einstein condensation
inevitable with the corresponding decrease of the matter
pressure. Nevertheless, as we will show in this section, the
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FIG. 5. (Color online) Energy gap �, chemical potential μ, and
mass m vs the coupling constant g̃ = g�2 for a self-interacting
diquark gas with λ = 27.8.

contribution of the diquark-diquark repulsion in the EoS of
the strongly interacting system compensates the decreasing
tendency due to the Bose-Einstein condensation and conse-
quently rendering a constant pressure throughout the strongly
interacting region.

The modeling of self-interacting diquarks in the context of
a φ4 boson theory was initially developed in Ref. [22] and then
applied to different situations in Ref. [23]. In our case, it can
be achieved by introducing a λ�4 term in the free energy (2):

�T = − 1

β

∞∑
n=0

∫
d3k

(2π )4
T r ln[βG−1(iωn, k)] + �2

g
+ λ�4.

(11)

Hence, the system energy density and pressure given in
Eq. (10) become

ε = �0 + λ�4 + μnF + B, p = −�0 − λ�4 − B.

(12)

A possible value for the coupling constant λ was estimated
as λ = 27.8 in Ref. [22]. It was found taking into account
the quark interactions in the context of a modified P -matrix
formalism of Jaffe and Low [24].

The values for � and μ obtained for λ = 27.8 from the
modified gap equation after including the diquark-diquark
repulsive interaction term

1 = g

∫
�

d3k

(2π )3

[
1

2ε+
k

+ 1

2ε−
k

]
− 2λg�2 (13)

and Eq. (7) are given in Fig. 5.
The repulsive interaction between diquarks makes a signif-

icant contribution to the energy density and pressure (12) as
can be seen comparing Figs. 4 and 6. From Fig. 6, it is apparent
that the instability produced by a negative pressure in the BEC
region disappears. The matter pressure now remains almost the
same in the whole strongly interacting region. In this scenario,
the repulsion between diquarks produce enough outward
pressure to elude the star collapse. On the other hand, this same
effect prevents the gas condensation into a zero-momentum
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FIG. 6. (Color online) Energy density ε and pressure p vs the
coupling strength g̃ = g�2 for a self-interacting diquark gas with
λ = 27.8.
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ground state at zero temperature. The fact that the diquark
repulsion prevails against the Bose-Einstein condensation is
reflected in the behavior of the system chemical potential that
now can never cross the constant m line in Fig. 5. As we
checked numerically, once the diquark repulsion is taken into
account, the condition μ < m is never reached. Hence, the
BCS phase is maintained for the whole interaction range.

If one considers arbitrary values of λ, one can show that
if the repulsion is weak enough (λ < λc = 7.65), the BEC
dynamics can be reached by increasing g, and consequently,
the system pressure becomes negative. On the contrary, if λ >

λc, the pressure is positive for the whole range of considered
g values. But in this last case one has μ > m for all those g

values, implying the absence of a BEC region. Notice that λc is
smaller than the estimated value λ = 27.8 [22]. In conclusion,
we find that there is no way to put together a BEC dynamics
with a positive pressure; meaning that a gravitational-bound
compact star cannot be formed by BEC quark molecules.

We should highlight that our approach is different from
that developed in Ref. [22]. In our case, the diquark repulsion
effect is treated in the EoS as a dynamical variable, which is
determined through the gap equation (13) and the number
density constraint (7); while in Ref. [22] the contribution
of the diquark repulsive potential to the energy density and
pressure was modeled by assuming an ad hoc Gaussian diquark
distribution for the occupation of the states with momenta
k > 0. In this way, it was prevented that at zero temperature
the ground state of the diquark gas condensed in the k = 0 state
characteristic of the Bose-Einstein condensation phenomenon
of a free boson gas.

V. SUMMARY AND FINAL REMARKS

The goal of this paper is to illustrate the behavior of a
diquark gas in the strong-coupling regime. We started by
considering a free diquark system. In this system we found
that as the strength of the attractive coupling between quarks
increases, the chemical potential transits from being larger than
the quark mass to being smaller, an indication of a crossover
from the BCS region to the BEC one. A consequence of the
crossover to BEC is that the matter pressure decays to zero,
and even reaches negative values, a sign that the BEC regime
cannot be realized in the interior of a neutron star.

We then considered whether this instability could be
removed by the introduction of a repulsive force between
diquarks. In this case, the pressure collapse can be prevented,
since a sufficiently strong (λ > λc) diquark-diquark repulsion
will hinder the overlapping of the diquarks in the ground
state. But the implications of reaching a stable state in the
strong diquark coupling regime is that the system maintains
its BCS nature for the whole g-value range. As shown then
by numerical calculations for λ = 27.8 > λc in particular, the
contribution of the diquark self-interaction is sufficient for
stabilizing the system that then acquires a sufficiently stiff
EoS (see Figs. 6 and 7) to prevent the collapse that would
be caused by the formation of a pressureless gas of diquark
molecules in the BEC region. The fact that the diquark negative
pressure prevents the formation of a Bose-Einstein diquark
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FIG. 7. (Color online) Equation of state of the strongly interacting
system with diquark-diquark repulsive interaction (λ = 27.8) for
different values of the coupling strength g̃ around the critical value
g̃cr .

condensate at zero temperature in the strongly interacting
region is substantiated by the condition μ > m for the whole
interacting region. Thus, a self-interacting diquark system will
not form a Bose gas.

The inclusion of the diquark-diquark negative pressure in
the strongly interacting system makes the EoS stiffer, as can
be corroborated from our results. This effect can be important
to accommodate quark matter into the EoS of neutron stars
of high masses, as for instance PSR J1614-2230 [25] with
an inferred value of 1.97 ± 0.04M� [26]. As known, when
quark or other degrees of freedom like hyperons or bosons
are considered, the corresponding EoS softens and it cannot
support highly massive compact stars [27], unless in the case
of quarks, if there exists a color superconducting phase with
strong interactions between the quarks [28]. Nevertheless, the
diquark-diquark repulsion has not been considered in previous
approaches, and its effects are worth investigating.

Nevertheless, we should mention that stars formed by
bosons (the so-called boson stars) have been theoretically
considered since long ago starting with Wheeler’s notion of
geons [29] (see Ref. [30] for recent reviews). A peculiarity of
those stars is that the internal degrees of freedom are bosonic,
so the mechanism to stabilize the star against its self-gravity
cannot be through the fermionic degeneracy pressure, but
by the limitations imposed by the Heisenberg uncertainty
principle for the mass and radius of the star.

The result we are reporting in the frame of the simple
model of Eq. (1) should be investigated in more realistic
models as those of Refs. [8,9] for strong-coupling regimes.
Nevertheless, we expect that the main outcome of this paper
will remain valid. That is, the system pressure will be stabilized
by the diquark repulsion. Our expectation is based on the
fact that, by increasing the coupling strength the gap will
increase so as to make significant the contribution of the
outward pressure associated with the diquark repulsive force.
A nontrivial problem that remains unsolved is to develop the
diquark-diquark interaction from first principles. We envision
that it will require starting from an extended effective theory
with a higher number of fermion interactions (as for example,
the eight-fermion interaction model introduced in Ref. [31])
that can give rise in principle to a self-interaction term between
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the diquark condensates. Such a study, however, is out of the
scope of the present work.

An interesting question to be studied in this scenario is
the possible effect of an applied magnetic field. As already
estimated in Ref. [20], magnetic fields of order 1019–1020 G
can coexist in the core of neutron stars with quark matter.
By increasing the magnetic field strength, � increases [32],
and the system is led to crossover from the BEC region to
the BCS one [14]. At very strong magnetic fields, when all
the particles are localized in the lowest Landau level, only
BCS diquarks are allowed [14]. On the other hand, the pure
magnetic contribution to the pressure is negative [33]. Thus,
the magnetic field will have a double effect in the pressure
whose consequences should be elucidated in the frame of the
strongly interacting system.

In those regions of relatively low densities there is of
course the possibility that the repulsion between the diquarks

catalyzes a phase transition to other ground-state configura-
tions such as a hadronic phase with a well-identified fermion
nature able to produce the degeneracy pressure needed to
compensate for the gravitational pull. Other possibilities to
be investigated are the viability, through their EoS, of some
inhomogeneous phases, such as those formed by density
waves [34], quarkyonic chiral spirals [35], inhomogeneous
Fulde-Ferrel state [36] or quark clusters in solid or liquid
states [37], which can in principle be realized in quark matter
at moderate density.
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