
PHYSICAL REVIEW C 86, 035203 (2012)

Experimental study of the P11(1440) and D13(1520) resonances
from the CLAS data on ep → e′π+π− p′

V. I. Mokeev,1,2,* V. D. Burkert,1 L. Elouadrhiri,1 G. V. Fedotov,2,3 E. N. Golovatch,2 R. W. Gothe,3 B. S. Ishkhanov,2 E. L.
Isupov,2 K. P. Adhikari,31 M. Aghasyan,20 M. Anghinolfi,21 H. Avakian,1 H. Baghdasaryan,38 J. Ball,10 N. A. Baltzell,4

M. Battaglieri,21 V. Batourine,1 I. Bedlinskiy,24 A. S. Biselli,13,32 C. Bookwalter,15 S. Boiarinov,1,24 W. J. Briscoe,17 W. K.
Brooks,1,36 D. S. Carman,1 A. Celentano,21 G. Charles,10 P. L. Cole,1,18 M. Contalbrigo,19 V. Crede,15 A. D’Angelo,22,35

A. Daniel,30 N. Dashyan,40 R. De Vita,21 E. De Sanctis,20 A. Deur,1 C. Djalali,3 D. Doughty,1,11 R. Dupre,4,† A. El Alaoui,4

P. Eugenio,15 S. Fegan,37 A. Fradi,23 K. L. Giovanetti,25 F. X. Girod,1 W. Gohn,12 L. Graham,3 K. A. Griffioen,39 B. Guegan,23

M. Guidal,23 L. Guo,14 K. Hafidi,4 H. Hakobyan,36,40 C. Hanretty,38 K. Hicks,30 D. Ho,8 M. Holtrop,28 Y. Ilieva,3,17 D. G.
Ireland,37 H. S. Jo,23 K. Joo,12 D. Keller,38 M. Khandaker,29 P. Khetarpal,14 A. Kim,26 W. Kim,26 A. Klein,31 F. J. Klein,1,9

S. Koirala,31 A. Kubarovsky,2,32 V. Kubarovsky,1 S. V. Kuleshov,24,36 N. D. Kvaltine,38 K. Livingston,31 H. Y. Lu,9,1 I. J. D.
MacGregor,37 Y. Mao,3 N. Markov,12 D. Martinez,18 M. Mayer,31 B. McKinnon,37 C. A. Meyer,8 T. Mineeva,12 M. Mirazita,20

H. Moutarde,10 E. Munevar,1 P. Nadel-Turonski,1 C. S. Nepali,31 A. I. Ostrovidov,15 L. L. Pappalardo,19 R. Paremuzyan,40,‡

K. Park,1,26 S. Park,15 E. Pasyuk,1,5 S. Anefalos Pereira,20 S. Pisano,20 O. Pogorelko,24 S. Pozdniakov,24 J. W. Price,6

S. Procureur,10 D. Protopopescu,37 B. A. Raue,1,14 G. Ricco,16,§ D. Rimal,14 M. Ripani,21 G. Rosner,37 P. Rossi,20 F. Sabatié,10
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The transition helicity amplitudes from the proton ground state to the P11(1440) and D13(1520) excited states
(γvpN∗ electrocouplings) were determined from the analysis of nine independent one-fold differential π+π−p

electroproduction cross sections off a proton target, taken with CLAS at photon virtualities of 0.25 < Q2 <

0.60 GeV2. The phenomenological reaction model was employed for separation of the resonant and nonresonant
contributions to the final state. The P11(1440) and D13(1520) electrocouplings were obtained from the resonant
amplitudes parametrized within the framework of a unitarized Breit-Wigner ansatz. They are consistent with
results obtained in the previous CLAS analyses of the π+n and π 0p channels. The successful description of a large
body of data in dominant meson-electroproduction channels off protons with the same γvpN∗ electrocouplings
offers clear evidence for the reliable extraction of these fundamental quantities from meson-electroproduction
data. This analysis also led to the determination of the long-awaited hadronic branching ratios for the D13(1520)
decay into �π (24%–32%) and Nρ (8%–17%).

DOI: 10.1103/PhysRevC.86.035203 PACS number(s): 11.55.Fv, 13.40.Gp, 13.60.Le, 14.20.Gk

I. INTRODUCTION

An extensive research program on nucleon resonance (N∗)
excitation is in progress using the CLAS detector in Hall B at
Jefferson Lab [1–5]. Studies of transition helicity amplitudes
from the proton ground state to its excited states (or γvpN∗
photo- and electrocouplings) represent a key direction in the
N∗ program with CLAS. Meson-electroproduction data off
nucleons in the N∗ region obtained with CLAS open up
an opportunity to determine the Q2 evolution of γvNN∗
electrocouplings in a combined analysis of various meson-
electroproduction channels. The Q2 evolution of γvNN∗
electrocouplings will allow us to pin down active degrees of
freedom in the N∗ structure at various distance scales and
to access nonperturbative strong-interaction mechanisms that
govern the excited nucleon state formation as bound systems
of quarks and gluons.

Theoretical and experimental studies of the electroexcita-
tion of nucleon resonances have a long history. Along with
the hadron masses and their partial decay widths, information
on the γvpN∗ electrocouplings played an important role
in the development of quark models in their contemporary
advanced relativistic version in light-front dynamics [6–12].
The picture of the nucleon and its excited states, which
seemed quite simply modeled with three relativistic constituent
quarks, turned out to be more complex. Recently obtained
electrocouplings for the P11(1440), D13(1520), and S11(1535)
states [13] showed that those quark models, which were
successful in describing the electrocouplings of these states
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for Q2 > 2.0 GeV2, failed to reproduce the results at smaller
photon virtualities of Q2 < 1.0 GeV2. Quark models with
flavor-conserving quark interactions are unable to describe the
small mass of the P11(1440) state [14] and the ordering of
P11(1440) and S11(1535) resonances [1]. Moreover, models
that treat the P11(1440) structure as just three constituent
quarks are unable to describe the large total P11(1440) decay
width of ≈300 MeV. These difficulties prompted a search for
additional contributions to the N∗ structure.

A general unitarity requirement imposes meson-baryon
dressing contributions to both resonance electromagnetic
excitation and hadronic decay amplitudes. Studies of meson-
baryon dressing contributions to γvpN∗ electrocouplings and
resonance hadronic decay amplitudes, carried out at the
Excited Baryon Analysis Center (EBAC) at Jefferson Lab
[15–22], have extended our insight into the spectrum and struc-
ture of excited nucleon states considerably. The contributions
from meson-baryon dressing to the P11(1440) and D13(1520)
electrocouplings were determined from a global analysis of the
world data on πN scattering and π+n, π0p electroproduction
off protons within the framework of the EBAC dynamical
coupled-channel approach (EBAC-DCC) [21].

This analysis showed that the contributions from meson-
baryon dressing to the γvpN∗ electrocouplings are maximal
at small Q2 and decrease with increasing photon virtualities
[15]. At Q2 < 1.0 GeV2 these contributions may even be
dominant. The meson-baryon cloud has a profound impact
on the resonance spectrum. For example, in the P11 partial
wave a single bare resonance pole located at W = 1.76 GeV,
being affected by meson-baryon dressing, splits into three
poles located on different Riemann sheets [19,20]. Two of
them with Re (W ) ≈ 1.36 GeV correspond to the physical
Roper resonance. The double-pole structure of the Roper
resonance was also observed in previous studies [23,24].
Meson-baryon dressing should be taken into consideration in
the interpretation of resonance electrocouplings as well as for
the excited nucleon spectrum.

Our studies of resonance electrocouplings at small photon
virtualities presented in this paper offer valuable information

035203-2

http://dx.doi.org/10.1103/PhysRevC.86.035203


EXPERIMENTAL STUDY OF THE P11(1440) AND D13(1520) . . . PHYSICAL REVIEW C 86, 035203 (2012)

to further explore the role of meson-baryon and quark
components in the N∗ structure. The separation between the
meson-baryon cloud and quark-core contributions within a
well-defined theoretical framework [25] can help pin down the
domain of photon virtualities where quark components are the
main contributor to the N∗ structure. This kinematic domain
is of particular interest for studies of hadrons from the first
principles of QCD, including lattice QCD (LQCD) [26–33]
and Dyson-Schwinger equation studies of QCD (DSEQCD)
[33–39].

The CLAS detector at Jefferson Lab (JLab) is a unique
large-acceptance instrument designed for the comprehensive
exploration of exclusive meson electroproduction. It offers
excellent opportunities for studying the electroexcitation of
nucleon resonances in detail and with precision. The CLAS
detector has provided the dominant portion of all data on meson
electroproduction in the resonance excitation region.

A variety of measurements of single-pion electroproduction
off protons, including polarization measurements, have been
performed at CLAS in a range of Q2 from 0.16 to 6 GeV2

[40]. The electroexcitation amplitudes for the low-lying
resonances P33(1232), P11(1440), D13(1520), and S11(1535)
were determined over a wide range of Q2 in a comprehensive
analysis of JLab-CLAS data on differential cross sections,
longitudinally polarized beam asymmetries, and longitudinal
target and beam-target asymmetries [13].

The combination of the large-acceptance CLAS detector
and the continuous electron beam from the Continuous Elec-
tron Beam Accelerator Facility (CEBAF) made it possible to
measure π+π−p electroproduction cross sections with nearly
full kinematic coverage for this three-body final hadron state
[41,42]. These are the most extensive data sets on unpolarized
π+π−p electroproduction cross sections obtained so far.
These data allowed for the first time the projection of nine
one-dimensional differential cross sections, each sensitive to a
different combination of resonance and background strength.
The data of [41] were collected in the mass range 1.31 < W <

1.56 GeV and with photon virtualities 0.25 < Q2 < 0.6 GeV2.
A good description of these data was achieved within the
framework of a phenomenological Jefferson Laboratory–
Moscow State University (JM) reaction model [43], which
allowed us to establish the mechanisms contributing to this
exclusive reaction. The presence and strength of the contribut-
ing π+π−p electroproduction mechanisms were established
by studying their kinematical dependencies and correlations
in different one-fold differential cross sections.

In this work we present results on the electroexcitation
of the P11(1440) and D13(1520) states, obtained from the
analysis of data on π+π−p electroproduction off protons
[41]. The analysis was carried out by employing the JM
reaction model [43], which was further developed to provide
a framework for the determination of γvpN∗ electrocouplings
from a combined fit of unpolarized differential cross sections.
In previous studies [43] we did not attempt to isolate the
contributions from resonances. In the analysis reported in this
paper, we employ the JM model with the goal of isolating
the resonant contributions for the individual differential cross
sections. For the description of resonant amplitudes, we
updated the Breit-Wigner (BW) parametrization, making it

consistent with the restrictions required by the general unitarity
condition. The reliable evaluation of the resonant contributions
enabled the determination of the γvpN∗ electrocouplings for
the P11(1440) and D13(1520) states from charged double-pion
electroproduction off protons. This complements the results
from Nπ electroproduction in an independent channel.

Analyses of different exclusive channels are essential
for a reliable extraction of resonance parameters. Currently
the separation of resonant and nonresonant parts of the
electroproduction amplitudes can be done only within phe-
nomenological reaction models. Therefore, the resonance
parameters extracted from the meson-electroproduction data
fit may be affected by the model assumptions, and their cred-
ibility should be further examined. Nonresonant mechanisms
in various meson-electroproduction channels are completely
different, while the γvNN∗ electrocouplings are the same.
Independent analyses of different exclusive channels make it
possible to test whether they give consistent results for the
resonance electrocouplings. Most nucleon resonances decay
into both Nπ and Nππ final states. Studies of resonance
electroexcitations in these channels with completely different
nonresonant contributions offer independent information on
N∗ electrocouplings. Therefore, a successful description of
the data on π+n, π0p, and π+π−p electroproduction off
protons with consistent N∗ electrocoupling values provides
clear evidence for the reliable extraction of these quantities
from meson-electroproduction data.

Studies of the P11(1440) resonance in π+π−p electro-
production off protons offer the additional opportunities to
improve our knowledge on electrocouplings of this ≈300 MeV
broad state. In contrast to Nπ electroproduction channels,
the P33(1232) resonance does not directly contribute to the
resonant parts of the π+π−p electroproduction amplitude.
Hence, the influence of the P33(1232) resonance on the
extracted electrocouplings of the P11(1440) resonance is much
weaker.

The requirement of Q2-independent N∗ hadronic decay
amplitudes in π+π−p electroproduction provides constraints
on the Nππ partial decay widths. This makes possible access
to the π� and ρp partial hadronic decay widths of the
P11(1440) and D13(1520) in the measurements of π+π−p

electroproduction off protons.

II. PHENOMENOLOGICAL MODEL JM FOR
EVALUATION OF γv pN∗ ELECTROCOUPLINGS

The phenomenological meson-baryon model JM was de-
veloped to describe π+π−p electroproduction off protons
[43–48] with the primary objective of determining the res-
onance γvpN∗ electrocouplings and the π� and ρp partial
hadronic decay widths from a combined fit to all measured
observables. In our current analysis of the CLAS π+π−p

electroproduction data [41] the JM model was used to separate
the resonant and nonresonant contributions to differential cross
sections and to access the electrocouplings and π�, ρp decay
widths of the P11(1440) and D13(1520) resonances. Here we
briefly discuss the basic ingredients of the JM model that are
relevant to the objectives of this paper.
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A. Kinematics and cross sections

At a given invariant mass W and photon virtuality Q2,
the γvp → π+π−p reaction can be fully described as a
five-fold differential cross section d5σ/d5τ , where d5τ is
the phase-space volume of the five independent variables
in the center-of-mass (CM) system of the final π+π−p

state. There are many possible choices [49] of the five
independent variables. After defining Mπ+p, Mπ−p, and Mπ+π−

as invariant mass variables of the three possible two-particle
pairs in the π+π−p system, we adopt the following three
assignments:

(1) d5τ1 = dMpπ+dMπ+π−d�π−dα[p′π+][pπ−], where �π−

(θπ− , ϕπ− ) are the final π− spherical angles with respect
to the direction of the virtual photon, and α[p′π+][pπ−] is
the angle between plane B defined by the momenta of
the final p′π+ pair and plane A defined by the momenta
of the initial proton and the final π−;

(2) d5τ2 = dMpπ+dMπ+π−d�p′dα[π+π−][p′p], where �p′

(θp′ , ϕp′) are the final proton spherical angles with
respect to the direction of the virtual photon, and
α[π+π−][p′p] is the angle between plane B

′
defined by

the momenta of the π+π− pair and plane A defined by
the momenta of the initial and final protons;

(3) d5τ3 = dMpπ+dMpπ−d�π+dα[p′π−][pπ+], where �π+

(θπ+ , ϕπ+ ) are the final π+ spherical angles with respect
to the direction of virtual photon, and α[p′π−][pπ+] is the
angle between plane B

′′
defined by the momenta of the

final p′π− pair and plane A
′′

defined by the momenta
of the initial proton and the π+.

All frame-dependent variables are defined in the final hadron
CM frame.

The emission angles for the final-state particles in the case
of the first assignment are shown in Fig. 1. This choice is most
suitable for describing π+π−p electroproduction through the
π−�++ intermediate state, which is the dominant contributor
of all isobar channels in the kinematic region covered by the
data [41]. For the other assignments the emission angles of
the final hadrons are analogous to the ones given in Fig. 1.
The relations between the momenta of the final-state hadrons
and the five variables of the first assignment can be found in
Ref. [41].

The π+π−p electroproduction data have been collected
in the bins of a seven-dimensional space. As mentioned
above, five variables are needed to fully describe the final
hadron kinematics, while to describe the initial-state kine-
matics two others variables, W and Q2, are required. The
huge number of seven-dimensional bins over the reaction
phase space (≈100 000 bins) does not allow us to use
the correlated multifold differential cross sections in the
analysis of electroproduction processes, where the statistics
decrease drastically with the photon virtualities Q2. More
than half of the five-dimensional phase-space bins of the final
hadrons are not populated due to statistical limitations. This
is a serious obstacle for any analysis method that employs
information on the behavior of multifold differential cross
sections. We therefore use the following one-fold differential
cross sections in each bin of W and Q2 covered by the

(a)
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e

e

γ

p
p
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θπ−

electron scattering plane
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B(b)

e

e

γ
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p
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γ
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α(π−p)(π+p )

FIG. 1. Kinematic variables for the description of ep →
e′p′π+π− in the CM frame of the final-state hadrons corresponding to
the first assignment presented in Sec. II A. (a) The π− spherical angles
θπ− and ϕπ− . (b) The angle α[pπ−][p′π+] between the two planes: one of
them (plane A) is defined by the three-momenta of the initial proton
and the final π−; the other (plane B) is defined by the three-momenta
of the two other final hadrons, π+ and the proton. The unit vectors γ

and β are normal to the π− three-momentum in the planes A and B,
respectively.

measurements:

(i) invariant mass distributions for three pairs of the final
particles dσ/dMπ+π− , dσ/dMπ+p, and dσ/dMπ−p;

(ii) angular distributions for spherical angles of the three
final particles dσ/d(− cos θπ− ), dσ/d(− cos θπ+ ), and
dσ/d(− cos θp′ ) in the CM frame;

(iii) angular distributions for the three α angles
described above and determined in the CM
frame, dσ/dα[p′π+][pπ−], dσ/dα[p′π−][pπ+], and dσ/

dα[π+π−][pp′].

The one-fold differential cross sections were obtained from
integrating the five-fold differential cross sections over the
relevant four other kinematic variables of d5τi . All details
related to the evaluation of the π+π−p one-fold differential
cross sections we are using for the extraction of resonance
parameters can be found in Ref. [41].

B. Relevant electroproduction mechanisms

The major part of π+π−p electroproduction off protons at
W < 1.6 GeV is due to contributions from the two π� isobar
channels, π−�++ and π+�0. The �++(1232) resonance is
clearly seen in all π+p mass distributions for W > 1.4 GeV,
while contributions from the π+�0 isobar channel are needed
to better describe the data in the low-mass regions of the π−p

mass distributions. The observed [41] strength of the π−�++
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FIG. 2. Reaction mechanisms of the JM model [43] that contribute to π+π−p electroproduction in the kinematic region covered by recent
CLAS measurements [41] with W < 1.6 GeV and 0.25 < Q2 < 0.6 GeV2: (a) three-body mechanisms, (b) π� isobar channels, and [(c)
and (d)] direct two-pion production mechanisms that correspond to different assignments for the final state hadrons. The ti (i = 1, . . . , 3)
stand for the squared transferred momenta in the exchange processes by unspecified particle(s), as described in [43] and shown by blobs in
panels (c) and (d).

isobar channel is approximately nine times larger than that of
π+�0 [43] due to isospin invariance. The contributions from
all other isobar channels p ρ, π+D0

13(1520), π+F 0
15(1685),

and π−P ++
33 (1640), which are incorporated into the JM-model

[45–48] in order to describe the data at W > 1.6 GeV, are

negligible in the kinematic region covered in this analysis, and
they are not included in this work.

The production amplitudes relevant for our analysis of
γvp → π+π−p are illustrated in Fig. 2. They consist of the
π−�++ and π+�0 isobar channels and direct double-pion
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TABLE I. List of resonances invoked in the π+π−p fit and their
parameters: total decay widths 
tot and branching fractions (BF) to
π� and ρp final states. The quoted values for the hadronic parameters
are taken from fits to the earlier CLAS π+π−p data [42] using the
2005 version of the JM model [46,47]. The quantities labeled as
“var” correspond to the variable parameters fit to the CLAS π+π−p

data [41] within the framework of the current JM model version [43]
employing the unitarized BW ansatz of Sec. II D for the resonant
contributions. Start values for the resonance electrocouplings are
taken from the references listed in the last column and extrapolated
to the Q2 area covered by the CLAS experiment [41].

N∗ states Mass Total Branching Branching N∗ electro-
incorporated (GeV) decay ratio for ratio for coupling
into the width π� (%) ρp (%) variation
data fit 
tot in the fit

(GeV)

P11(1440) var var var var [56] var
D13(1520) var var var var [56] var
S11(1535) var var var var [13] fix
S31(1620) 1.62 0.16 60 16 [46,47] var
S11(1650) 1.65 0.15 2 3 [58] var
F15(1680) 1.68 0.12 12 5.5 [46,47] var
D13(1700) 1.74 0.19 53 45 [46,47] fix
D33(1700) 1.70 0.26 89 2 [46,47] fix

production mechanisms. The production amplitudes for π�

intermediate states [Fig. 2(b)] consist of the resonant con-
tributions γvN → N∗,�∗ → π� and nonresonant terms. All
resonances listed in Table I are included in the JM model. How-
ever, in the kinematic area covered in our measurements, only
the P11(1440), D13(1520), and S11(1535) nucleon resonances
have strengths that are sufficient to manifest themselves in the
one-fold differential cross sections. Nonresonant amplitudes,
depicted in the diagrams in Fig. 2(b), are computed from
the well-established Born terms presented in Appendix A of
Ref. [43]. The additional contact terms are implemented in the
full π� production amplitudes. They describe effectively the
contributions from mechanisms other than the Born terms to
π� production and the part of the π� final-state interactions
(FSIs) that are not included in the JM model’s absorptive
approximation for FSIs [43,50]. The Lorentz structure of these
additional contact terms is determined by superposition of the
two second-rank Lorentz tensors

γ μpπ
ν , pδ

cγδgμν, (1)

where pc = (2pπ
ν − qγ ) is the difference of the final pion four-

momentum pπ
ν and the momentum transferred, qγ − pπ

ν . A
parametrization of the additional contact-term amplitudes in
the π� channels may be found in Appendix B of Ref. [43].

All isobar channels combined account for 70% to 90%
of the charged double-pion fully integrated cross sections in
the kinematic region covered by data [41]. The remaining
part of the cross sections comes from direct charged pion
(2π ) production mechanisms, in which the π+π−p final state
is created without the formation of unstable hadrons in the
intermediate states. The presence of these mechanisms is
required by the unitarity of the three-body π+π−p production

amplitudes [51]. Their manifestation in π+π−p electropro-
duction was observed for the first time in our previous analyses
of CLAS data [43,47]. The dynamics of these processes
was unknown and has been established from the CLAS data
analysis within the framework of the JM model. The direct
2π production mechanisms incorporated in the JM model
are depicted in Figs. 2(c) and 2(d). They represent two
subsequent exchanges of unspecified particles, parametrized
by propagators that depend exponentially on the running four-
momenta squared. Each set of diagrams in Fig. 2 corresponds
to various assignments of the final-state hadrons, resulting
in different four-momenta squared running over propagators
in the exchange amplitudes. The JM model extends for
the first time the description of π+π−p electroproduction
beyond the approximation of superimposed isobar channels
by incorporating direct 2π production. Explicit expressions
for the above-mentioned direct 2π production amplitudes can
be found in Appendices A–C of Ref. [43].

The relationships between π+π−p electroproduction cross
sections and the three-body production amplitudes employed
in the JM model are given in Appendix D of Ref. [43]. This
information is required in order to compare the amplitudes of
the JM model with the results from any other study of π+π−p

electroproduction amplitudes.

C. Breit-Wigner parametrization of resonant amplitudes

We start from a nonunitarized relativistic BW ansatz to
describe the resonant contribution 〈λf |Tr |λγ λp〉 in the helicity
representation:

〈λf |Tr |λγ λp〉 =
∑
N∗

〈λf |Tdec|λR〉〈λR|Tem|λγ λp〉
M2

r − W 2 − i
r (W )Mr

, (2)

where Mr and 
r are the resonance mass and energy-dependent
total width, respectively. The matrix elements 〈λR|Tem|λγ λp〉
and 〈λf |Tdec|λR〉 are the electromagnetic production and
hadronic decay amplitudes of the N∗ with helicity λR =
λγ − λp, in which λγ and λp stand for the helicities of the
photon and proton in the initial state, and λf represents the
helicities of final-state hadrons in the N∗ decays.

The hadronic decay amplitudes 〈λf |Tdec|λR〉 are related to
the 
λf

(W ) partial hadronic decay widths of the N∗ to π� or
ρp final states f of helicity λf by

〈λf |Tdec|λR〉 = 〈λf |T Jr

dec|λR〉dJr

μν(cos θ∗)eiμφ∗
,

with μ = λR and ν = −λ� for the π� intermediate state and
ν = λp′ − λρ for the ρp

′
intermediate state, and

〈λf |T Jr

dec|λR〉 = 2
√

2π
√

2Jr + 1Mr

√

λf√〈pr

i 〉

√ 〈
pr

i

〉
〈pi〉 . (3)

The means 〈pr
i 〉 and 〈pi〉 are the magnitudes of the three-

momenta of the final π for the N∗ → π� decay (i = 1) or of
the final proton for the N∗ → ρp decay (i = 2), evaluated at
W = Mr and at the running W , respectively, and averaged over
the running mass of the unstable hadron in the intermediate
state. The variables θ∗ and φ∗ are the CM polar and azimuthal
angles for the final π (N∗ → π� decay) or the final proton
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(N∗ → ρp decay). The symbol Jr stands for the N∗ spin. This
relationship between the N∗ hadronic decay amplitudes and
the partial decay widths was derived for the N∗ → π� decay
in our previous article [50]. All details on the parametrization
of the resonance hadronic decay amplitudes in the JM model
can be found in the Appendix of this paper.

Energy dependencies of the partial hadronic decay widths
are described under the assumption that centrifugal barrier-
penetration factors are the major contributors to the off-shell
behavior of resonance hadronic decay amplitudes [50,52]:

√

LS = √


r
LS ·

[
Mr

W

[
J 2

l (prR) + N2
l (prR)

]
[
J 2

l (pR) + N2
l (pR)

] ]1/2

, (4)

where Jl and Nl are the Bessel and Neumann functions,
respectively. The factor in large square brackets represents
the ratio of barrier penetration factors for the final meson with
orbital angular momentum l evaluated at W = Mr and at the
running W . The variable R represents the interaction radius
whose value was set to 1 fm, and

√

r

LS stands for the decay
amplitude to the final hadron state of orbital momentum L and
total spin S estimated at the resonant point. The partial decay
amplitudes

√

LS of Eq. (4) are transformed from the LS to

the helicity representation
√


λf
(see the Appendix) and used

to compute the N∗ hadronic decay amplitudes via Eq. (3).
In the JM model, the N∗ total decay width 
r (W ) in Eq. (2)

is evaluated as a sum over all partial decay widths. In this way
we ensure unitarity of the resonant amplitude for a single
resonance contribution. The unitarization procedure in the
actual case of many contributing resonances will be discussed
in Sec. II D.

The resonance electroexcitation amplitudes 〈λR|Tem|λγ λp〉
in Eq. (2) are related to the γvNN∗ electrocouplings A1/2,
A3/2, and S1/2 for nucleons. The definition of these electro-
couplings in the JM model is consistent with the Review of
Particle Physics (RPP) [53] relation between the A1/2, A3/2

electrocouplings and the N∗ electromagnetic decay width 
γ :


γ = q2
γ,r

π

2MN

(2Jr + 1)Mr

[|A1/2|2 + |A3/2|2], (5)

where qγ,r is the three-momentum modulus of the photon
at W = Mr in the CM frame. The transition amplitudes
〈λR|Tem|λγ λp〉 are related to the γvNN∗ A1/2, A3/2, and S1/2

electrocouplings by imposing the requirement that the BW
parametrization [54] of the resonant cross section for a single
contributing resonance should be reproduced:

σ (W ) = π

q2
γ

(2Jr + 1)
M2

r 
i(W )
γ(
M2

r − W 2
)2 − M2

r 
2
r (W )

qγ

K
. (6)

Here the photon equivalent energy is K = W 2−M2
N

2W
, qγ , the

absolute value of the initial photon three-momentum of
virtuality Q2 > 0, is qγ =

√
Q2 + E2

γ , and the energy Eγ in
the CM frame at the running W is

Eγ = W 2 − Q2 − M2
N

2W
. (7)

The qγ,r value in Eq. (5) can be computed from Eq. (7) at
W = Mr.
i(W ) is the energy-dependent hadronic decay width

to the final-state π� (i = 1) or ρp (i = 2). The factor qγ

K
in

Eq. (6) is equal to unity at the photon point. It accounts for
the choice [41] of the virtual photon flux in the evaluation
of the virtual photon cross sections. In this way we obtain
the following relationship between the transition amplitudes
〈λR|Tem|λγ λp〉 and the γvNN∗ electrocouplings:

〈λR|Tem|λγ λp〉 = W

Mr

√
8MNMrqγr

4πα

√
qγr

qγ

A1/2,3/2(Q2),

with |λγ − λp| = 1

2
,

3

2
for transverse photons,

(8)

〈λR|Tem|λγ λp〉 = W

Mr

√
16MNMrqγr

4πα

√
qγr

qγ

S1/2(Q2),

for longitudinal photons.

The factor 4πα in Eqs. (8) reflects the particular relationship
between the JM model amplitudes and cross sections [43],
when the absolute value of the electron charge is factorized
out of the production amplitudes.

D. Unitarization of the full resonant amplitudes

The BW ansatz, described in Sec. II C, provides unitary con-
tributions from any individual N∗ state to the resonant part of
the electroproduction amplitudes. However, the full resonant
amplitude, which represents a superposition of contributions
from all N∗ states, is not unitary. Figure 3 schematizes the
processes that contribute to the resonant propagator dressing.
They consist of transitions between the same and different
N∗ states mediated by the strong interaction. The regular
BW ansatz incorporates only transitions between the same
N∗ states shown by the blob in the top panel of Fig. 3. The
unitarization is achieved via inclusion of both diagrams in
Fig. 3, allowing us to take into account transitions between

FIG. 3. Diagrams showing the unitarized BW ansatz of the JM
model, which incorporates transitions via the dressed resonance
propagator between states listed in Table I for the same Nα = Nβ (top)
and different Nα 
= Nβ resonances as allowed by the conservation
laws of the strong interaction (bottom).

035203-7



V. I. MOKEEV et al. PHYSICAL REVIEW C 86, 035203 (2012)

both the same and different N∗ states (bottom panel in Fig. 3)
in the dressed resonant propagators. We replaced the usual
BW ansatz by its unitarized extension originally proposed
in Ref. [55]. This ansatz was adjusted for the description of
the BW resonance electroproduction amplitudes of Eq. (2)
employed in the JM model. The full resonant amplitude of the
unitarized extension of the BW ansatz satisfies the unitarity
condition [55].

Unitarized resonance amplitudes in the JM model incor-
porate photo- and electroexcitation amplitudes of all relevant
resonances α, all possible transitions between the initial N∗
state α and the final N∗ state β, and hadronic decays of
β. Fully unitarized resonance amplitudes are determined by
the sum of the products of the electromagnetic excitation
amplitudes of the α-th N∗ state 〈λα|Tem|λγ λp〉, the hadronic
decay amplitudes of the β-th N∗ state 〈λf |Tdec|λβ〉, the dressed
propagator Sαβ , and

〈λf |Tres |λγ λp〉 =
∑
α,β

〈λf |Tdec|λβ〉Sαβ〈λα|Tem|λγ λp〉. (9)

The sum incorporates all transitions between the α-th initial
and the β-th final N∗ states that are allowed by quantum
number conservation laws. It runs over all repeated indices
α and β that label the N∗ states. As a consequence of angular
momentum conservation λα = λβ , but these two helicities
stand either for the same N∗ states if α = β (diagonal
transitions) or different N∗ states if α 
= β (off-diagonal
transitions). The index f represents the final-state helicities,
either for π� or for ρp.

The expression for the inverse dressed propagator S−1
αβ is

obtained in Ref. [55] (see Eq. (5) in Ref. [55]). However,
the parametrization of the N∗ propagator in Ref. [55] and in

JM are different. Therefore, we change the inverse resonant
propagator S−1

αβ of Ref. [55], so that it coincides with the single
N∗ contribution employed in the JM model. In this way we
obtain

S−1
αβ = M2

N∗δαβ − i

( ∑
k

√

αk


βk

)√
MN∗

α
MN∗

β
− W 2δαβ,

(10)

where the index k represents the partial N∗ hadronic decay
widths to all possible final states, decomposed over LS partial
waves. For a single N∗ contribution, Eq. (10) coincides with
the inverse BW propagator in Eq. (2).

The resonant contribution at W < 1.6 GeV incorporates
the N∗ states listed in Table I and the 3/2+(1720) candidate
state observed in the previous analysis of the CLAS π+π−p

electroproduction data [42]. The conservation laws in strong
interactions allow transitions in dressed resonant propagators
only between the following pairs of N∗ states: D13(1520)
and D13(1700), S11(1535) and S11(1650), and the 3/2+(1720)
candidate and P13(1720) (bottom panel in Fig. 3). Therefore,
the unitarized resonant amplitude represents the sum of
regular BW amplitudes over all other N∗ states with only
diagonal transitions in the dressed resonance propagators plus
contributions from the aforementioned pairs of N∗ states that
have both diagonal and nondiagonal transitions in the resonant
propagators. The contributions from each pair of N∗ states
〈λf |T2res |λγ λp〉 are determined by Eq. (9) with indices α and
β running from 1 to 2, resulting in 2 × 2 S−1

αβ matrices. After

inversion of S−1
αβ in Eq. (10) and insertion into Eq. (9), we get

the following expressions for the contribution from each of the
three pairs of N∗ states listed in Fig. 3:

〈λf |T2res |λγ λp〉 = 1

det
[
S−1

αβ

]{
〈λf |Tdec|λ1〉

(
M2

2 − i
2(W )M2 − W 2)〈λ1|Tem|λγ λp〉 + 〈λf |Tdec|λ2〉
(
M2

1 − i
1(W )M1 − W 2)
×〈λ2|Tem|λγ λp〉 + i〈λf |Tdec|λ2〉

∑
k

√

1k


2k

√
MN∗

1
MN∗

2
〈λ1|Tem|λγ λp〉 + i〈λf |Tdec|λ1〉

×
∑

k

√

1k


2k

√
MN∗

1
MN∗

2
〈λ2|Tem|λγ λp〉

}
. (11)

The first two terms in Eq. (11) correspond to the diagonal Sαβ

elements. They describe the processes depicted in the top panel
of Fig. 3. The two other terms correspond to transition between
different N∗ states, shown in the bottom panel of Fig. 3. The
determinant of S−1

αβ can be computed from Eq. (10) as

det
[
S−1

αβ

] = (
M2

1 − i
1(W )M1 − W 2
)

(12)

· (M2
2 − i
2(W )M2 − W 2

) +
( ∑

k

√

1k


2k

)2

M1M2.

It follows from Eqs. (11) and (12) that, if transitions between
two different N∗ states in the dressed resonant propagators

become impossible, then

∑
k

√

1k


2k
= 0; (13)

namely, all off-diagonal terms become zero, while the diagonal
terms give rise to the amplitudes of the regular BW ansatz.
When the transitions between the pairs of N∗ states are turned
on, not only do they add off-diagonal terms to Eq. (11), but they
also change the effective propagator in the 〈λf |T2res |λγ λp〉
amplitude with respect to the BW ansatz, Eq. (2), determined
by 1/det[S−1

αβ ].
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TABLE II. Variable parameters of nonresonant mechanisms in-
corporated into the JM model [43]. The ranges in the table correspond
to the 3σ areas around the start values of parameters.

Variable parameters Ranges covered
in variations of the

start parameters
(% from their values)

Magnitude of the additional
contact term amplitude in the 45.0
π−�++ subchannel

Magnitude of the additional
contact term amplitude in the 60.0
π+�0 subchannel

Magnitudes of six
2π direct production 30.0
amplitudes

III. THE CLAS DATA FIT

The resonance parameters obtained in this paper are fit to the
CLAS π+π−p electroproduction differential cross sections
[41]. A realistic evaluation of resonance electrocoupling
uncertainties extracted in the fit is an important objective
of our analysis. We require that the ranges of resonance
electrocouplings extracted from the π+π−p electroproduction
channel take into account both uncertainties in the measured
differential cross sections and in the JM model parameters.
In order to provide a realistic evaluation of resonance
parameters, we abandoned the traditional least-squares fit,
since the parameters extracted in such a fit correspond to
a single presumed global minimum, while the experimental
data description achieved with other local minima may be

equally good within the data error bars. Furthermore, the
traditional evaluation of fit-parameter uncertainties, based on
the error propagation matrix, cannot be used for the same
reason.

A special procedure was developed to not only obtain the
best fit but also to establish bands of computed cross sections
that are compatible with the data within their uncertainties.
In the fit we vary simultaneously nonresonant and resonant
parameters of the JM model given in Tables I and II,
respectively, around their start values, employing unrestricted
normal distributions. The choice of the start parameters and the
normal distribution σ values employed for parameter variation
will be further described below. For each trial set of the
JM model resonant and nonresonant parameters we compute
nine measured one-fold differential π+π−p cross sections
and the χ2 per data point values (χ2/dp). The χ2/dp values
were estimated in point-by-point comparisons between the
measured and computed one-fold differential cross sections
in all bins of W and Q2 covered by the CLAS π+π−p

data of Ref. [41]. In the fit we selected computed one-fold
differential cross sections closest to the data with χ2/dp less
than a predetermined maximum value χ2

max./dp. The values of
χ2

max./dp were obtained by requiring that the computed cross
sections with smaller χ2/dp be within the data uncertainties
for the majority of the data points, based on point-by-point
comparisons between the measured and the computed cross
sections (see examples in Figs. 4 and 5). In this fit procedure
we obtain the χ2/dp intervals within which the computed
cross sections describe the data equally well within the data
uncertainties.

The resonance parameters obtained from all these equally
good fits are averaged and their mean values are taken as the
resonance parameters extracted from the data. Dispersions in
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FIG. 4. (Color online) Resonant (blue tri-
angles) and nonresonant (green open circles)
contributions to the differential cross sections
(red lines) obtained from the CLAS data [41],
fit within the framework of the JM model at
W = 1.51 GeV, Q2 = 0.38 GeV2. The solid
blue and dotted-dashed green lines stand for the
resonant and nonresonant contributions, respec-
tively, which were computed for minimal χ 2/dp
achieved in the data fit. The points for resonant
and nonresonant contributions are shifted on
each panel for abetter visibility. Dashed lines
show selected fits.
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FIG. 5. (Color online) The same as in Fig. 4
at W = 1.51 GeV, Q2 = 0.43 GeV2.

these parameters are taken as the uncertainties. Our fitting
procedure allows us to obtain more realistic uncertainties of
the fit parameters than from the usual least-squares method.
In this way we take into account both statistical uncertainties
in the data and systematic uncertainties imposed by the use of
the JM reaction model.

We vary the parameters of the JM model, listed in
Table II for the nonresonant mechanisms, which are relevant
in describing the CLAS π+π−p data [41]. They are limited to
nonresonant π� subchannels and direct 2π electroproduction.

The magnitudes of the additional contact terms in the
π−�++ and π+�0 isobar channels [row (b) in Fig. 2], as
well as the magnitudes of all direct 2π production amplitudes
[rows (c) and (d) in Fig. 2], are chosen as variable parameters.
All these parameters were determined in the fit to the CLAS
data on π+π−p electroproduction in our previous analysis [43]
without variation of the resonance parameters. In the CLAS
data fit presented in this paper, the values of the aforementioned
nonresonant parameters of the JM model are reevaluated under
simultaneous variation of the following:

(a) the magnitudes of additional contact-term amplitudes in
the π−�++ and π+�0 isobar channels (two parameters
per Q2 bin);

(b) the magnitudes of all direct 2π production amplitudes
(six parameters per Q2 bin); and

(c) the resonant parameters listed in Table I.

The CLAS π+π−p data [41] are mostly sensitive to the
electrocouplings of the P11(1440) and D13(1520) states (five
resonance electrocouplings per Q2 bin), to the π� and ρp

hadronic decay widths of these two resonances, and to the
S11(1535) state (six parameters that remain the same in the

entire Q2 area covered by the measurements). Therefore, we
consistently account for the correlations between variations
of the nonresonant and the resonant contributions while
extracting the resonant parameters.

The W dependencies of the magnitudes of the additional
contact-term amplitudes in the π� subchannels and of the
magnitudes of the direct 2π production amplitudes are adopted
from our previous analysis [43]. We apply multiplicative
factors to the magnitudes of the extra contact-term amplitudes
and the 2π direct production amplitudes. The multiplicative
factors are independent of W within any Q2 bin, but they are fit
to the data in each Q2 bin independently. In this way we retain
the smooth W dependencies of the nonresonant contributions
established in our previous analysis [43].

We use two parameters for the variation of the magnitudes
of additional contact-term amplitudes in the π−�++ and
π+�0 isobar channels. However, the nonresonant parameters
in the π+�0 isobar channel have a rather small impact on the
fit, since the nonresonant contributions of the π+�0 isobar
channel are approximately a factor of 9 smaller than that of
the π−�++.

The parameters for the nonresonant Born terms in the π�

subchannels [row (b) in Fig. 2] include the pπ� coupling and
cutoff for this hadron transition form factor, as well as the
electromagnetic pion and nucleon form factors [50]. All these
parameters are taken from previous studies of meson photo-,
electro-, and hadroproduction referred to in Ref. [43] and are
kept fixed for the current fit.

Different assignments of final hadrons in 2π direct pro-
duction mechanisms, as shown in Fig. 2 [rows (c) and (d)],
result in 12 different subprocesses. Our previous analysis [43]
demonstrated that the magnitudes of all these subprocesses
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are determined by six independent parameters. In the current
fit we vary these six parameters of the direct 2π production
amplitudes.

In the fitting procedure described above, nine one-fold
π+π−p differential cross sections are computed with non-
resonant variable parameters of the JM model obtained by
employing unrestricted normal distributions around their start
values with σ parameters of 10%–20% of their start values
(see Table II). In this way we explore mostly the range of
≈3σ around the start parameter values. These ranges for
nonresonant parameter variations in the JM model are shown
in Table II as a percentage of their start values.

In this fit we also vary the γvpN∗ electrocouplings and the
π� and ρp hadronic partial decay widths of the P11(1440)
and D13(1520) resonances around their start values. The start
values of the P11(1440) and D13(1520) electrocouplings are
determined by interpolating the results from the analysis [56]
of the CLAS data on Nπ electroproduction off protons into the
range 0.4 < Q2 < 0.6 GeV2 and extrapolating these results
into the Q2 area from 0.25 to 0.4 GeV2. The electrocouplings
of the P11(1440) and D13(1520) resonances are varied by
employing normal distributions with σ parameters equal
to 30% of their start values. There are no restrictions on
the minimum or maximum trial electrocoupling values. The
normal distributions allow us to explore mostly the area of
≈3σ around their start values or 90% around electrocoupling
start values.

The π+π−p electroproduction channel has also some
sensitivity to the S11(1535) state, which couples dominantly to
the Nπ and Nη final states. The S11(1535) electrocouplings
were taken from the CLAS analysis of Nπ electroproduction
[13] and varied strictly inside the uncertainties reported in that
paper.

The π� and ρp hadronic decay widths of the P11(1440),
D13(1520), and S11(1535) resonances are varied around their
start values taken from previous analyses of the CLAS double-
pion electroproduction data [46–48] in ranges restricted by the
total N∗ decay widths and their uncertainties, as shown in
Table III. The total N∗ decay widths were obtained by
summing the partial widths over all decay channels. Partial
hadronic decay widths to all final states other than π� and
ρp are computed as the products of RPP [53] values of
N∗ total decay widths and branching fractions for decays to
particular hadronic final states, which are taken from analyses
[57] of hadroproduction experiments. We varied the π�

and ρp hadronic decay widths of the P11(1440), D13(1520),
and S11(1535) resonances simultaneously with their masses,
keeping the hadronic N∗ parameters independent of Q2.
Accounting for the correlations of the N∗ electromagnetic

TABLE III. Allowed N∗ hadronic parameter variations in the fit
of the CLAS π+π−p electroproduction data [41].

N∗ states Mass (MeV) Total decay width 
tot (MeV)

P11(1440) 1430–1480 200–450
D13(1520) 1515–1530 100–150
S11(1535) 1510–1560 100–200

and hadronic decay parameters in a combined variation is
important for a credible extraction of the resonance parameters
and, in particular, for the evaluation of their uncertainties.

The fit procedure developed here allows us to determine
the π� and ρp hadronic decay widths of the P11(1440),
D13(1520), and S11(1535). The resonance total decay widths
are affected by the variation of their π� and ρp partial
decay widths. Instead, when varying resonance electrocu-
plings, the N∗ total decay widths of resonances are kept
almost unchanged. Resonance hadronic decay amplitudes are
independent of Q2, while resonance electrocouplings repre-
sent the functional dependencies on the photon virtualities.
These distinctive features allow us to disentangle resonance
electromagnetic and hadronic decay amplitudes in the fit of
the CLAS data [41] and to obtain the π� and ρp hadronic
decay widths of the P11(1440), D13(1520), and S11(1535).

To account for the contributions from the tails of higher
mass resonances, electrocouplings of all N∗ states marked
in Table I as “var” are varied around their start values. For
resonances with masses above 1.6 GeV, except the S11(1650)
state, the start values for electrocouplings are taken from the re-
sults of previous analyses [46,47] of π+π−p electroproduction
data [42] after the extrapolation into the Q2 range of the current
analysis (0.25–0.6 GeV2). The S11(1650) state may have a
more pronounced impact on the extraction of the P11(1440)
and D13(1520) resonance parameters, since the S11(1535) and
S11(1650) states are mixed in the dressed resonance propagator
of the unitarized BW ansatz employed in the JM model. For
this reason we prefer to have more accurate start values for
the S11(1650) electrocouplings. They are computed within the
framework of the single quark transition model (SQTM) [58]
from electrocouplings of the S11(1535) state that are available
from analyses of Nπ and Nη electroproduction data [1].
Electrocouplings of the D13(1700) and D33(1700) resonances
are kept fixed at their start values, since the masses of these
resonances are far outside of the W area covered by the CLAS
π+π−p electroproduction data [41], W < 1.6 GeV.

The π� and ρp partial hadronic decay widths for N∗
states other than the P11(1440), D13(1520), and S11(1535)
resonances are taken from previous analyses of the CLAS
double-pion electroproduction data [46–48]. They are in
reasonable agreement with the values reported in the RPP [53].
The respective branching fractions are listed in Table I.

We fit the CLAS data [41] consisting of nine differen-
tial cross sections of the ep → e′p′π+π− electroproduction
reaction in all bins of W and Q2 in the kinematic region
1.35 < W < 1.57 GeV and 0.25 < Q2 < 0.6 GeV2 within
the framework of the fit procedure described above. Three
intervals of Q2 separated in Table IV by horizontal solid lines
are fit independently. The χ2/dp intervals that correspond to
equally good data description within the error bars are shown
in Table IV. Their values demonstrate the quality of the CLAS
π+π−p data description achieved in the fits. Examining the
description of the nine one-fold differential cross sections, we
found that the χ2/dp values are determined mostly by the
random deviations of some experimental data points from
the bunches of computed fit cross sections. There are no
discrepancies in describing the shapes of the differential cross
sections, which would manifest themselves systematically
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TABLE IV. Quality of the CLAS π+π−p fit within the framework
of the JM model [43]. Horizontal lines separate the three Q2 intervals,
in which the fits were carried out independently.

Q2 bins W intervals Number of fitted χ 2/dp intervals
(GeV2) (GeV) points for selected

cross sections

0.25–0.30 1.44–1.56 378
0.30–0.35 1.41–1.54 378 2.66–2.74

0.35–0.40 1.41–1.54 378
0.40–0.45 1.39–1.51 373 1.87–2.04
0.45–0.50 1.39–1.49 309

0.50–0.55 1.39–1.51 360 1.57–1.75
0.55–0.60 1.34–1.44 279

in neighboring bins of W and Q2. Typical examples for
W = 1.51 GeV and neighboring Q2 intervals centered at 0.38
and 0.42 GeV2 are shown in Figs. 4 and 5, respectively.

The sets of computed differential cross sections with χ2/dp
values within the intervals given in Table IV offer the best data
descriptions achievable within the framework of the JM model.
The minimal values of χ2/dp in each interval represent the
global minima of these fits. We found that the increases of
the χ2/dp values within the intervals listed in Table IV
change the computed differential cross sections but still keep
them inside the data uncertainties, offering equally good data
descriptions in all these fits with different sets of JM model
parameters. The mean values of the resonance parameters
from these sets and their dispersions (statistical r.m.s.) are
determining the resonance parameters and their uncertainties,
as was described at the beginning of this section.

Since only statistical data uncertainties are used in the
computation of the χ2/dp values listed in Table IV, we
concluded that a reasonable data description was achieved.
The χ2/dp values of our fits are comparable with those
obtained in the fit of the CLAS Nπ electroproduction data
published in [13], as well as with those obtained in the MAID
analysis [59].

IV. EVALUATION OF γv pN∗ ELECTROCOUPLINGS AND
RESONANCE HADRONIC DECAY PARAMETERS

The extraction of resonance electrocouplings using the JM
model relies on fitting resonant and nonresonant contributions
to measured differential cross sections. Therefore, we first
have to check the quality of the separation between resonant
and nonresonant contributions achieved in the data fit.

A. Separation of resonant and nonresonant contributions to the
π+π− p cross sections

With the parameters determined from the fits, we now use
the JM model to evaluate the contributions from resonant
and nonresonant parts to the cross sections. This is done
by computing the nine differential cross sections without the
resonant parts and with only the resonant parts for all trial
differential cross sections of the JM model selected in the fit.

In this way we also determine the ranges of the resonant and
nonresonant contributions to the cross sections as imposed
by the uncertainties of the experimental data. These ranges
account for the uncertainties of the nonresonant parameters
listed in Table II and for all correlations between resonance
and nonresonant amplitudes. Therefore, we obtain reliable
estimates for the uncertainties of the resonant and nonresonant
contributions to the differential cross sections. Examples of
the separated resonant and nonresonant contributions for two
particular W and Q2 bins are shown in Figs. 4 and 5. The
interference between the resonant and nonresonant amplitudes
is clearly seen in all angular distributions. The differences
between the fitted π+π−p differential cross sections and their
nonresonant parts are larger than the resonant contributions for
a majority of the data points in the angular distributions of the
final hadrons, offering clear evidence for the interference be-
tween resonant and nonresonant amplitudes. This interference
amplifies the N∗ contributions to all CM-angular distributions
dσ/d[− cos(θi)] (i = π+, π−, p) of the final hadrons, which
improves the sensitivity of the fit to the resonance parameters.
Furthermore, the shapes of the resonant and nonresonant
differential cross sections are rather different, especially for
the final-state angular distributions. Substantial differences in
the shapes of the resonant and resonant contributions and their
interference allow us to isolate the resonant contribution in
a combined fit of all nine one-fold differential cross sections
despite the relatively small resonant contributions to the fully
integrated cross sections. In our previous analysis [41] we
found resonant contributions to the fully integrated cross
sections from 10% to 30%.

The examples of Figs. 4 and 5 demonstrate that the
uncertainties of the resonance parts are comparable with those
of the experimental data. This is further evidence for the
credible separation between the resonant and nonresonant
contributions. Any ambiguities in the evaluation of these
two contributions would result in larger uncertainties for the
resonant and/or nonresonant parts derived from the fit than
the uncertainties of the original data. But this is not the case
in the entire kinematical area covered by the CLAS π+π−p

electroproduction measurements of Ref. [41]. Therefore, these
data provide enough constraints in order to determine the
resonant contributions to all differential cross sections.

B. N∗ parameters from the fit of the π+π−p electroproduction
cross sections

The procedure described in Sec. III allows us to extract
the γvpN∗ electrocouplings and their uncertainties. A special
approach was developed for the evaluation of the P11(1440)
electrocouplings. According to the analysis [13] of the CLAS
Nπ electroproduction data, the A1/2 electrocoupling of this
resonance changes sign between Q2 of 0.40 and 0.45 GeV2.
Here the A1/2 electrocoupling is close to zero and is an order of
magnitude smaller than S1/2. The A1/2 variations computed as
a percentage of the start value, which is close to zero, become
too small. For realistic uncertainty estimates we varied A1/2

for 0.4 < Q2 < 0.5 GeV2 in the ranges shown in Table V. By
varying A1/2 inside these widened ranges, we scanned the trial
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TABLE V. Variation range for the P11(1440) A1/2 electrocoupling
at photon virtualities where this electrocoupling changes sign.

Q2 bins (GeV2) Range (10−3 GeV−1/2)

0.40–0.45 −20 to + 5
0.45–0.50 −5 to 20

values comparable with those of S1/2, as they were obtained in
the analysis [13] of the CLAS Nπ electroproduction data. We
refit the CLAS data of Ref. [41] on π+π−p electroproduction
by varying A1/2, as described above, keeping the variation of
all other resonant and nonresonant parameters as described in
Sec. III.

In order to compare our results on the P11(1440) and
D13(1520) electrocouplings in the π+π−p electroproduction
channel with their values from the analysis of Nπ electro-
production [13], we have to use in both of the exclusive
electroproduction channels common branching fractions for
decays of these resonances to the Nπ and Nππ final
states. According to the RPP [53], the sum of the branching
fractions into the Nπ and Nππ final states accounts for
almost 100% of the total decay widths of the P11(1440)
and D13(1520) states. In our analysis the branching fractions
for P11(1440) and D13(1520) resonance decays to the Nπ

final state, BF (Nπ ), were taken from the previous CLAS
studies of Nπ electroproduction data [13], since the Nπ

exclusive electroproduction channels are most sensitive to
contributions from the P11(1440) and D13(1520) resonances.
The unitarity condition allows us to estimate the branching
fraction BF (Nππ )corr value as

BF (Nππ )corr = 1 − BF (Nπ ). (14)

For these resonance decays to the Nππ final states it turns
out that the estimated branching fractions BF (Nππ )corr from
Eq. (14) are slightly (<10%) different with respect to those
obtained from the π+π−p fit [BF (Nππ )0]. Therefore, we
multiplied the π� and ρp hadronic decay widths of P11(1440)
and D13(1520) from the π+π−p fit by the ratio BF (Nππ)corr

BF (Nππ)0
in

order to make them consistent with the unitarity condition of
Eq. (14).

Consequently, the P11(1440) and D13(1520) electrocou-
plings obtained in our analysis are multiplied by correction
factors

Chd =
√

BF (Nππ )0

BF (Nππ )corr
, (15)

in order to keep the resonant parts and the full computed
differential π+π−p cross sections unchanged under the
rescaling of resonance hadronic decay parameters described
above.

The P11(1440) and D13(1520) electrocouplings derived
from the fit of π+π−p electroproduction data are presented
in Tables VI and VII. The masses and hadronic decay
parameters are shown in Tables VIII and IX. The hadronic
resonance parameters are taken as the average of their values
obtained in independent fits in the three Q2 intervals shown
in Table IV.

TABLE VI. Electrocouplings of the P11(1440) resonance deter-
mined from this analysis of π+π−p electroproduction off protons
within the framework of the JM model [43].

Q2 (GeV2) A1/2 (10−3 GeV−1/2) S1/2 (10−3 GeV−1/2)

0.28 − 36.3 ± 17.0 37.8 ± 6.3
0.33 − 21.5 ± 7.7 35.8 ± 4.7
0.38 − 10.9 ± 5.9 32.7 ± 5.3
0.43 − 8.8 ± 5.4 33.8 ± 3.8
0.48 3.7 ± 5.9 37.4 ± 5.9
0.53 15.8 ± 9.1 26.8 ± 3.5
0.58 17.2 ± 10.4 22.2 ± 6.8

In Figures 6 and 7 we compare the results of this analysis
with results of the analysis of CLAS Nπ electroproduction
data [13]. Furthermore, there are also the P11(1440) and
D13(1520) electrocouplings available from the MAID partial
wave analysis of Nπ electroproduction at Q2 < 0.6 GeV2

[59,61,62]. Our analysis confirms the sign change of the A1/2

electrocoupling for the P11(1440), first observed in the Nπ

channels. We found the zero crossing to be between Q2 = 0.4
and 0.45 GeV2, in agreement with the Nπ analysis [13]. The
electrocouplings for the P11(1440) and D13(1520) are also
consistent within their uncertainties with the CLAS analysis
of the Nπ electroproduction [13] with the exception of the
A1/2 amplitude of D13(1520), where we see a difference in
the range of 0.4 < Q2 < 0.5 GeV2, which is slightly larger
than a standard deviation. In this range of Q2 two different
analyses of the Nπ exclusive channels, the CLAS [13] and
the MAID [61], give also slightly different values of the A1/2

electrocoupling for the D13(1520). The MAID results are close
to our extraction at 0.4 < Q2 < 0.5 GeV2, but they start to
deviate at larger photon virtualities. Instead, for the other
electrocouplings of D13(1520), both the CLAS [13] and the
MAID [61] analyses of the Nπ channels are consistent with
the results of this analysis.

The unitarization of the resonant amplitudes and the
contribution from the S11(1535) state have a negligible impact
on A1/2 for P11(1440) and on all D13(1520) electrocouplings.
However, both factors affect the S1/2 electrocouplings of
P11(1440). Figure 8 shows a comparison of the P11(1440)
S1/2 electrocouplings obtained with the unitarized BW ansatz
incorporating the S11(1535) contributions versus the regular

TABLE VII. Electrocouplings of the D13(1520) resonance deter-
mined from this analysis of π+π−p electroproduction off protons
within the framework of the JM model [43].

Q2 A1/2 S1/2 A3/2

(GeV2) (10−3 GeV−1/2) (10−3 GeV−1/2) (10−3 GeV−1/2)

0.28 − 51.9 ± 4.8 − 44.0 ± 4.1 71.5 ± 6.8
0.33 − 57.1 ± 7.2 − 44.5 ± 4.1 74.2 ± 6.8
0.38 − 73.4 ± 7.0 − 36.5 ± 4.1 65.3 ± 7.3
0.43 − 75.0 ± 9.3 − 43.9 ± 5.3 74.1 ± 6.1
0.48 − 82.6 ± 15.9 − 35.7 ± 4.2 63.0 ± 6.8
0.53 − 65.2 ± 8.9 − 36.6 ± 4.5 59.6 ± 10.0
0.58 − 62.2 ± 9.3 − 31.0 ± 4.6 48.9 ± 7.4

035203-13



V. I. MOKEEV et al. PHYSICAL REVIEW C 86, 035203 (2012)

TABLE VIII. Hadronic parameters of the P11(1440) resonance
determined from the CLAS data [41] on π+π−p electroproduction
off protons within the framework of the JM model [43] and from the
RPP [53].

Parameter Analysis of the CLAS RPP
π+π−p data

Breit-Wigner 1458 ± 12 1420–1470 (≈1440)
mass (MeV)

Breit-Wigner 363 ± 39 200–450 (≈300)
width (MeV)

π� partial decay 142 ± 48
width (MeV)

π� BF 23%–58% 20%–30%
ρp partial decay 6.2 ± 4.1

width (MeV)
ρp BF <2.0% <8.0%

BW ansatz without the S11(1535). The implementation of
the S11(1535) contributions imposes additional constraints
on the ranges of the P11(1440) S1/2 electrocouplings that
correspond to the computed differential cross sections, which
are consistent with the data, allowing us to improve the
uncertainties in the extraction of this electrocoupling.

Consistent results on the electrocouplings of the P11(1440)
and D13(1520) resonances, which are available for the first
time from independent analyses of the major Nπ and π+π−p

exclusive channels, provide evidence for the reliable extraction
of these fundamental quantities from the experimental data.
Furthermore, this agreement strongly supports the reaction
models employed for the analyses of the Nπ [13] and π+π−p

[43] electroproduction data.
The Breit-Wigner masses and mean values for the total

decay widths of the P11(1440) and D13(1520), derived from
the π+π−p data and listed in Tables VIII and IX, are in a good
agreement with those reported in the RPP [53]. Uncertainties
in the total resonance decay widths were obtained by varying
the π� and ρp partial decay widths, while the decay width
to the Nπ final state remained fixed at the values taken from

TABLE IX. Hadronic parameters of the D13(1520) resonance
determined from the CLAS data [41] on π+π−p electroproduction
off protons within the framework of the JM model [43] and from the
RPP [53].

Parameter Analysis of the CLAS RPP
π+π−p data

Breit-Wigner 1521 ± 4 1515–1525 (≈1520)
mass (MeV)

Breit-Wigner 127 ± 4 100–125 (≈115)
width (MeV)

π� partial decay 35 ± 4
width (MeV)

π� BF 24%–32% 15%–25%
ρp partial decay 16 ± 5

width (MeV)
ρp BF 8.4%–17% 15%–25%
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FIG. 6. (Color online) Electrocouplings and full error bars of the
P11(1440) state. The results from the analysis of the CLAS π+π−p

electroproduction data [41] are shown by triangles. Electrocouplings
from the analysis of the Nπ electroproduction data [13] are shown
by circles.

Ref. [13]. In comparison with the results in the RPP [53], our
analysis gives somewhat larger branching fractions to the π�

final states for the hadronic decays of both the P11(1440) and
D13(1520) states and a smaller hadronic decay to the ρp final
state.

Both γvpN∗ electrocouplings and resonance hadronic
decay widths are obtained at the resonant point on the real
energy axis W = Mr , using the relativistic Breit-Wigner
parametrizations of the resonant amplitudes. All resonance
parameters determined in our approach incorporate all rele-
vant contributions to the N∗ structure. The extraction from the
data of the individual contributions of the quark core and the
meson-baryon dressing is outside of our scope. Our results
can be compared directly with those determined from other
meson-electroproduction channels, where the BW ansatz for
resonant amplitudes is used. For comparisons with results
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FIG. 7. (Color online) Electrocouplings and full error bars of the
D13(1520) state. The analysis of the CLAS π+π−p electroproduction
data [41] is shown by triangles. Electrocouplings from the analysis
of the Nπ electroproduction data [13] are shown by circles.
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FIG. 8. (Color online) Comparison between the final results
on S1/2 electrocouplings for the P11(1440) from this analysis of
CLAS π+π−p electroproduction data [41] (triangles) with the
values obtained by employing a regular BW ansatz for the resonant
amplitudes and with the contributions from the S11(1535) state turned
off (squares).

obtained from models that use other ways to describe
the resonant contributions, the resonant cross sections at the
resonant points can be compared.

V. THE IMPACT ON THE STUDIES OF RESONANCE
STRUCTURE FROM THE CLAS RESULTS ON THE

P11(1440) AND D13(1520) ELECTROCOUPLINGS AND
HADRONIC PARAMETERS

In this section we discuss the impact of the CLAS data on
the P11(1440) and D13(1520) electrocouplings and hadronic
parameters determined from the independent analyses of Nπ

and π+π−p electroproduction off protons on the contempo-
rary understanding of the structures of these states at various
distances.

A. P11(1440) resonance

The first comprehensive P11(1440) electrocoupling sets
available from the CLAS data on Nπ and π+π−p electro-
production provide access to the active degrees of freedom
in the P11(1440) structure at various distances. Previous
studies [11,13] already showed a strong sensitivity of the
electrocouplings to assumptions about the active components
contributing to the P11(1440) structure.

The P11(1440) resonance is characterized by peculiar
features:

(1) It has a smaller mass (1440 MeV) than that expected
by quark models with vector flavor-conserving quark-
quark (qq) interactions. This is less than the mass of
the first orbital excitation of the nucleon, the S11(1535),
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leading to so-called wrong P11(1440)/S11(1535) mass
ordering [1].

(2) It has a large hadronic decay width of ≈300 MeV,
although other resonances with masses below 1.6 GeV
have decay widths of less than 200 MeV.

These features make it difficult to describe the P11(1440)
as a pure three-quark bound state. To the best of our
knowledge, there are no models, incorporating only quark
degrees of freedom, capable of describing simultaneously the
mass ordering of the P11(1440) and S11(1535) resonances,
the unusually large P11(1440) hadronic decay width, and the
photo- and electrocouplings. Therefore, different approaches
for the description of the P11(1440) were developed that take
into account the contributions from degrees of freedom other
than those of dressed quarks [15,21,63,64]. The CLAS results
on the P11(1440) electrocouplings of [13] and this analysis
allows us to confront the model expectations for the P11(1440)
structure with the experimental data, in particular at Q2 <

0.6 GeV2, where consistent results from the independent
analyses of Nπ and π+π−p electroproduction off protons
have now become available.

In Ref. [63] the Q2 dependence of the P11(1440) elec-
trocouplings was obtained by assuming a hybrid nature of
this resonance. In this approach, the P11(1440) is treated as
a resonance dominated by a single SU(6) configuration of
three dressed quarks oscillating against an explicitly excited
gluon fields, denoted q3G. The P11(1440) as a hybrid state
has a spin-flavor part of the wave function orthogonal to that
of the nucleon, whereas the spin-flavor part of wave function
for the P11(1440), as a radially excited three-quark state, is
identical to that of the nucleon. This difference makes it
possible to distinguish between the P11(1440) as a regular
q3 or hybrid q3G state by studying the Q2 evolution of the
P11(1440) electrocouplings. A characteristic prediction of [63]
for the hybrid origin of the P11(1440) is the absence of the
longitudinal coupling, i.e., S1/2 = 0. This is a consequence of
negligible SU(6) configuration mixing in the nonrelativistic
approximation adopted in [63] for the description of the
P11(1440) structure. Recent LQCD studies of the N∗ spectrum
[31,32] also confirmed the presence of the leading SU(6)-
spin-flavor-configuration in the structure of P11(1440). The

S1/2 = 0 values for P11(1440) are clearly in disagreement with
the results of our analysis of the π+π−p electroproduction
data (see Fig. 6), showing that at small photon virtualities
S1/2 is larger than A1/2, or at least comparable at Q2 close to
zero. This allows us to rule out sizable hybrid contributions to
the P11(1440), confirming the conclusions from our previous
analysis of the Nπ final state [13]. The lack of a substantial
contribution of a hybrid component to the lowest mass
resonances in the P11 partial wave was also confirmed in the
LQCD studies [32].

The previous analysis [13] of the Nπ CLAS data showed
that the most satisfactory description of the P11(1440) electro-
couplings was achieved at Q2 > 1.5 GeV2 within the frame-
work of relativistic light-front quark models [8,11], as shown
in Fig. 9. In these models, the P11(1440) electrocouplings are
evaluated from the fully covariant, one-body electromagnetic
transition current for pointlike constituent quarks in the
impulse approximation, by employing light-front relativistic
Hamiltonian dynamics [65–67]. Resonance electrocouplings
are computed in a frame where the “ + ” component of the
virtual photon light-cone momenta is equal to zero. For this
particular choice, the contribution from qq̄ pairs into photon
propagation are eliminated [11]. In these models [8,11] the
P11(1440) is treated as the first radial excitation of three
constituent quarks. The wave function of the ground state and
P11(1440) are described under the simplifying assumption that
they are unmixed single-oscillator basis states.

A reasonable description of the CLAS data at Q2 >

1.5 GeV2 is achieved in both models [8,11], as seen in Fig. 9.
Accounting for the relativistic transition operator is important
in order to describe the CLAS data over the entire range of
photon virtualities, and especially at small Q2 where the sign
of A1/2 changes [8,11], although a quantitative description of
the data at small Q2 has not been achieved (see Fig. 9).

A similarly good description of the P11(1440) electro-
couplings at Q2 > 1.5 GeV2 was found using a valence
quark model [68] based on the covariant spectator formalism
[69,70]. The results of this model are also shown in Fig. 9.
Incorporating three constituent quarks only, this model treats
the N∗ electroexcitation as a virtual photon interaction with a
valence quark in the ground state, while the two other quarks
are combined to a spectator diquark in both spin states 0 and

Q 2 (GeV  2)

A
1/

2 
 (

10
−3

 G
eV

 −
1/

2 )

-80

-60

-40

-20

0

20

40

60

80

0 1 2 3 4
Q 2 (GeV  2)

S
1/

2 
 (

10
−3

 G
eV

 −
1/

2 )

0

10

20

30

40

50

60

70

0 1 2 3 4

FIG. 9. (Color online) Photo- and
electrocouplings of the P11(1440) reso-
nance in comparison with predictions of
quark models. The photocouplings are
taken from RPP [53] (open square) and
the CLAS data analysis [60] (open trian-
gle). Other data points are the same as in
Fig. 6. The results of relativistic light-
front quark models [8,11] are shown
by solid and dashed lines, respectively.
Results of the covariant valence quark
spectator diquark model [68] are shown
by the dashed dotted line.
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1. The wave function of the ground state is parametrized and
fit to the data on elastic nucleon form factors. The P11(1440)
structure is described as the first radial excitation of the nucleon
ground-state quarks. With no additional parameters, the wave
function of the P11(1440) was calculated by employing the
orthogonality condition between the ground-state and the
P11(1440) wave functions. The electrocouplings of P11(1440)
are calculated for the valence quark transition between the
nucleon ground state and its first radial excitation. As shown
in Fig. 9, this model [68] describes the trend of the CLAS data
for Q2 > 1.5 GeV2.

Different approaches to describe the P11(1440) resonance
using structureless constituent quarks of nonrunning masses—
two relativistic light-front quark models [8,11] and a valence
quark model [68]—are capable of reproducing the major
features of the CLAS data on P11(1440) electrocouplings
only for Q2 > 1.5 GeV2. These approaches fail to describe
the electrocouplings for Q2 < 1.0 GeV2. On the other hand,
consistent results on P11(1440) electrocouplings from the
independent analyses of Nπ and π+π−p electroproduction
off protons at Q2 < 0.6 GeV2 emphasize the credibility of the
experimental data and the inability of describing the P11(1440)
structure by only accounting for quark degrees of freedom
without meson-baryon dressing.

The global analysis of Nπ , photo-, electro-, and hadropro-
duction within the framework of the EBAC-DCC approach
[15,16,21,71–74] revealed this additional component in the
N∗ structure that is most relevant at Q2 < 1.0 GeV2. The
general unitarity condition for full meson electroproduction
amplitudes requires contributions from nonresonant meson
electroproduction and hadronic scattering amplitudes to the
γvpN∗ vertex, as depicted in Fig. 10. This contribution
incorporates all possible intermediate meson-baryon states and
subsequent meson-baryon scattering processes that eventually
result in the N∗ formation. As was mentioned in Sec. IV, the
γvpN∗ electrocouplings extracted in our analysis of π+π−p

electroproduction data, as well as in the previous analysis of
the Nπ data [13], account for all contributions to the reso-
nance structure, including those from meson-baryon dressing.
Instead, most quark models, including the aforementioned
[8,11,68], account only for the quark-core component in N∗
photo- and electroexcitation, while meson-baryon dressing,
being a part of the reaction mechanism, is completely outside
of their scope. Therefore, the current and the previous CLAS
results [13] on γvpN∗ electrocouplings should be different
with respect to those from the quark model expectations in Q2

FIG. 10. Processes that contribute to meson-baryon dressing
in the N∗ photo- and electroexcitations within the EBAC-DCC
approach.

areas where the contributions from meson-baryon dressing are
substantial.

In Ref. [15] the meson-baryon dressing amplitudes are
calculated from diagrams describing nonresonant mechanisms
in Nπ photo-, electro-, and hadroproduction channels with
hadronic parameters fit to the world meson hadroproduction
data. The estimates of the absolute values for meson-baryon
dressing contributions to the P11(1440) electrocouplings
showed that meson-baryon dressing amplitudes are maximal
at Q2 < 1.0 GeV2.

Therefore the meson-baryon dressing contributions could
be responsible for the differences observed in this area between
the CLAS data on the N∗ electrocouplings and the quark model
expectations of Refs. [8,11,68]. The meson-baryon dressing
decreases with Q2 and in the region Q2 > 1.0 GeV2 we have
a gradual transition to the dominance of quark degrees of
freedom, as indicated by the better description of the P11(1440)
electrocouplings within the framework of quark models.

Evaluations for bare-quark-core contributions to the
dressed P11(1440) electrocouplings have recently been ob-
tained within the framework of DSEQCD [39]. The DSEQCD
results are close to the bare-quark-core contributions to the
P11(1440) electrocouplings extracted from the experimental
data within the framework of the EBAC-DCC approach [21]
and far from the dressed P11(1440) electrocouplings obtained
in our analysis. This DSEQCD result offers further evidence
for substantial contributions from meson-baryon dressing to
the P11(1440) electrocouplings.

We conclude that the structure of P11(1440) is determined
by the combined contributions from an internal quark core of
constituent quarks in the first radial excitation and an external
meson-baryon dressing, the latter being most relevant at small
Q2.

Lattice QCD is making progress in calculating γvNN∗
transition form factors from first principles of QCD. Ex-
ploratory calculations of the γvpP11(1440) transition form
factors FP 11

1,2 (Q2) were carried out within LQCD in the
quenched approximation using a pion mass of 500 MeV and
a simplified set of projection operators [27,28]. Despite the
aforementioned simplifications, the first LQCD evaluations
are in approximate agreement with the CLAS FP 11

1,2 (Q2) form
factor results at Q2 > 1.5 GeV2. Improved LQCD calculations
with dynamical quarks and a smaller pion mass of 380 MeV
[29,30] provide a reasonable description of the CLAS data
for Q2 < 1.0 GeV2. These studies demonstrated promising
opportunities to relate the results on the Q2 evolution of the
γvpN∗ electrocouplings directly to QCD.

Together with the recent LQCD [31,32] and DSEQCD [36]
results on the N∗ spectrum and the first DSEQCD results on
bare γvpP11(1440) electrocouplings [39], this is an important
step toward our understanding of baryon formation and the
nature of confinement from the first principles of QCD.

The π� and ρp P11(1440) hadronic decay widths obtained
in our analysis are listed in Table VIII and compared with
RPP [53] values. The quark models, which describe N∗
hadronic decays through flux-tube breaking [75,76], provide
a good description of our π� and ρp decay widths of 100
and 2.5 MeV, respectively. However, the flux-tube-breaking
mechanism is unable to describe the P11(1400) Nπ hadronic
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decays. It predicts a width of approximately 400 MeV for
this channel, which is in strong disagreement with measured
values [53]. Other approaches, listed in Ref. [14], fail to
describe the Nππ hadronic decay widths.

To date the quantitative description of P11(1440) hadronic
decays remains a challenging problem. Consistent account-
ing for the meson-baryon dressing contributions to both
electromagnetic and hadronic P11(1440) vertices is im-
portant to gain insight into the structure of this excited
state [18,19,39,64].

B. D13(1520) resonance

Analyses of the previous CLAS data [13] on D13(1520)
electrocouplings determined from Nπ exclusive electropro-
duction channels showed that their satisfactory description for
Q2 > 1.5 GeV2 can be achieved within the framework of the
hypercentral constituent quark model (hCQM) [77] (solid lines
in Fig. 11). In this model the central confinement potential is
parametrized by a sum of Coulomb and linear terms expressed
in collective hypercoordinates for the three-constituent-quark
system. The use of hypercoordinates effectively accounts
for three-body effects in quark interactions. The remaining
interaction between pairs of quarks is parametrized by a
superposition of spin- and isospin-dependent hyperfine terms.
Wave functions for resonances are obtained by diagonalizing
the Hamiltonian in a nonrelativistic approximation. Three
parameters of the hQCM were fit to data on the baryon
spectrum. With these parameters, electrocouplings of all well-
established excited nucleon states were evaluated for Q2 < 5.0
GeV2, by employing nonrelativistic electromagnetic transition
operators. The results obtained for the D13(1520) state are
shown in Fig. 11.

The hCQM can describe the data trends for the D13(1520)
electrocouplings for Q2 > 1.5 GeV2. Pronounced differences
between hCQM expectations and the D13(1520) electrocou-
plings at smaller Q2 offer an indication for contributions
from active degrees of freedom other than a core of three
dressed quarks to this state’s electrocouplings. Meson-baryon
dressing amplitudes are likely contributors in this area of
photon virtualities. According to the EBAC analysis [15],
for the D13(1520) state they are maximal for small pho-
ton virtualities and decrease with Q2. The EBAC analysis
also suggests negligible meson-baryon dressing or dominant
quark-core contributions to the A1/2 electrocoupling of the
D13(1520) state for Q2 > 1.5 GeV2, where we already have
the CLAS results on this electrocoupling [13]. These results
thus offer access to quark degrees of freedom in the structure
of D13(1520) and open up new prospects to study the
dynamical dressed quark mass, structure, and their strong
interactions, which are responsible for the N∗ formation. These
studies are of particular importance for understanding the
nature of confinement in the baryon sector based on QCD
[26,27,29,33,36–38,78].

Our analysis confirms a rapid helicity switch from the
dominance of the A3/2 electrocoupling at the photon point
to a comparable contribution from both transverse electrocou-
plings at Q2 ≈ 0.5 GeV2, as already observed in [13]. This is
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FIG. 11. (Color online) Description of the CLAS data on
D13(1520) electrocouplings within the hQCM (solid lines) [77]. The
symbols associated with the experimental data are the same as in
Fig. 9.

shown in Fig. 12 in terms of the helicity asymmetry, defined
as

Ahel = A2
1/2 − A2

3/2

A2
1/2 + A2

3/2

. (16)

This particular feature is expected for the contributions from
the core of three constituent quarks in the first orbital nucleon
excitation, L = 1 [79]. It suggests a significant contribution
from the core of three constituent quarks to the transverse
D13(1520) electrocouplings even at small Q2.

We conclude that the Q2 evolution of the D13(1520)
electrocouplings is consistent with contributions of both an
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FIG. 12. (Color online) Helicity asymmetry Ahel of Eq. (16) for
the transverse electrocouplings of the D13(1520) from this analysis
of π+π−p (filled triangles) and Nπ (open circles) exclusive electro-
production channels measured with CLAS. The curve represents the
nonrelativistic quark model calculations [79].

external meson-baryon cloud and an internal core of three
constituent quarks.

The Nππ hadronic decay widths of D13(1520), obtained
from the CLAS π+π−p data, are given in Table IX. They are
close to the RPP [53] values. However, the branching fraction
to the π� final state is larger and that to the ρp final state
is smaller than the RPP average. Our results on the Nππ

hadronic couplings of the D13(1520) are well described by
the flux-tube-breaking model of [75,76], as well as within the
framework of the 3P0 pair creation model of [80]. The success
of these models indicates a substantial role of the quark core
in hadronic decays of the D13(1520) state.

VI. SUMMARY AND OUTLOOK

The analysis of a large body of differential and fully inte-
grated cross sections for the process γvp → π+π−p carried
out within the framework of the JM model in our previous
paper [43] allowed us to establish all essential mechanisms
that contribute to this exclusive channel for 1.3 < W <

1.6 GeV and 0.2 < Q2 < 0.6 GeV2. In this paper we use the
reaction model of Ref. [43] in order to determine the resonant
and nonresonant contributions to the π+π−p differential cross
sections measured with the CLAS detector [41] and eventually
to obtain the A1/2, S1/2, and A3/2 electrocouplings, as well as
the π� and ρp decay widths for the P11(1440) and D13(1520)
excited proton states from this data fit.

The good description of all measured observables makes it
possible to evaluate the resonant contributions to the cross sec-
tions, which are needed to extract the γvpN∗ electrocouplings.
Resonance electrocouplings and hadronic decay parameters
were determined by using a unitarized BW ansatz for the
resonant amplitudes, which takes into account interactions
between the same and different excited states in the dressed
resonance propagators.

Electrocouplings of the P11(1440) and D13(1520) res-
onances were obtained from the analysis of the π+π−p

exclusive electroproduction at photon virtualities 0.25 <

Q2 < 0.60 GeV2. They are in reasonable agreement with the
electrocoupling values obtained in the previous CLAS analysis
of the exclusive Nπ electroproduction channels [13]. Single-
pion and charged double-pion electroproduction channels
represent two major contributors to meson electroproduction
in the kinematical region covered by our measurements.
The nonresonant mechanisms in these exclusive channels are
completely different. A successful description of a large body
of observables in single-pion and charged double-pion electro-
production channels with consistent values of the P11(1440)
and D13(1520) electrocouplings confirms that the γvpN∗
electrocouplings can be reliably determined in independent
analyses of these electroproduction channels. A good agree-
ment between electrocouplings of the aforementioned excited
states obtained from Nπ and π+π−p electroproduction also
demonstrate that the reaction models developed to describe
these exclusive channels [13,43] can be used to determine
electrocouplings of most of the excited proton states that decay
preferentially into either Nπ or Nππ final states.

The π� and ρp partial hadronic decay widths of the
P11(1440) and D13(1520) states were also determined. They
are close to the results of experiments with hadronic probes
reported in the RPP [53].

The comparison of the CLAS data on P11(1440) and
D13(1520) electrocouplings with the expectations of con-
ceptually different quark models (Refs. [8,11] and [68])
complemented by evaluations of meson-baryon dressing [15]
allowed us to shed light on the relevant components in the
structure of these states and to explore their evolution with
photon virtualities. The electrocouplings reveal two major
contributions: one from an internal core of three dressed quarks
and and another from an external meson-baryon cloud.

The structure of the P11(1440) is consistent with a com-
bined contribution from constituent quarks in the first radial
excitation and from a meson-baryon cloud with pronounced
contributions at Q2 < 0.6 GeV2. The electrocouplings of the
D13(1520) contain a combined contribution of three con-
stituent quarks in the first orbital nucleon excitation L = 1 and
an external meson-baryon cloud, which becomes negligible
for the A1/2 electrocoupling of D13(1520) for Q2 > 1.5 GeV2.
The CLAS results on the A1/2 electrocoupling of the D13(1520)
resonance in this kinematical region provide direct access to
quark degrees of freedom in the structure of this excited state.
A physical interpretation of these results is of particular interest
for those who are studying hadron structure starting from the
QCD Lagrangian [26,27,29–33,39,78].

The resonance electrocouplings and hadronic decay pa-
rameters presented in this paper were obtained using the
unitarized BW parametrization of resonant amplitudes. Their
values are determined at the resonant point on the real
energy axis (W = Mr ) and incorporate all combined relevant
contributions (quark-core, meson-baryon dressing, and so on).
The N∗ parameters extracted from the data in this way
can only be compared directly with those obtained from
the same or other exclusive channel data fits that employ
BW parametrizations of resonant amplitudes. It remains to
be seen how these resonance parameters can be related
to the values determined from singularities of the reaction

035203-19



V. I. MOKEEV et al. PHYSICAL REVIEW C 86, 035203 (2012)

amplitudes in the complex energy plane, as employed in
coupled-channel analyses [21]. In Sec. II C we described
the JM model relations between the resonance parameters
and the model-independent observables: the resonant part
of the cross sections and N∗ electromagnetic and hadronic
decay widths. We can use the model independence of these
observables and require agreement of the cross section and/or
resonance decay widths at the resonant point evaluated in
different models. These observables, in turn, could be related
to the resonance parameters for any particular model. This
should make it possible to establish relations between resonant
parameters determined in our approach and those from a global
multichannel analysis.
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APPENDIX: RESONANCE HADRONIC DECAY
AMPLITUDES EMPLOYED IN THE JM MODEL

The relationship within the JM model [43,50] between
the N∗ hadronic decay amplitudes 〈λf |Tdec|λR〉 and the
energy-dependent N∗ partial hadronic decay widths 
λf

(W )
is presented in this Appendix. Here λR is the helicity of the
N∗, which decays into π� or ρp final states with helicity λf .

The N∗ hadronic decay amplitudes in Eq. (2) can be
expanded in partial waves of total momentum J :

〈λf |Tdec|λR〉 =
∑

J

〈λf |T J
dec|λR〉dJ

μν(cos θ∗)eiμφ∗
, (A1)

where θ∗ and φ∗ are the CM emission angle of the π

for the π� intermediate state and of the final p for the
ρ p intermediate states. The indexes μ and ν are defined
in Eq. (3). Only a single term with J = Jr, where Jr is
the resonance spin, contributes to the expansion in Eq. (A1)

because of total angular momentum conservation. We can
rotate the quantization axis adopted for the initial-state |λR〉
wave function and reevaluate the matrix element 〈λf |Tdec|λR〉
in the frame with the quantization axis defined by the final
π (the final proton) momentum for π� (ρp) N∗ decays,
respectively. The matrix element 〈λf |Tdec|λR〉 after rotation
becomes

〈λf |Tdec|λR〉 =
∑
ν ′

〈λf |Tdec|Jr ν ′〉dJr

μν ′ (cos θ∗)eiμφ∗
. (A2)

The superposition of the states |Jr ν ′〉 in Eq. (A2), with spin
Jr and projection onto the final-state quantization axis ν ′, is
the transformed wave function of the initial-state |λR〉 after
the aforementioned rotation of the initial-state quantization
axis. Rotational invariance of the resonance hadronic decay
amplitudes requires that the operator Tdec should be an SU(2)
⊗ O(3)-spin ⊗ orbital momentum scalar. Only the term with
ν ′ = ν in Eq. (A2) [with ν defined by Eq. (3)] remains nonzero
in the sum of Eq. (A2), as a consequence of the Wigner-Eckart
theorem applied to matrix elements 〈λf |Tdec|J r ν ′〉 with the
scalar Tdec operator.

From comparisons between Eqs. (A1) and (A2) we can see
that

〈λf |T Jr

dec|λR〉 = 〈λf |Tdec|J rν〉. (A3)

The 〈λf |T Jr

dec|λR〉 matrix elements in Eqs. (3) and (A3)
are determined by the final-state helicity λf only and are
independent of N∗ helicities λR .

Assuming real values for the matrix element 〈λf |T Jr

dec|λR〉
in Eqs. (3) and (A3), we can relate it to the 
λf

(W ) partial
hadronic decay width of the excited state N∗ to the final
state of helicity λf . We employ general relations of quantum
theory between the resonance decay amplitude 〈λf |Tdec|λR〉
of Eq. (A1), the two-body state phase space of resonance decay
products d�2b, and the 
λf

(W ) decay width:


λf
(W ) = 1

2Mr

1

2Jr + 1

∑
λR

∫
|〈λf |Tdec|λR〉|2d�2b.

(A4)

The factor 1
2Mr

in Eq. (A4) reflects the spin-tensor nor-
malization in the convention of the JM model [43]. This
normalization, and the expression for the S matrix adopted
in the JM model [43], defines the final-state two-body phase
space d�2b as

d�2b = 1

4π2

pf

4Mr

sin(θ∗)dθ∗dφ∗,
(A5)

Ef = W 2 + M2
f − M2

f ′

2W
, pf =

√
E2

f − M2
f ,

where Ef and pf are, respectively, the energy and momentum
moduli of one of the final hadrons f (where f is either a
pion or the final proton for the N∗ → π� or ρ ′p′ decays,
respectively), Mf is its mass, and the index f ′ stands for
the other hadron. All frame-dependent kinematic variables of
the final hadrons are defined in the final hadron CM frame.
Inserting Eqs. (A1) and (A3) into Eq. (A4) and accounting for
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the d function normalization,∫
dJ∗

μ ν(cos θ∗) · dJ
μ ν(cos θ∗) sin θ∗dθ∗ = 2

2J + 1
, (A6)

we obtain Eq. (3) for the 〈λf |Tdec|λR〉 amplitudes, apart from

the factor
√

〈pr
i 〉

〈pi 〉 . Note that at the resonant point, W = Mr , this
factor is equal to unity. However, in calculations of resonant
cross sections for W 
= Mr , the two-body phase space becomes

different than that at the resonant point. The factor
√

〈pr
i 〉

〈pi 〉 in
Eq. (3) accounts for this difference. It is needed to evaluate
resonant cross sections and amplitudes for W values off the
resonant point.

The 〈pr
i 〉 and 〈pi〉 absolute three-momentum values of the

final π for the N∗ → π� decay (i = 1) or of the final p′ for
the N∗ → ρp decay (i = 2) in Eq. (3) are averaged over the
running mass of the unstable hadron in the intermediate state:

〈
pr

i

〉 =
∫

dM2
i

1

π

Mi 0
i 0(
M2

i − M2
i 0

)2 + M2
0 i


2
0 i

pr
i

(
M2

i

)
,

(A7)

〈pi〉 =
∫

dM2
i

1

π

Mi 0
i 0(
M2

i − M2
i 0

)2 + M2
i 0


2
i 0

pi

(
M2

i

)
,

where Mi is the current invariant mass of the final πp particles
in the case of N∗ → π� decay (i = 1) or the current invariant

mass of final ππ particles for the N∗ → ρp decay (i = 2);
Mi 0 are the central masses of either � (i = 1) or ρ (i = 2);
and 
i 0, are their total decay widths. The running momenta
of the stable particles from N∗ decays pi(M2

i ) in Eq. (A7) are
evaluated as

p1 =
[(

W 2 + m2
π − M2

1

)2 − 4W 2m2
π

]1/2

2W
,

(A8)

p2 =
[(

W 2 + m2
p′ − M2

2

)2 − 4W 2m2
p′

]1/2

2W
.

The values of these momenta at the resonance point pr
i (M2

i )
were obtained from Eq. (A8) at W = Mr .

The hadronic decay widths 
λf
(W ) were taken from

experiments with hadronic probes, as was described in Sec. III.
Those decay widths were obtained in another representation
of orbital angular momentum L and total final hadron spin S


LSf
(W ). The partial 
λf

(W ) decay widths can be transformed
into this representation [81] by√


λf
=

√
2Jr + 1

2L + 1
〈L0Sλ1 − λ2|Jrλ1 − λ2〉

· 〈s1λ1s2 − λ2|Sλ1 − λ2〉
√


LS, (A9)

where s1, λ1, s2, and λ2 are spins and helicities for first stable
and second unstable particles in the intermediate states.
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[10] B. Juliá-Dı́az, D. O. Riska, and F. Coester, Phys. Rev. C 69,
035212 (2004).

[11] I. G. Aznauryan, Phys. Rev. C 76, 025212 (2007).
[12] I. G. Aznauryan and V. D. Burkert, Phys. Rev. C 85, 055202

(2012).
[13] I. G. Aznauryan et al. (CLAS Collaboration), Phys. Rev. C 80,

055203 (2009).
[14] S. Capstick and W. Roberts, Prog. Part. Nucl. Phys. 45, S241

(2000).
[15] B. Julia-Diaz, T. S. H. Lee, A. Matsuyama, T. Sato, and L. C.

Smith, Phys. Rev. C 77, 045205 (2008).
[16] T.-S. H. Lee, Int. J. Mod. Phys. E 18, 1215 (2009).
[17] B. Julia-Diaz, H. Kamano, T. S. H. Lee, A. Matsuyama, T. Sato,

and N. Suzuki, Phys. Rev. C 80, 025207 (2009).
[18] H. Kamano, B. Julia-Diaz, T. S. H. Lee, A. Matsuyama, and

T. Sato, Phys. Rev. C 80, 065203 (2009).

[19] H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato, Phys.
Rev. C 81, 065207 (2010).

[20] N. Suzuki, B. Julia-Diaz, H. Kamano, T. S. H. Lee, A.
Matsuyama, and T. Sato, Phys. Rev. Lett. 104, 042302 (2010).

[21] N. Suzuki, T. Sato, and T.-S. H. Lee, Phys. Rev. C 82, 045206
(2010).

[22] H. Kamano and T.-S. H. Lee, AIP Conf. Proc. 1432, 74 (2011).
[23] R. A. Arndt, J. M. Ford, and L. D. Roper, Phys. Rev. D 32, 1085

(1985).
[24] R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L. Workman,

Phys. Rev. C 74, 045205 (2006).
[25] S. Capstick et al., Eur. Phys. J. A 35, 253 (2008).
[26] V. Braun et al., Phys. Rev. Lett. 103, 072001 (2009).
[27] H.-W. Lin, Chin. Phys. C 33, 1238 (2009).
[28] H.-W. Lin, S. D. Cohen, R. G. Edwards, and D. G. Richards,

Phys. Rev. D 78, 114508 (2008).
[29] H.-W. Lin and S. D. Cohen, AIP Conf. Proc. 1432, 305 (2011).
[30] H.-W. Lin and S. D. Cohen, arXiv:1108.2528 [hep-lat].
[31] R. G. Edwards, J. J. Dudek, D. G. Richards, and S. J. Wallace,

Phys. Rev. D 84, 074508 (2011).
[32] J. J. Dudek and R. G. Edwards, Phys. Phys. D 85, 054016

(2012).
[33] I. G. Aznauryan et al., arXiv:0907.1901 [nucl-th].
[34] A. Martinez Torres, K. P. Khemchandani, and E. Oset, Phys.

Rev. C 79, 065207 (2009).
[35] H. L. L. Roberts et al., Few-Body Syst. 51, 1 (2011).
[36] C. Chen et al., arXiv:1204.2553 [nucl-th].
[37] H. L. L. Roberts, L. Chang, I. C. Cloet, and C. D. Roberts, in

Exclusive Reactions at High Momentum Transfer IV, Newport
News VA, 18–21 May 2010, edited by A. Radyushkin (World
Scientific, Singapore, 2011), p. 201.

035203-21

http://dx.doi.org/10.1016/j.ppnp.2011.08.001
http://dx.doi.org/10.1016/j.ppnp.2011.08.001
http://dx.doi.org/10.1088/1742-6596/299/1/012008
http://dx.doi.org/10.1142/S0217751X11051883
http://dx.doi.org/10.1016/j.ppnp.2005.01.015
http://dx.doi.org/10.1142/S0218301304002545
http://dx.doi.org/10.1142/S0218301304002545
http://dx.doi.org/10.1103/PhysRevD.22.2236
http://dx.doi.org/10.1103/PhysRevD.51.3598
http://dx.doi.org/10.1007/978-3-7091-6798-4_75
http://dx.doi.org/10.1007/978-3-7091-6798-4_75
http://dx.doi.org/10.1016/S0375-9474(00)00007-5
http://dx.doi.org/10.1103/PhysRevC.69.035212
http://dx.doi.org/10.1103/PhysRevC.69.035212
http://dx.doi.org/10.1103/PhysRevC.76.025212
http://dx.doi.org/10.1103/PhysRevC.85.055202
http://dx.doi.org/10.1103/PhysRevC.85.055202
http://dx.doi.org/10.1103/PhysRevC.80.055203
http://dx.doi.org/10.1103/PhysRevC.80.055203
http://dx.doi.org/10.1016/S0146-6410(00)00109-5
http://dx.doi.org/10.1016/S0146-6410(00)00109-5
http://dx.doi.org/10.1103/PhysRevC.77.045205
http://dx.doi.org/10.1142/S0218301309013464
http://dx.doi.org/10.1103/PhysRevC.80.025207
http://dx.doi.org/10.1103/PhysRevC.80.065203
http://dx.doi.org/10.1103/PhysRevC.81.065207
http://dx.doi.org/10.1103/PhysRevC.81.065207
http://dx.doi.org/10.1103/PhysRevLett.104.042302
http://dx.doi.org/10.1103/PhysRevC.82.045206
http://dx.doi.org/10.1103/PhysRevC.82.045206
http://dx.doi.org/10.1103/PhysRevD.32.1085
http://dx.doi.org/10.1103/PhysRevD.32.1085
http://dx.doi.org/10.1103/PhysRevC.74.045205
http://dx.doi.org/10.1140/epja/i2007-10576-1
http://dx.doi.org/10.1103/PhysRevLett.103.072001
http://dx.doi.org/10.1088/1674-1137/33/12/030
http://dx.doi.org/10.1103/PhysRevD.78.114508
http://arXiv.org/abs/arXiv:1108.2528
http://dx.doi.org/10.1103/PhysRevD.84.074508
http://dx.doi.org/10.1103/PhysRevD.85.054016
http://dx.doi.org/10.1103/PhysRevD.85.054016
http://arXiv.org/abs/arXiv:0907.1901
http://dx.doi.org/10.1103/PhysRevC.79.065207
http://dx.doi.org/10.1103/PhysRevC.79.065207
http://dx.doi.org/10.1007/s00601-011-0225-x
http://arXiv.org/abs/arXiv:1204.2553


V. I. MOKEEV et al. PHYSICAL REVIEW C 86, 035203 (2012)

[38] L. Chang, Y. X. Liu, and C. D. Roberts, Phys. Rev. Lett. 106,
072001 (2011).

[39] D. J. Wilson, I. C. Cloet, L. Chang, and C. D. Roberts, Phys.
Rev. C 85, 025205 (2012).

[40] K. Joo et al. (CLAS Collaboration), Phys. Rev. Lett. 88, 122001
(2002); Phys. Rev. C 68, 032201 (2003); 70, 042201 (2004); H.
Egiyan et al. (CLAS Collaboration), ibid. 73, 025204 (2006);
M. Ungaro et al. (CLAS Collaboration), Phys. Rev. Lett. 97,
112003 (2006); L. C. Smith et al. (CLAS Collaboration), AIP
Conf. Proc 904, 232 (2007); Athens, 2006; K. Park et al. (CLAS
Collaboration), Phys. Rev. C 77, 015208 (2008); A. Biselli et al.
(CLAS Collaboration), ibid. 78, 045204 (2008).

[41] G. V. Fedotov et al. (CLAS Collaboration), Phys. Rev. C 79,
015204 (2009).

[42] M. Ripani et al. (CLAS Collaboration), Phys. Rev. Lett. 91,
022002 (2003).

[43] V. I. Mokeev, V. D. Burkert, T. S. H. Lee, L. Elouadrhiri, G. V.
Fedotov, and B. S. Ishkhanov, Phys. Rev. C 80, 045212 (2009).

[44] V. I. Mokeev et al., in Proceedings of the 11th Workshop on
the Physics of Excited Nucleons, NSTAR2007, edited by H.-W.
Hammer, V. Kleber, U. Thoma, and H. Schmieden (Springer,
New York, 2008), p. 76.

[45] V. D. Burkert et al., Phys. At. Nucl. 70, 427 (2007).
[46] V. I. Mokeev et al., in Proceedings of the Workshop on the

Physics of Excited Nucleons, NSTAR2005, edited by S. Capstick,
V. Crede, and P. Eugenio (World Scientific, Singapore, 2005), p.
47.

[47] I. G. Aznauryan, V. D. Burkert, G. V. Fedotov, B. S. Ishkhanov,
and V. I. Mokeev, Phys. Rev. C 72, 045201 (2005).

[48] V. I. Mokeev and V. D. Burkert, J. Phys.: Conf. Ser 69, 012019
(2007).

[49] E. Byckling and K. Kajantie, Particle Kinematics (Wiley,
New York, 1972).

[50] M. Ripani et al., Nucl. Phys. A 672, 220 (2000).
[51] I. J. R. Aitchison and J. J. Brehm, Phys. Rev. D 17, 3072 (1978).
[52] R. G. Newton, Scattering Theory of Waves and Particles

(McGraw-Hill, New York, 1969).
[53] K. Nakamura et al., J. Phys. G 37, 075021 (2010).
[54] D. Luke and P. Soding, Multiple Pion Photoproduction in the s

Channel Resonance Region, Springer Tracts in Modern Physics
Vol. 59 (Springer, New York, 1971).

[55] I. J. R. Aitchison, Nucl. Phys. A 189, 417 (1972).
[56] I. G. Aznauryan, V. D. Burkert, H. Egiyan, K. Joo, R. Minehart,

and L. C. Smith, Phys. Rev. C 71, 015201 (2005).
[57] D. M. Manley and E. M. Saleski, Phys. Rev. D 45, 4002 (1992).
[58] V. D. Burkert, R. DeVita, M. Battaglieri, M. Ripani, and

V. Mokeev, Phys. Rev. C 67, 035204 (2003).
[59] L. Tiator, D. Drechsel, and S. S. Kamalov, Eur. Phys. J. A 34,

69 (2007).
[60] M. Dugger et al. (CLAS Collaboration), Phys. Rev. C 79, 065206

(2009).
[61] L. Tiator, D. Drechsel, S. S. Kamalov, and M. Vanderhaeghen,

Eur. Phys. J. Spec. Top. 198, Number 1, 141 (2011).
[62] L. Tiator, D. Drechsel, S. S. Kamalov, and M. Vanderhaeghen,

Chin. Phys. C 33, 1069 (2009).
[63] Zp. Li, V. Burkert, and Zh. Li, Phys. Rev. D 46, 70 (1992).
[64] I. T. Obukhovsky, A. Faessler, D. K. Fedorov, T. Gutsche, and

V. E. Lyubovitskij, Phys. Rev. D 84, 014004 (2011).
[65] S. D. Drell and T. M. Yan, Phys. Rev. Lett. 24, 181 (1970).
[66] V. B. Berestetskii and M. V. Terent’ev, Sov. J. Nucl. Phys. 24,

1044 (1976); 25, 347 (1977).
[67] B. D. Keister and W. N. Polyzou, Adv. Nucl. Phys. 20, 225

(1991).
[68] G. Ramalho and K. Tsushima, Phys. Rev. D 81, 074020 (2010).
[69] F. Gross, J. W. Van Orden, and K. Holinde, Phys. Rev. C 45,

2094 (1992).
[70] F. Gross, G. Ramalho, and M. T. Pena, Phys. Rev. C 77, 015202

(2008).
[71] T. Sato and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996).
[72] T. Sato and T.-S. H. Lee, Phys. Rev. C 63, 055201 (2001).
[73] B. Julia-Diaz, T.-S. H. Lee, T. Sato, and L. C. Smith, Phys. Rev.

C 75, 015205 (2007).
[74] T. Sato and T.-S. H. Lee, J. Phys. G 36, 055201 (2009).
[75] F. Stancu and P. Stassart, Phys. Rev. D 39, 343 (1989).
[76] P. Stassart and Fl. Stancu, Z. Phys. A 351, 77 (1995).
[77] M. Aiello, M. M. Giannini, and E. Santopinto, J. Phys. G 24,

753 (1998).
[78] G. F. de Teramond and S. J. Brodsky, AIP Conf. Proc. 1432, 168

(2001).
[79] R. Koniuk and N. Isgur, Phys. Rev. D 21, 1868 (1980).
[80] S. Capstick and W. Roberts, Phys. Rev. D 49, 4570 (1994).
[81] M. Jacob and G. C. Wick, Ann. Phys. (NY) 7, 404 (1959).

035203-22

http://dx.doi.org/10.1103/PhysRevLett.106.072001
http://dx.doi.org/10.1103/PhysRevLett.106.072001
http://dx.doi.org/10.1103/PhysRevC.85.025205
http://dx.doi.org/10.1103/PhysRevC.85.025205
http://dx.doi.org/10.1103/PhysRevLett.88.122001
http://dx.doi.org/10.1103/PhysRevLett.88.122001
http://dx.doi.org/10.1103/PhysRevC.68.032201
http://dx.doi.org/10.1103/PhysRevC.70.042201
http://dx.doi.org/10.1103/PhysRevC.73.025204
http://dx.doi.org/10.1103/PhysRevLett.97.112003
http://dx.doi.org/10.1103/PhysRevLett.97.112003
http://dx.doi.org/10.1063/1.2734308
http://dx.doi.org/10.1063/1.2734308
http://dx.doi.org/10.1103/PhysRevC.77.015208
http://dx.doi.org/10.1103/PhysRevC.78.045204
http://dx.doi.org/10.1103/PhysRevC.79.015204
http://dx.doi.org/10.1103/PhysRevC.79.015204
http://dx.doi.org/10.1103/PhysRevLett.91.022002
http://dx.doi.org/10.1103/PhysRevLett.91.022002
http://dx.doi.org/10.1103/PhysRevC.80.045212
http://dx.doi.org/10.1134/S1063778807030027
http://dx.doi.org/10.1103/PhysRevC.72.045201
http://dx.doi.org/10.1088/1742-6596/69/1/012019
http://dx.doi.org/10.1088/1742-6596/69/1/012019
http://dx.doi.org/10.1016/S0375-9474(99)00853-2
http://dx.doi.org/10.1103/PhysRevD.17.3072
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1016/0375-9474(72)90305-3
http://dx.doi.org/10.1103/PhysRevC.71.015201
http://dx.doi.org/10.1103/PhysRevD.45.4002
http://dx.doi.org/10.1103/PhysRevC.67.035204
http://dx.doi.org/10.1140/epja/i2007-10490-6
http://dx.doi.org/10.1140/epja/i2007-10490-6
http://dx.doi.org/10.1103/PhysRevC.79.065206
http://dx.doi.org/10.1103/PhysRevC.79.065206
http://dx.doi.org/10.1140/epjst/e2011-01488-9
http://dx.doi.org/10.1088/1674-1137/33/12/005
http://dx.doi.org/10.1103/PhysRevD.46.70
http://dx.doi.org/10.1103/PhysRevD.84.014004
http://dx.doi.org/10.1103/PhysRevLett.24.181
http://dx.doi.org/10.1103/PhysRevD.81.074020
http://dx.doi.org/10.1103/PhysRevC.45.2094
http://dx.doi.org/10.1103/PhysRevC.45.2094
http://dx.doi.org/10.1103/PhysRevC.77.015202
http://dx.doi.org/10.1103/PhysRevC.77.015202
http://dx.doi.org/10.1103/PhysRevC.54.2660
http://dx.doi.org/10.1103/PhysRevC.63.055201
http://dx.doi.org/10.1103/PhysRevC.75.015205
http://dx.doi.org/10.1103/PhysRevC.75.015205
http://dx.doi.org/10.1088/0954-3899/36/7/073001
http://dx.doi.org/10.1103/PhysRevD.39.343
http://dx.doi.org/10.1007/BF01292788
http://dx.doi.org/10.1088/0954-3899/24/4/007
http://dx.doi.org/10.1088/0954-3899/24/4/007
http://dx.doi.org/10.1103/PhysRevD.21.1868
http://dx.doi.org/10.1103/PhysRevD.49.4570
http://dx.doi.org/10.1016/0003-4916(59)90051-X



