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Parameterization dependence of T -matrix poles and eigenphases
from a fit to π N elastic scattering data
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We have studied the form dependence of fits to πN elastic scattering data, based on a Chew-Mandelstam
K-matrix formalism. Extracted partial-wave amplitudes and resonances characterized by T -matrix poles are
compared in fits generated with and without explicit Chew-Mandelstam K-matrix poles. Diagonalization of the
S-matrix yields the eigenphase representation. While the eigenphases can vary significantly for the different
parametrizations, the locations of most T -matrix poles are relatively stable. We also find the partial-wave
amplitudes for πN elastic scattering to be quite stable. By turning on and off the explicit Chew-Mandelstam pole
contributions, we are able to determine how the T -matrix poles are generated in this approach.
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I. INTRODUCTION

The excited states of the nucleon [1] have been studied in
a wide array of reactions initiated mainly by pion and photon
beams. Other approaches have involved an examination of
the invariant mass distribution of products from, for example,
nucleon-nucleon reactions [2] and J/� decays [3]. Most
nonstrange states listed by the PDG [1] were identified from
fits to πN elastic scattering and reaction data. Photodecay
amplitudes were determined mostly through analyses of
single-pion photoproduction data.

Recent measurements of cross section and polarization
quantities, related to the photo- and electroproduction of
states other than πN , have been analyzed separately and
in multichannel approaches. These studies have provided
stronger evidence for states seen only weakly in πN elastic
scattering, and have suggested new states, coupling more
strongly to other channels [4].

Among the most extensive πN scattering analyses [5–7],
the parametrization of Ref. [7] based on the SAID interactive
fitting and database codes [8] (the GW-SAID fit), utilizing the
most recent data, has found the fewest number of N and �

resonances. In the fit of Ref. [9], a search for weaker structures
was carried out. There, the existing solution was modified
using a simple product S-matrix approach, to include the
effect of an added Breit-Wigner resonance in each partial wave.
Chi-squared was mapped for various combinations of masses,
widths, and branching fractions. Two marginally significant
candidates were found in the S11 and F15 partial waves, with
pole positions 1689 − i96 MeV (for S11) and 1793 − i94 (for
F15). Of these, the F15 has been reported in subsequent fits,
while the S11 has not.

Here we have considered another approach. As detailed
further below, existing GW-SAID fits to πN elastic scattering
data utilized a fit form based on the Chew-Mandelstam
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(CM) K matrix. This approach is capable of generating
T -matrix poles without the assumption of explicit CM K-
matrix poles. Previous fits [7] only included an explicit CM
K-matrix pole for the �(1232). In the present study, an
alternative parametrization with one explicit CM K-matrix
pole in each partial wave was used to generate a fit independent
of the usual CM parametrization.

A third form based on a product S matrix, constructed
from pieces containing either CM K-matrix pole or nonpole
terms, was also attempted. There, the goal was a separation of
resonant and nonresonant contributions. Ultimately, this was
not successful. As a result, we detail only the second approach,
but comment on the product form in our conclusions.

The motivation for these new fits is twofold. By changing
the parametrization, we are able to gauge the stability of the
amplitudes and resonance positions. We are also able to see if
the addition of new explicit CM K-matrix poles translates into
additional resonance signals. Each fit was fully constrained
by forward and fixed-t dispersion relations, and extrapolated
into the complex energy plane to find T -matrix poles. As
a result, this project constitutes the most extensive analysis
of πN elastic scattering data since our first incorporation of
dispersion relation constraints.

Below, in Sec. II, we briefly review the CM K-matrix
formalism used in this and previous fits. The eigenphase
representation, and some numerical details, are reviewed
in Sec. III. Results for the partial-wave fits and resonance
spectrum are compared in Sec. IV. Finally, in Sec. V, we
consider the implications of this and future work.

II. CHEW-MANDELSTAM FORMALISM

The Chew-Mandelstam (CM) approach for the parametriza-
tion of multichannel hadronic πN elastic scattering and
reactions to other hadronic channels has been described in
detail in Refs. [7,9–12]. The χ2 fits to data have been
additionally constrained using the forward C± dispersion
relations and fixed-t dispersion relations for the invariant B

amplitudes.
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As a point of reference, we note that the standard CM
parametrization can be expressed in terms of the on-shell
Heitler partial-wave K matrix K as

K−1(E) = K
−1

(E) − ReC(E), (1)

where E is the (complex) scattering energy, K is the CM K

matrix, and C is a diagonal matrix, whose matrix elements are
termed the CM functions [13]. The Heitler K matrix is related
to the partial-wave transition amplitude matrix T as

T −1(E) = K−1(E) − iρ(E). (2)

Here, ρ(E) = δ(E − H0), where H0 is the (model-
independent) relativistic free-particle Hamiltonian with phys-
ical (stable) particle masses. It determines the CM functions
C(E) via the relation ImC(E) = ρ(E).1

The standard form used in the GW fits is defined by the
choice for the CM K-matrix elements

K(E) =
∑

n

cnz
n(E), (3)

where cn are a set of constants and z is a linear function of the
scattering energy, E. The integer n is typically between 2 and
5, and depends on the matrix element in question.

Note that K defines an entire function of the complex
parameter E for finite values. This form is used for all but
the P33 partial wave, which includes an explicit pole in K .
For partial waves other than the P33, we see that the CM K

matrix, K , is without poles (or other singularities). The Heitler
K matrix

K = 1

1 − K[Re C]
K (4)

has a pole whenever det[1 − Re C(E)K(E)] = 0. The matri-
ces K and K are free of branch point singularities [12,14].

The alternate form of the CM K matrix is similar to the form
used in the P33 partial wave of the standard K parametrization,
described above. This form is given by

Kij = γiγj

E − Ep

+ β(E)ij . (5)

Here, γi(E) is a polynomial without a zero at the pole position
Ep, the index labels the channel (πN , π�, ρN , and ηN ), and
β(E) is an entire function of the complex energy E.

III. EIGENPHASE REPRESENTATION

The fit produces a unitary S matrix of amplitudes for all
contributing channels. While those channels not fitted to data
are unlikely to give a quantitative representation of the reaction
(for example, πN → π�), they can be used to construct a set
of eigenphases, which provides an interesting characterization
of resonance behavior.

1The included quasi-two-body channels, such as π�, are con-
strained by a subtracted dispersion relation to be zero at the stable
three-body threshold.

The unitarity of the S matrix implies that its eigenvalues
are phase factors. The matrix U of eigenvectors diagonalizes
the S matrix as

U †SU = λ, (6)

where

λ =

⎛
⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 · · · λn

⎞
⎟⎟⎠ . (7)

Exploiting |λi | = 1, we write

λi = e2iφi , (8)

with φi real.
Our objective is the numerical evaluation of the eigenphases

given the T -matrix elements from various fits. This is
straightforward at a given energy, using a standard routine to
diagonalize the unitary S matrix. The only complicating issue
is correlating a given eigenphase φi(E) with the appropriate
eigenchannel when two (or more) eigenphases converge as
the energy changes. In other words, once an eigenchannel i is
determined, we must track it for all energies. The no-crossing
theorem [15] is readily generalized to unitary matrices and
shows that in a given partial wave, the eigenphases may not
be equal for any energy. This property is exhibited in the
eigenphase plots discussed below.

Given the T matrix at some energy T (E), we can form
the S(E) matrix. We diagonalize this matrix using a standard
routine to obtain the eigenvalues {λi(E)}ni=1, where n is the
number of channels.

If the eigenvalues are nearly degenerate at some energy, it
is difficult to distinguish which eigenvalue corresponds to a
given eigenchannel, say i, since diagonalization of S does not
preserve the eigenchannel ordering. The set of eigenvectors,
however, must be orthogonal at any energy; and, for continuous
partial-wave amplitudes, the change of the eigenvector for a
given eigenchannel is small for nearby energies.

The eigenchannels are maintained using the following
method. The S matrix is diagonalized at the initial energy,
say E1 = 1150 MeV. We obtain n eigenphases (where n

is the number of channels included for the given partial
wave), λ1(E1), . . . , λn(E1) and their corresponding eigenvec-
tors v1(E1), . . . , vn(E1). We wish to correlate the eigenvalues
and eigenvectors with a given eigenchannel throughout the
evaluation of the eigenvalues at higher energies, E > E1.

Increasing the energy a small amount (10–15 MeV) to
E2, we again diagonalize the S matrix and evaluate the
λ1(E2), . . . , λn(E2) and eigenvectors v1(E2), . . . , vn(E2). To
track the eigenchannel, we evaluate the matrix of overlaps:

Oij (E1, E2) = vi(E1)†vj (E2). (9)

As E2 → E1, we have

lim
E2→E1

Oij (E1, E2) = δij , (10)

which is just the statement that the eigenvectors are orthonor-
mal. For E2 − E1 � 10 MeV, we identify the eigenvalues
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FIG. 1. (Color online) Selected partial-wave amplitudes (L2I,2J ). Solid (dashed) curves give the real (imaginary) parts of amplitudes
corresponding to the WI08 [8] solution. Dash-dotted (dotted) curves give the real (imaginary) parts of amplitudes corresponding to the XP08
solution. (a) S11, (b) S31, (c) P11, (d) D13, (e) F15, and (f) F37. All amplitudes are dimensionless. Vertical arrows indicate Breit-Wigner resonance
WR values, and horizontal bars show full 
 and partial widths for 
πN associated with the GW SP06 solution [7].

according to the largest overlap in the set

{|Oij (E1, E2)|}nj=1. (11)

Suppose, for example, that we have three channels and at the
energy E1, we write the eigenvalues in the order

λ1, λ2, λ3. (12)

And at energy E2 for i = 1, we find that

|O13(E1, E2)| > |O11(E1, E2)| > |O12(E1, E2)|, (13)

then for energy E2, we order the eigenvalue λ3 first; the
ordering for the other eigenvalues is determined similarly.

IV. RESULTS

The fits with (XP08) and without (WI08) explicit CM K-
matrix poles, in waves other than (L2I,2J ) P33, are compared
in Fig. 1. Differences in the partial waves are slight, and the fit
quality is comparable over the resonance region, each fit using
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FIG. 2. (Color online) Eigenphases. (a) S11, (b) S31, (c) P11, (d) D13, (e) F15, and (f) F37. Upper plots correspond to WI08 solution; lower
plots correspond to XP08.

a similar number of parameters. This feature of the πN elastic
scattering analysis seems quite stable.

In Fig. 2, we have calculated the eigenphases corresponding
to the full S matrix. Only the πN → πN and πN → ηN

channels have been constrained by data. We note that small
changes in the partial-wave T -matrix elements can result in
large changes in the eigenphases. This is a corollary of the
no-crossing theorem and a consequence of the nonlinear nature
of the diagonalization of the S matrix. The behavior of these

phases does, however, provide an interesting perspective on
the emergence of resonance structures in the fits.

In the S11 partial wave, both fits have two eigenphases
crossing 90◦, at 1533 and 1674 MeV for WI08, and at 1533
and 1702 MeV for XP08. If one computes the usual Heitler
K matrix, as was done in Ref. [16], K-matrix poles are found
at these energies (since the unitary transformation U [Eq. (6)]
diagonalizes K simultaneously with S and Kii = tan φi). In the
S31 partial wave, a 2- and 3-channel fit are compared, yielding
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TABLE I. Pole positions in complex energy plane of the K matrix
for the πN → πN reaction. The functional forms (see text) employed
in the SAID fits are compared for selected partial waves. Each K pole
position is expressed in terms of its real part.

�JT WI08 XP08

S11 1533 1674 1533 1702
S31 1653 1658
P11 1517
D13 1512 1750
F15 1685
F37 1869

identical crossing energies, again corresponding to a Heitler
K-matrix pole (at about 1655 MeV). Note that in the WI08
plot, two eigenphase curves nearly touch but do not cross.

In the P11 plot, only one of the solutions has a 90◦ crossing
leading to a Heitler K-matrix pole. Note, however, that the
energy dependence of the eigenphase crossing, and nearly
crossing 90◦, is very similar. This feature determines another
measure of resonance behavior, to be discussed below.

The D13 eigenphases are quite different in the two fits. In
the WI08 fit, there are no 90◦ crossings, while in XP08, we
see two crossings. This hints at a different resonance structure,
though the πN T matrices are nearly identical.

In the F15 and F37 eigenphase plots, the XP08 solution has
a single crossing, whereas the WI08 solution does not. Here
also, a comparison of the eigenphases which cross or come
close to crossing 90◦ have a similar energy dependence. Values
of the Heitler K-matrix poles derived from the two solutions
WI08 and XP08 for the considered partial waves are listed in
Table I.

As has been noted previously [17], resonances may be
associated with a single eigenphase crossing 90◦, and this
will result in a Heitler K-matrix pole. However, a more robust
measure (if a set of amplitudes is available) is given by the
time-delay matrix [18], which is proportional to the sum of

energy derivatives of all eigenphases. Other factors, such as
threshold openings can also produce rapid energy dependence.
Certainly the correct method of resonance identification
requires the location of poles in the complex energy plane
on unphysical sheets close to the physical region, which
we demonstrate below. Our employment of the eigenphase
approach illustrates the fact that the resonance structure may
vary without significantly altering the shape of the πN elastic
amplitude. It is usually the case, however, that such resonances
are deep in the complex plane having large widths. Intervening
zeros can also diminish the effect of poles on the physical axis.

In Fig. 3, for illustration, we plot the sum of eigenphase
energy derivatives for the P11 and D13. The peaks for P11

are nearly identical and occur at about 1350 MeV, which (we
will see) corresponds with the real part of the pole position.
For the D13, peaks corresponding the PDG 4-star state, near
1500 MeV, are closely aligned. The second peak has almost
no evidence in the πN elastic amplitude. However, a large
contribution to the (unfitted and therefore unconstrained) π�

or ρN channel produces the second peak.
In Table II, we compare the pole positions associated with

resonance behavior in the plotted amplitudes. The third S11

pole in XP08 closely resembles the structure found in Ref. [9],
at (1689, 96) MeV, by scanning all partial waves with an added
Breit-Wigner contribution. The very broad (1646, 290) MeV
P11 state is similarly close to one found in the SM90 fit [19],
at (1636, 272) MeV. Two extra poles were found in the D13

partial wave for the XP08 solution compared to WI08. We do
not intend to report the (1716, 370) MeV pole as a resonance
but merely mention it here in connection with the present
sensitivity study. Interestingly, the pole at (1740, 66) MeV
has its effect masked by a zero intervening between the pole
and real energy axis and therefore makes little impact in the
physical region.

As mentioned in the Introduction, a third parametrization
was attempted to see if resonance and background contribu-
tions could be isolated using a product S-matrix approach. The
form tested was S = SBSRSB . Here SB was constructed using

(a) (b)

FIG. 3. (Color online) Derivatives of eigenphases. (a) P11 and (b) D13. Upper plots correspond to WI08 solution; lower plots correspond to
XP08.
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TABLE II. Pole positions in complex energy plane of the T matrix for the πN → πN reaction. The functional forms (see text) employed
in the SAID fits are compared for selected partial waves. Each T pole position is expressed in terms of its real and imaginary parts (MR,−
R/2)
in MeV. The second sheet pole is labeled by a †.

�JT WI08 XP08

S11 (1499, 49) (1647, 42) (1666, 260) (1538, 65) (1675, 58) (1690, 121)
S31 (1594, 68) (1592, 66)
P11 (1358, 80) (1388, 82)† (1358, 80) (1387, 80)† (1646, 290)
D13 (1515, 55) (1513, 53) (1740, 66) (1716, 370)
F15 (1674, 57) (1779, 138) (1672, 70) (1734, 61)
F37 (1883, 115) (1874, 119)

the CM K-matrix method, with no pole term (polynomial
only), while SR contained only a pole (no polynomial) term.
After fitting the data, the pole piece was examined but did
not result in resonance parameters consistent with previous
determinations. In hindsight, this could have been anticipated,
because the polynomial form of the CM K matrix is capable
of generating T -matrix poles, and therefore is not really a
“background” in this approach.

V. CONCLUSIONS

We have reported an extensive study of the parametrization
dependence of our πN elastic amplitudes and resonance
spectrum using very different forms for the CM K matrix,
with explicit poles in each partial wave. The partial-wave
amplitudes were found to be very stable under this change.

The eigenphase representation was introduced because it
gives an interesting visualization of both T -matrix and Heitler
K-matrix poles in a single figure, and because it provides
a more concrete example of properties discussed in older
works. This discussion also provides a continuation of the
study started in Ref. [16].

The more formally correct extraction of pole positions has
revealed structures mainly found in earlier fits to the πN

elastic scattering data. As the partial-wave amplitudes have
not changed significantly, the effects of new resonances must
be minimized through large widths, intervening zeros, or small
coupling to the πN channel. The added CM K-matrix poles
have in most cases become the generators of the dominant
T -matrix poles, previously generated via the polynomial
form, rather than producing further resonances. This could
be determined by turning off either the CM K-matrix pole
or polynomial terms and seeing the effect on the extracted
T -matrix poles.

In the SM90 fit, a study of the resonance spectrum was
tried where, in addition to experimental data, the amplitudes
from the Karlsruhe-Helsinki (KH) [5] and Carnegie-Mellon-
Berkeley (CMB) [6] analyses were added as soft constraints.
A possible extension to the present work would be a reexami-
nation of the resonance spectrum from a fit, with explicit CM
K-matrix poles, constrained to more closely follow either the
KH and CMB PWA results, or a multichannel analysis.
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