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Role of the in-medium four-quark condensates reexamined
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We calculate the nucleon self-energies in nuclear matter in the QCD sum rules approach, taking into account
the contributions of the four-quark condensates. We analyze the dependence of the results on the model employed
for the calculation of the condensates and demonstrate that the relativistic character of the models is important.
The condensates are calculated with inclusion of the most important terms beyond the gas approximation. This
corresponds to inclusion of the two-body nucleon forces and of the most important three-body forces. The
results are consistent with the convergence of the operator product expansion. The density dependence of the
nucleon self-energies is obtained. The results are consistent with those obtained by the standard nuclear physics
methods, thus inspiring further development of the approach.
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I. INTRODUCTION

Calculation of the density dependence of the nucleon
self-energy is one of the most important problems of nuclear
physics nowadays [1,2]. The standard nuclear physics calcu-
lations carried out in various approaches [2,3] require certain
phenomenological parameters. The QCD sum rules approach
to the description of the nucleons in nuclear matter [4] makes
it possible to present the nucleon self-energies in terms of the
in-medium QCD condensates [4,5].

The QCD sum rules approach stimulated investigation
of the in-medium four-quark condensates. It was demon-
strated [6] that the influence of the four-quark conden-
sates may appear to be large. However, the calculations
require certain model assumptions on the quark structure of
nucleus.

In Ref. [7] the contribution of the scalar condensate to
the QCD sum rules was obtained by using the Nambu-
Jona-Lasinio model [8]. A larger number of condensates
was obtained in Ref. [9] in the framework of the pertur-
bative chiral quark model (PCQM) [10,11]. Further studies
showed [12,13] that a more detailed analysis is needed.
Also, the status of the factorization assumption [5] should be
clarified.

In the present paper we consider the four-quark condensates
in the class of models, where the nucleon is viewed as a
system of the valence quarks and the pions, which are treated
perturbatively. The sea quarks are assumed to be contained in
the pions. We focus on the role of the four-quark condensates
in the QCD sum rules analysis of the nucleons in nuclear
matter.

The QCD sum rules approach to investigation of hadrons
in vacuum was suggested in Ref. [14] for the mesons and
was extended for nucleons in Ref. [15] (see also Ref. [16]).
The aim of the approach is to express hadron parameters in
terms of the QCD condensates. It was extended for calculations
of the nucleon self-energies in nuclear matter (see Ref. [17]
and references therein). The method is based on dispersion
relations for the function �m(q2) usually referred to as
the “polarization operator” which describes the time-space
propagation of the system with the four-momentum q and

the quantum numbers of the nucleon in the matter. The
function �m(q2) is determined by the local quark operator
j (x). The choice of j (x) is not unique. We use the form
suggested in Ref. [18] (see Appendix A). We focus on the
contributions of the four-quark condensates to the function
�m(q2).

The extension of the QCD sum rules method for the case
of finite densities makes it possible to approach the problems
which are very difficult or inaccessible for the standard nuclear
physics. Several examples are provided in Ref. [17]. This
method makes it possible to obtain the qualitative results and to
clarify the relative role of various channels. However both the
left-hand side (LHS) and the right-hand side (RHS) of the sum
rules are calculated approximately. The LHS contains several
operator product expansion (OPE) terms. The RHS requires
a certain model for the spectrum of the polarization operator.
Hence, accurate computation of the physical values is beyond
this approach.

Thus, it is instructive to analyze in detail what the method
gives for the nucleon self-energies in nuclear matter which
are well studied by the nuclear physics methods. The role
of the four-quark condensates is increasingly important since
some simplified assumptions on their values were shown
to contradict both the convergence of OPE and the nuclear
physics phenomenology [6].

Calculation of the four-quark condensate requires model
assumptions on the quark structure of the nucleon. The models
may include or not include certain physics, thus being more or
less reliable. In the present paper we show that by employing
the nonrelativistic quark models we are very close to con-
tradiction with what we know from nuclear physics studies.
However, the relativistic quark models provide the results con-
sistent with OPE and nuclear physics. This makes it possible to
go ahead.

The calculations are carried out in the gas approxi-
mation and with inclusion of the most important non-
linear terms. This corresponds to inclusion of the two-
body forces and of the three-body forces in the mean-field
approximation.

The unknowns of the sum rules equations are the nucleon
vector self-energy �V , the effective mass m∗ (or the scalar
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self-energy m∗ − m), the nucleon residue λ2
m, and the effective

continuum threshold W 2
m. The sum rules equations connect

these parameters to the QCD condensates at finite density.
Putting W 2

m equal to its vacuum value we find explicit
approximate equations that express the nucleon self-energies
in terms of the QCD condensates.

There are three types of contributions to the four-quark
expectation values. In the first one only the valence quarks are
involved. The second one includes only the sea quarks. There
are also the interference contributions, where both sea and
valence quarks participate. The contribution of the valence
quarks can be written in a way that makes it possible to
separate special factorized configurations in which two quark
operators act inside the nucleon while two other ones act on the
QCD vacuum.

It was shown in Ref. [19] that the contributions involving
only the sea quarks cancel. Turning to the valence quarks we
find the factorized terms and also the internal terms in which all
four operators act inside the nucleon. In the interference terms
two quark operators act on the constituent quark, while the
other two act on the pion or connect the pion with vacuum by
the relations based on the partial conservation of axial current
(PCAC).

The four-quark condensates have dimension d = 6. The
factorized terms are proportional to the product 〈0|q̄q|0〉 ·
〈N |q̄�Xq|N〉val · ρ (�X = I, γ0) of the vacuum expectation
value 〈0|q̄q|0〉, the contribution of the valence quarks to the
nucleon expectation value 〈N |q̄�Xq|N〉val, and the nucleon
density ρ. The internal terms depend on the characteristic
nucleon size R. They scale as ρ/R3. Because 〈0|q̄q|0〉 ≈
(−241 MeV)3, while R ≈ 0.6 fm = (328 MeV)−1, these two
values are of the same order.

We demonstrate that in the scalar channel the factorized
terms determine about 80% of the total contribution. The
internal contributions are as important as the interference
terms. On the contrary, in the vector channel the nonfactorized
terms play the crucial role. There is a large cancellation
between the factorized and the internal terms.

The results are consistent with the assumption of the conver-
gence of the power series in 1/q2 for the polarization operator.

We show that in the gas approximation inclusion of the
four-quark condensates subtract more than 100 MeV from the
vector self-energy �V and from the nucleon effective mass m∗
at the saturation value of density. The effect becomes weaker
after inclusion of the main three-body terms, in which the two
pairs of the quark operators act on two different nucleons.
The quantitative results depend on the value of the nucleon
matrix element κN = 〈N |ūu + d̄d|N〉. Anyway, at the
phenomenological saturation point the matter appeared to be
bound.

In is instructive to compare the results with those obtained
in the framework of the nonrelativistic quark model. The
results differ strongly from those found in the PCQM. In
particular, the matter appeared to be bound only if the value
of κN is large enough.

Our approach made it possible to find the density depen-
dence of the nucleon self-energies. The reasonable results of
the paper stimulate further calculations with more complete
inclusion of the three-body terms.

II. GENERAL EQUATIONS

A. Expression for the four-quark condensates

We calculate the expectation values of the color-
antisymmetric operators:

T
f1f2
XY =: (q̄f1a�Xqf1a

′ · q̄f2b�Y qf2b
′
(δaa′δbb′ − δab′δba′ )) : .

(1)

Here the colon signs denote the normal ordering of the quark
operators, qf , f1,2 stand for the quark flavors, while a, a′, b, b′
are the color indices. The basic 4 × 4 matrices �X,Y acting on
the Lorentz indices of the quark operators are

�X = I, �X = γ5, �X = γμ, �X = γμγ5,
(2)

�X = i

2
(γμγν − γνγμ) = σμν,

describing the scalar, pseudoscalar, vector, axial, and tensor
cases, correspondingly. The operators defined by Eq. (1) can
be written also as

T
f1f2
XY = :

(
2

3
· q̄f1�XIcq

f1 · q̄f2�Y Icq
f2

− 1

2
q̄f1�Xλαqf1 · q̄f2�Y λαqf2

)
:, (3)

where λα are the basic SU(3) matrices and Ic is the unit 3 × 3
color matrix. We omit Ic from here on.

B. Sum rules

1. Inclusion of the four-quark condensates

Considering nuclear matter as a system of A nucleons with
momenta pi we introduce the vector

P =
∑

pi

A
.

In the rest frame of the matter,

Pμ = p0δμ0,

with p0 ≈ m.
The sum rules are based on the dispersion relations

�i
m(q2) = 1

π

∫
Im�i

m(k2)

k2 − q2
dk2 (4)

for the components �i
m(q2) of the polarization operator,

�m(q2) = i

∫
d4xei(qx)〈M|j (x)j̄ (0)|M〉

= q̂�q
m(q2) + P̂�P

m(q2) + I�I
m(q2).

The LHS of Eq. (4) is presented as a power series of q2. This
is known as the OPE. The functions Im �i

m(k2) on the RHS
of Eq. (4) are approximated by the “pole + continuum” model
in which the lowest pole is written exactly, while the higher
states are approximated by continuum.
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The Borel transformed QCD sum rules in nuclear matter
take the form

Lq
(
M2,W 2

m

) = λ2
m exp

( − m2
m/M2

)
;

LI
(
M2,W 2

m

) = m∗λ2
m exp

( − m2
m/M2

)
; (5)

LP
(
M2,W 2

m

) = −�V λ2
m exp

( − m2
m/M2).

Here Li are the Borel transforms of the LHS of Eq. (4) with
the continuum contributions transferred to the LHS, and mm

is the new position of the nucleon pole [17]. These equations
are expected to determine the nucleon effective mass m∗ and
the vector self-energy �V , the residue at the nucleon pole λ2

m,
and the effective continuum threshold W 2

m. The explicit form
of the LHS is presented later.

The LHS of Eqs. (5), which includes the in-medium con-
densates, can be written as (we omit the dependence on W 2

m)

Lq(M2) =
∑

n

Ãn(M2); LI (M2) =
∑

n

B̃n(M2);

(6)
LP (M2) =

∑
n

P̃n(M2).

Here the lower indices n denote the dimensions of the
condensates. Inclusion of the higher dimensions corresponds
to the inclusion of the higher terms in the 1/q2 expansion
of the LHS of Eqs. (4). Each term on the RHS of Eqs. (6) is
the Borel transform of the corresponding contribution to the
polarization operator �i(q2) multiplied by the factor 32π4.

Earlier Eqs. (5) were solved for the contributions with n < 6
with inclusion of the radiative corrections of the order αs . Now
we include also the terms with n = 6, which are mainly the
four-quark condensates.

The contribution of the four-quark condensates to the
polarization operator can be written as

(�m)4q = (�0)4q + 1

q2

∑
X,Y

(μXY HXY + τXY RXY ), (7)

where (�0)4q is the vacuum term, with

HXY = 〈M|T uu
XY |M〉 − 〈0|T uu

XY |0〉;
(8)

RXY = 〈M|T ud
XY |M〉 − 〈0|T ud

XY |0〉,
while (see Appendix A)

μXY = θX

16
Tr (γ α�Xγ β�Y ) γ5γαq̂γβγ5, (9)

and

τXY = θX

4
Tr (γ αq̂γ β�X) γ5γα�Y γβγ5. (10)

Here θX = +1, if �X has a vector or tensor structure, while
θX = −1 in other cases.

Here we omitted the Lorentz indices of the matrices �X,
μXY , and τXY . Note the way matrices �X with the lower indices
in Eqs. (1)–(3), are related to those with upper indices in
Eqs. (9) and (10). In the scalar and pseudoscalar cases �X =
�X, �X = γ μ, and �X = σμν in vector and tensor cases, �X =
γ5γ

μ in the axial case.
The traces on the RHS of Eq. (9), describing contributions

of the 4u condensates obtain nonzero values for all five

cases listed in Eq. (2), while �X and �Y should belong
to the same channel. In the case of 2u2d condensates [see
Eq. (10)] nonzero values are provided by the vector and axial
condensates and also by the scalar-vector condensate (�X =
γ 0, �Y = I ) and by the axial-tensor condensate (�X = γ 5γ λ,
�Y = σμν). As noted in Ref. [13], the latter contribution
was overlooked in Ref. [9]. The matrix element RXY can
obtain a nonzero value also in the axial-pseudoscalar channel
with �X = γ0γ5, �Y = γ5. However, one can see that the
corresponding contribution is proportional to qλε

λαβ0 · σαβγ5.
It does not contribute to the structures of the polarization
operator proportional to q̂, P̂ , or I .

Note that in the scalar and pseudoscalar cases (�X = �Y =
I , γ5) the four-quark condensates are determined by one
function of density in each of the channels

HXX = aXuu
m (ρ), RXX = aXud

m (ρ). (11)

The same refers to the vector-scalar and axial-tensor con-
densates (in the latter case �X = γλγ5, �Y = σμν and am

is proportional to the asymmetric tensor ε0μνλ). The vector
condensate with �X = γμ, �Y = γν can be presented in terms
of two functions of ρ

HXY = am(ρ)gμν + bm(ρ)
pμpν

m2
, (12)

with similar equation for RXY . The same presentation can be
written for the axial condensate. Also, there are two functions
in the tensor case with �X = σμν, �Y = σαβ ; that is,

HXY

= am(ρ)(gμαgνβ − gμβgνα)

+ bm(ρ)
gμαpνpβ + gνβpμpα − gμβpνpα − gναpμpβ

m2
.

(13)

2. Gas approximation

In the gas approximation the matrix elements in nuclear
matter are assumed to be

〈M|X|M〉 = 〈0|X|0〉 + ρp〈p|X|p〉 + ρn〈n|X|n〉 (14)

for any operator X. Here |p〉 and |n〉 denote the unpolarized
nucleons in QCD vacuum, ρp and ρn are the corresponding
densities. In the first term on the RHS of Eq. (14) all four quark
operators act on the vacuum state. In the gas approximation,

HXY = h
p

XY ρp + hn
XY ρn; RXY = r

p

XY ρp + rn
XY ρn, (15)

with the matrix elements for unpolarized nucleons,

hN
XY = 〈N |T uu

XY |N 〉; rN
XY = 〈N |T ud

XY |N 〉. (16)

In the gas approximation the functions am(ρ) and bm(ρ)
introduced in the previous section [see Eqs. (11)–(13)] are
proportional to ρ. Thus, the ratios am(ρ)/ρ and bm(ρ)/ρ do
not depend on ρ and can be expressed in terms of the nucleon
matrix elements hXY and rXY introduced in Eq. (16).

In the gas approximation we can write Eq. (7) in the form

(�m)4q − (�0)4q

=
(

Aq q̂

q2
+ AP (Pq)

m2

P̂

q2
+ AI (Pq)

m

I

q2

)
a

(2π )2
ρ, (17)

035201-3



E. G. DRUKAREV, M. G. RYSKIN, AND V. A. SADOVNIKOVA PHYSICAL REVIEW C 86, 035201 (2012)

FIG. 1. Contribution of the four-quark condensates (dark blob)
to the left-hand side of the sum rules caused by the valence quarks
(dotted lines). The helix line stands for the nucleon current. Solid
lines denote the quarks of the current.

with

Ai =
∑

A
i,f1f2
XY ; i = q, P, I,

where the RHS is summed over the flavors f1, f2 and
the Lorentz structures X, Y . Here we used the standard
notation a = −(2π )2〈0|q̄q|0〉 (a > 0). Note that this is just
a convenient scale for presentation of the results. It does not
reflect the chiral properties of the nucleon. The coefficients Ai

contain also dependence on the asymmetry parameter

α = (ρn − ρp)/(ρn + ρp). (18)

Because in the case of 4u quarks only structures with X = Y

contribute, we put Auu
XX = Auu

X .

C. Three types of terms

Now we turn to the models in which the nucleon is
considered as a composition of the constituent quark and the
pion cloud. The nucleon vector of state is thus |N〉 = |φ0, π〉,
with |φ0〉 the state of three valence quarks. Note that all
ingredients are in the QCD vacuum. If the pion cloud is treated
perturbatively, the nucleon expectation value of the operator
defined by Eq. (3) can be written as [9]

〈N |T f1f2
XY |N〉 = 〈φ0|T f1f2

XY |φ0〉 + 〈φ0|HI |φ0, π〉〈π |T f1f2
XY |π〉

× 〈φ0, π |HI |φ0〉 + 〈N |T f1f2
XY |N〉INTERF.

(19)

FIG. 2. Contribution of the four-quark condensates (dark blob)
to the left-hand side of the sum rules caused by the sea quarks. The
wavy line stands for the pions. The other notations are the same as in
Fig. 1. The πQQ interaction vertices 1 and 2 may correspond to the
same or different nucleon quarks.

(a) (b)

FIG. 3. Contribution of the four-quark condensates (dark blob)
to the left-hand side of the sum rules caused by the interference
terms with Figs. 3(a) and 3(b) illustrating the contact and vertex
interference, correspondingly. The notations are the same as in Fig. 2.
The vertices 1, 2, and 3 may belong to the same or different nucleon
quarks.

Here HI is the interaction between the constituent quarks and
the pions. In the first term on the RHS of Eq. (19) all four
operators act on the constituent quarks. In the second term the
four quark operators act on pions (Figs. 1 and 2).

In the last term two quark operators act on the constituent
quarks. Two other ones act on the pions. This contact
interference is illustrated by Fig. 3(a). In the vertex interference
shown in Fig. 3(b) the πQ interaction HI adds a pion to the
constituent quark. In the four-quark operator two operators act
on the constituent quarks while the two other ones annihilate
the pion. In the case of 4u operators we can write

〈N |T uu
X |N〉INTERF

= 4
3 (〈φ0|HI |φ0, π〉〈π |tX|π〉〈φ0|tX|φ0〉〈φ0, π |HI |φ0〉
+〈φ0|tX|φ0〉〈0|tX|π〉〈φ0, π |HI |φ0〉
+ 〈φ0|HI |φ0, π〉〈π |tX|0〉〈φ0|tX|φ0〉), (20)

with tX = ū�XIcu. Because the vacuum and the pion states are
colorless, only the first term on the RHS of Eq. (3) contributes.
The first term on the RHS has a nonzero value in the scalar
case �X = I . The two next terms obtain nonzero values in the
axial and pseudoscalar cases with the matrix elements 〈0|tX|π〉
determined by PCAC. A similar equation can be written for
2u2d condensate.

D. Contributions to the polarization operator

Here we consider only those of the four-quark condensates
which contribute to the polarization operator.

1. Sea quarks

In the gas approximation the sea quarks are contained in the
pion clouds of separate nucleons. If the pions are treated pertur-
batively, the four quark operators should act on the same pion.

This requires calculation of the matrix elements
〈πα|T f1f2

XY |πα〉 with T
f1f2
XY defined by Eqs. (1) and (3); here

α denotes the pion isotopic states. These expectation values
can be expressed in terms of the vacuum expectation values
〈0|T f1f2

XY |0〉 by means of the current algebra technique [20]. If
the factorization hypothesis for the latter expectation values is
assumed [14], one finds that they obtain nonzero values only
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for X = Y and [9];∑
X

(
μX〈πα|T uu

XX |πα〉 + τX〈πα|T ud
XX |πα〉) = 0 (21)

for any isotope index α.
Thus, using Eq. (21) we find that the contribution of the sea

quarks vanishes.

2. Contributions of the valence quarks: General equations

The valence quarks are assumed to be represented by the
constituent quarks, that is, by the massive particles moving in
a certain self-consistent effective field. The constituent quarks
are assumed to be described by the single-particle functions,
which are the solutions of the wave equation. In the general
case the constituent quarks are relativistic particles, described
by the wave function

ψq(r) = ωqfq(r), (22)

with f a certain function of r = |r|, while in

ωq =
(

χq

−iβq(σ∇) χq

)
(23)

χq is the two-component spinor with βq a certain function of
r . In the nonrelativistic models βq = 0.

The QCD operator q(r) acts on the valence quark |Q〉 placed
into the QCD vacuum:

qa|Qa(r)〉 = ψq(r)|Qa〉 + qa(r)|0〉, (24)

with ψq(r) defined by Eq. (22). The product of the wave
functions describes thus the excess of the quark density inside
the consistent quark over that of vacuum,

ψ̄q(r) ψq(r) = 〈Q|q̄(r) q(r)|Q〉 − 〈0|q̄q|0〉 (25)

(recall that q̄q = � q̄aqa).

3. Nucleon matrix elements

Here we present the model-independent relations for the
nucleon matrix elements. The nucleon matrix element for any
quark operator X(r) can be written as [21]

〈N |X|N 〉 = 〈N |
∫

d3r(X(r) − 〈0|X|0 〉)|N 〉, (26)

thus expressing the excess of the quark density inside the
nucleon over that in the QCD vacuum. For the scalar two-quark
operator this leads to

〈N |q̄q|N〉 = 〈N |
∫

d3r(q̄(r)q(r) − 〈0|q̄q|0〉)|N〉,

while for the other operators q̄�Xq we have just

〈N |q̄�Xq|N〉 = 〈N |
∫

d3rq̄(r)�Xq(r)|N〉,

with most of these expectation values vanishing for the
unpolarized nucleons.

For the four-quark operators q̄�Xqq̄�Y q with �X = I ,
�Y �= I ; that is, for the operators X = q̄qq̄�Y q one can write

Eq. (26) in another form,

〈N |q̄qq̄�Y q|N〉
= 2 〈0|q̄q|0〉 〈N |q̄�Y q|N〉

+ 〈N |
∫

d3r(q̄(r)q(r) − 〈0|q̄q|0〉)q̄(r)�Y q(r)|N〉, (27)

while for the four-quark scalar condensate,

〈N |q̄q q̄q|N〉 = 2 〈0| q̄q |0〉 〈N | q̄q |N〉
+ 〈N |

∫
d3r(q̄(r) q(r) − 〈0| q̄q |0〉)2|N〉.

(28)

For the other four-quark condensates q̄�̃X qq̄�̃Y q with
�̃X(Y ) = �X(Y ) or �̃X(Y ) = �X(Y )λ

α [see Eq. (3)] we have just

〈N | q̄�̃X qq̄�̃Y q |N〉
= 〈N |

∫
d3rq̄(r)�̃X q(r)q̄(r)�̃Y q(r) |N〉. (29)

We shall see that Eqs. (27) and (28) will be useful in the
calculation of the contribution of valence quarks.

4. Factorized and internal terms

In our QCD sum rules analysis there are the factorized
terms in the cases of the scalar-scalar 4u condensate and of
the vector-scalar 2u2d condensate. Two quark operators act
on the QCD vacuum while two other ones act on the valence
quarks of the nucleon. We can write

〈N |ūIcuūIcu|N〉val

= 〈N |ūIcuūIcu|N〉fact + 〈N |ūIcuūIcu|N〉int,

〈N |ūγ0Icud̄Icd|N〉val

= 〈N |ūγ0Icud̄Icd|N〉fact + 〈N |ūγ0Icud̄Icd|N〉int (30)

(see Fig. 4). Here the lower index “val” denotes that we
consider the contribution of the valence quarks. Index “int”
shows that all four quark operators act on the valence quarks.
The scalar factorized term is

〈N |ūIcuūIcu|N〉fact = 2〈0|ūu|0〉J, (31)

where

J =
∫

d3r ψ̄u(r) ψu(r) (32)

FIG. 4. Contribution of the four-quark condensates to the left-
hand side of the sum rules caused by the factorized terms. The small
circles denote the QCD vacuum. The dark blob stands for the two-
quark condensate.
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is just the contribution of one valence u quark to the expectation
value 〈p|ūu|p〉. Another factorized term is

〈N |ūγ0Icud̄d|N〉fact = 〈0|d̄d|0〉〈N |ūγ0Icu|N〉
= 〈0|d̄d|0〉 · nu. (33)

Here nu denotes the number of u quarks in the nucleon. Note
that the value of the condensate 〈N |ūγ0Icud̄d|N〉fact does not
depend on the particular model of the nucleon.

For the other condensates,

〈N |ū�̃Xuū�̃Y u|N〉val = 〈N |ū�̃Xuū�̃Y u|N〉int. (34)

The internal terms vanish if a 4u operator is averaged over
neutron [9]. For the proton

〈p|T uu
XX|p〉int = 2

∫
d3r�̄uu�

(1)
X �

(2)
X �uu, (35)

with �uu the wave function of the two constituent u quarks in
the proton, the upper indices (1), (2) label the two u quarks.
Because the asymmetry of the function �uu is provided by that
of the colors, the spin function is symmetric and the total spin
of the two u quarks is S = 1. Thus, we must put (σ (1)

u · σ (2)
u ) =

1 in the averaging over the spin states in Eq. (35). For the 2u2d

condensates

〈N |T ud
XY |N〉int =

∑
q

∫
d3r�̄ud�

(1)
X �

(2)
Y �ud, (36)

with �ud the two-particle wave function of a system of u and
d constituent quarks. The sum is taken over all ud states in the
nucleon. Because the spin of the nucleon is 1/2 while the sum
of the spins of the two u quarks in the proton (and of the two
d quarks in the neutron) is 1, we must put

∑
q(σ u · σ d ) = −4

in the averaging over the spin states in Eq. (36).

5. Contact and vertex interference

Start with the 4u condensate. The first term on the RHS
of Eq. (20) describes the contact interference, in which two
operators act on the constituent quarks while the two other
ones act inside the neutral pions. There is a nonzero expectation
value only for the scalar condensate

〈π |q̄q|π〉 = 2m2
π

mu + md

,

with mπ , mu, and md the masses of pion and of the light quarks.
Similar situation takes place for the 2u2d condensate. Now

the charged pions also contribute. Some of the vector conden-
sates (e.g., 〈π0|d̄γ0u|π〉) have nonzero values. However, such
expectation values do not contain large factor mπ/(mu + md ).
Thus, their contribution is much smaller than that of the scalar
term.

In the second term on the RHS of Eq. (20) one of the vertices
of interaction between the consistent U quark and neutral pion
is replaced by the four-quark condensate. This is referred to
as the vertex interference. Nonzero contributions are provided
by the axial and pseudoscalar condensates.

In the case of the 2u2d condensates Eq. (7) presents the
polarization operator in terms of the four-quark operators

ū�Xud̄�Y d. However, in the calculations of vertex interfer-
ence involving the charged pions π± it is more convenient
to present the polarization operators in terms of the operators
ū�Xdd̄�Y u. This is because in the axial and pseudoscalar
channels the operators ū�Xd and d̄�Y u (�X(Y ) = γμγ5, γ5)
connect pions and vacuum by the PCAC relations. The term∑

X,Y τXY RXY /q2 on the RHS of Eq. (7) is replaced by (see
Appendix A)

(�m)′4q = 1

q2

∑
X,Y

ξXY R̃XY , (37)

with

R̃XY = 〈M|T̃ ud
XY |M〉, (38)

where T̃ ud is written in terms of operators ū�Xdd̄�Y u, and

ξXY = 1
4γ5γ

μ�Xγ νq̂γμ�Y γνγ5. (39)

III. CONTRIBUTIONS OF THE FOUR-QUARK
CONDENSATES IN PCQM

A. Wave functions

In the PCQM the single-particle wave functions defined by
Eq. (22) are

fu(r) = fd (r) = f (r) = Ne−r2/2R2
, (40)

with N determined by the normalization condition∫
ψ̄q(r)γ0ψq(r)d3r = 1. The two-particle wave functions take

the form of the products of the wave functions given by
Eqs. (22) and (40) with the spinors χ1,2 composing the
corresponding spin state. The functions βq are replaced by
constants

βu = βd = β = 0.39, (41)

fitted to reproduce the value of the axial coupling constant.
The parameter R is related to the contribution of the valence
quark core 〈r2

core〉 to the proton charge radius 〈r2〉 [11].
In the PCQM calculations of the proton charge radius [22]

the value

R = (0.618 ± 0.006) fm, (42)

provides the exact fit for the current value 〈r2〉1/2 = (0.8768 ±
0.0069) fm [23].

A characteristic size of the internal expectation values is

N 2 =
∫

f 4(r)d3r = 1

(2π )3/2
· 1

R3

1

(1 + 3/2 β2)2
, (43)

with the numerical value for R = 0.618 fm

N 2 = 1.37 × 10−3 GeV3 = 0.098 ε3
0 . (44)

Here

ε3
0 = −〈0|q̄q|0〉, ε0 = 241 MeV; (45)

thus, the second factor on the RHS of Eq. (17) is a/(2π )2 = ε3
0.
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B. Contributions of the valence quarks

1. Factorized terms

Employing the PCQM value J = 0.54 we find for the
factorized term provided by Eq. (31)

A
q

S = 1.08

(
1 − α

3

)
, (46)

with the asymmetry parameter α defined by Eq. (18). For
another factorized term expressed by Eq. (33) we obtain

AI
V S = 2.00

(
1 − α

3

)
. (47)

Inclusion of nonlocality of the vector condensate and of some
other small corrections [9] changes the last equation to (see
Appendix B)

AI
V S = 1.14

(
1 − α

3

)
. (48)

2. Internal terms

The internal contributions of the valence quarks to the
parameters Aq,P,I defined by Eq. (17) can be obtained by
straightforward calculations (see Appendix C). We find the
numerical values for the 4u case [9],

A
q

S = −0.05 + 0.04α; A
q

Ps = −0.01 + 0.01α;

A
q

V = 0.01(1 − α); A
q

A = −0.03(1 − α); (49)

A
q

T = 0.02(1 − α),

and

AP
S = AP

Ps = 0; AP
V = −0.13(1 − α);

(50)
AP

A = 0.03(1 − α); AP
T = −0.09(1 − α),

while AI = 0 for all these structures.
In the case of the 2u2d condensate the nonvanishing

contributions are

A
q

V = −0.80; A
q

A = −0.49, (51)

while

AP
V = −0.41, AP

A = −0.25, (52)

and

AI
V S = −0.34, AI

AT = 0.77. (53)

Thus, the total contribution of the internal terms is

Aq = −1.35 + 0.05α, AP = −0.85 + 0.19α,
(54)

AI = 0.43.

3. Total contribution of the valence quarks

Summing up the contributions provided by Eqs. (46), (48),
and (54) we find for the total contribution of the valence quarks

Aq = −0.27 − 0.31α, AP = −0.85 + 0.19α,
(55)

AI = 1.57 − 0.38α.

One can see that there is a strong cancellation between the
factorized and internal terms in the structure Aq . Internal terms
provide a small correction to the structure AI .

C. Interference terms

We now turn to the case in which one of the operators
q̄�X,Y q acts on the constituent quark while the other one acts
on the pion. In the PCQM the pions manifest themselves in the
παQ self-energy loops �α and in the corresponding exchange
terms Iα (see Fig. 3). They are related as [9]

Iα = 10

9
�α, (56)

with the same relation for the contributions of the four-quark
condensates.

For the contact interference described by the first term on
the RHS of Eq. (20) we find [9] (see Appendix D)

Aq = −0.02 + 0.01α; AI = −0.13 + 0.06α. (57)

For the vertex interference, described by the second and
third terms on the RHS of Eq. (20) we obtain in the case of 4u

condensate

〈Q|T uu
XX|Q,π〉 = 4

3 〈Q|ū�Xu|Q〉〈0|ū�Xu|π〉. (58)

The matrix elements 〈0|q̄�Xq|π〉 obtain nonzero values
for the axial and pseudoscalar operators. A similar equation
can be written for the 2u2d condensate. Because the πQQ

vertex is proportional to the product (σ · k), where k is the
pion momentum, the vertex interference can take place if the
product 〈0|q̄�Xq|π〉〈Q|q̄�Y q|Q〉 also has this structure.

Using the definitions

jq
μ = q̄γμγ5q; j+

μ = ūγμγ5d; j−
μ = d̄γμγ5u, (59)

one can write the PCAC relations

〈0|ju
μ|π0(k)〉 = ifπkμ, 〈0|jd

μ|π0(k)〉 = −ifπkμ;

〈0|j−
μ |π+(k)〉 = i

√
2fπkμ, (60)

and

〈0|ūγ5u|π0(k)〉 = −i
fπk2

2mu

, 〈0|d̄γ5d|π0(k)〉 = i
fπk2

2md

;

〈0|d̄γ5u|π+(k)〉 = i
fπk2

mu + md

, (61)

which are used in calculations of the four-quark condensates.
If both �X and �Y are the axial matrices, the contribution

of the four-quark condensate can be expressed in terms of the
self-energy loops of the constituent quarks (see Appendix D).
We find

Aq = −0.65 + 0.02α; AP = −0.04 − 0.02α. (62)

The large value of Aq is provided mostly by the charged pions.
If �X = �Y = γ 5,

Aq = 0.84 − 0.07α, (63)

also with the main contribution provided by the charged pions.
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TABLE I. Contributions of various Lorentz structures to the matrix elements HXX defined by Eq. (8) and to the parameters Ai [Eq. (17)]
for the 4u condensates.

X am/(ρε0) bm/(ρε0) Aq AP AI

S −6.34 + 0.60α – 3.17 − 0.30α 0 0
Ps 1.74 − 0.12α – −0.87 − 0.06α 0 0
V −0.55 + 0.01α 0.13 − 0.13α 0.55 − 0.01α −0.13 + 0.13α 0
A 0.33 + 0.06α 0.07 − 0.05α 0.47 + 0.05α 0.07 − 0.05α 0
T 0.02 − 0.02α −0.04 + 0.04α 0.02 − 0.02α −0.09 + 0.09α 0

There is also a contribution of the axial �X and tensor �Y .
It leads to

AI = 0.36 + 0.04α. (64)

Thus, for the sum of the interference terms [see Eqs. (57),
(62)–(64)],

Aq = 0.17 − 0.04α, AP = −0.03 + 0.02α,
(65)

AI = 0.23 + 0.10α.

D. Total contribution

The sum of the values given by Eqs. (55) and (65) provides
for the coefficients on the RHS of Eq. (17),

Aq = −0.10 − 0.34α, AP = −0.88 + 0.17α,
(66)

AI = 1.80 − 0.28α.

In Table I, we present the contributions of various Lorentz
structures to the matrix elements HXX defined by Eq. (8) and
to the parameters Ai [Eq. (17)] for the 4u condensates. In
Table II, we show similar data for the 2u2d condensates.
In the latter case, all the contributions except the vertex
interference terms involving the charged pions are calculated
in terms of operators ū�Xud̄�Y d. The interference terms
involving the charged pions are calculated in terms of the
operators ū�Xdd̄�Y u. Note that the data in the Tables I and
II contain the contributions of the sea quarks for each Lorentz
structure. They cancel in the sum over all Lorentz structures
[see Eq. (21)].

E. Calculations in the nonrelativistic quark model

It is instructive to compare the results with those in the old
nonrelativistic quark model (NRQM). The nucleon is treated
as a system of three nonrelativistic constituent quarks in a
self-consistent central field. The wave functions can be taken
in the form provided by Eqs. (22), (23), and (40) with βq = 0.
We must make 〈r2

core〉 equal to the proton charge radius. This
leads to R = 0.72 fm. The NRQM values for the symmetric
matter are

Aq = 1.15, AP = −0.54, AI = 1.45. (67)

The strong deviation between the PCQM and NRQM values
for Aq is due to the difference between the values of
the contribution of the valence quarks to the condensate
〈N |ūu|N〉 [see Eq. (32)]. Owing to relativistic reduction
the PCQM value is about twice smaller than the NRQM
one J = 1.

IV. SOLUTIONS OF THE SUM RULES EQUATIONS

In this section, we present equations for symmetric nuclear
matter (α = 0). Following Refs. [4,17], we consider the
dispersion relations Eq. (4) at fixed value of the relativistic
pair energy,

s = (P + q)2 = 4m2.

This makes it possible to separate the singularities connected
with the nucleon in the matter from those of the matter
itself. Now we clarify the terms on the LHS of Eqs. (5).
The contributions of continuum are expressed in terms of the

TABLE II. Contributions of various Lorentz structures to the matrix elements HXY and RXY defined by Eq. (8) and to the parameters Ai

[Eq. (17)] for the 2u2d condensates. All the contributions except the vertex interference terms involving the charged pions are calculated in
terms of operators ū�Xud̄�Y d . They are given in the four upper lines. The vertex interference terms involving the charged pions are calculated
in terms of the operators ū�Xdd̄�Y u. Their contributions are presented in the three lower lines.

XY am/(ρε0) bm/(ρε0) Aq AP AI

VV 0.58 0.21 − 6.22 −0.41 0
AA −0.22 − 0.16 2.60 −0.32 0
VS −0.33 + 0.16α – 0 0 0.67 − 0.32α

AT −0.89 − 0.04α – 0 0 0.89 + 0.04α

PsPs 0.64 – 0.64 0 0
AA 0.23 0 − 0.46 0 0
AT 0.24 – 0 0 0.24
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functions Ei(x) with x = W 2/M2:

E0(x) = 1 − e−x ; E1(x) = 1 − (1 + x)e−x ;
(68)

E2(x) = 1 − (1 + x + x2/2)e−x.

The radiative corrections of the order αs and αs ln M2/�2 to
the condensates of dimension n contained in the structures
An, Bn, and Pn [Eq. (6)] [24] are expressed by the factors
r̃A(B,P )n with r̃A(B,P )n = 1 if the corrections are not included.
We assume the numerical value � = 230 MeV. In the one-loop
approximation this corresponds to αs(1 GeV2) = 0.475. The
contribution of the lowest dimension is [15]

Ã0 = M6E2(W 2/M2)r̃A0, (69)

corresponding to the loop of three free quarks with inclusion
of the radiative corrections.

Next come the terms containing the in-medium condensates
of the lowest dimension d = 3,

Ã3 = −8π2 (s − m2)E0(W 2/M2) − M4E1(W 2/M2)

3m
v(ρ)r̃A3;

B̃3 = −4π2M4E1(W 2/M2)κ(ρ)r̃B3; (70)

P̃3 = −32π2

3
M4E1(W 2/M2)v(ρ)r̃P 3,

with the vector and scalar condensates

v(ρ) = 〈M|
∑

i

q̄ iγ0q
i |M〉 = vNρ; vN = 3, (71)

and

κ(ρ) = 〈M|
∑

i

q̄ iqi |M〉, (72)

with the sum over the light quarks.
The nonlocality of the vector condensate and the gluon

condensate compose the contributions of dimension d = 4.
They are numerically small; thus, we do not display them here.
However, we take them into account in our calculations. The
contributions of dimension d = 6 come mostly from the four-
quark condensates. In vacuum (ρ = 0), the only contribution
to the polarization operator is [see Eq. (7)]

(�0)4q − 2

3

〈0|ūu|0〉2

q2
q̂ r̃A6, (73)

providing

Ã6 = 4
3a2r̃A6. (74)

Recall that a = −(2π )2〈0|q̄q|0〉 > 0. In nuclear matter we
must add the contributions of the nucleons.

A. Gas approximation

The contribution of the density-dependent part of the four-
quark condensates is given by Eq. (14). Their contributions to
the LHS of Eqs. (5) are

Ã
g

6 = −8π2aAqρ; B̃
g

6 = −12π2amAIρ;

P̃
g

6 = −12π2amAP ρ, (75)

FIG. 5. Density dependence of the nucleon vector self-energy �V

and of the nucleon effective mass m∗ in the symmetric nuclear matter
for κN = 8 corresponding to Eq. (79). The horizontal axis corresponds
to the density ρ related to its saturation value ρ0. The dashed lines
show the results in the gas approximation. The solid lines correspond
to inclusion of the most important three-body forces.

with the parameters Ai given by Eq. (66). The upper index g

denotes that the values are calculated in the gas approximation.
In the gas approximation the scalar condensate determined

by Eq. (72) can be written as

κ(ρ) = 〈0|
∑

i

q̄ iqi |0〉 + κρ ; κρ = κNρ;

(76)
κN = 〈N |

∑
i

q̄ iqi |N〉.

Parameter κN can be expressed in terms of the pion-nucleon
σ term [25]

κN

2σπN

mu + md

, (77)

while σπN is related to observables [26,27]. The experimental
data on the value of the σ term are somewhat controversial
[28,29], providing rather an interval of the possible values:

7 � κN � 12. (78)

We present the density dependence of the nucleon parame-
ters in Fig. 5. The numerical results at the phenomenological
value of the saturation density ρ0 = 0.17 fm−3 are given
in Table III. One can see that at κN = 8 inclusion of the
four-quark condensates subtracts about 100 MeV from the
value of the vector self-energy and about 170 MeV from
the value of the effective nucleon mass. Also the residue of
the nucleon pole becomes about 2/3 of its vacuum value.
The influence of the four-quark condensates on the nucleon
parameters is even larger for κN = 11.

Employing Eq. (5) we can write

FV (M2) ≡ LP
(
ρ; M2,W 2

m

)
Lq

(
ρ; M2,W 2

m

) = −�V (ρ);

(79)

FI (M2) ≡ LI
(
ρ; M2,W 2

m

)
Lq

(
ρ; M2,W 2

m

) = m∗(ρ).

035201-9



E. G. DRUKAREV, M. G. RYSKIN, AND V. A. SADOVNIKOVA PHYSICAL REVIEW C 86, 035201 (2012)

TABLE III. Nucleon parameters in symmetric nuclear matter at the phenomenological saturation value of the nucleon density. The first line
shows the vacuum values. The results marked as (∗) in the second and fifth lines are for the vacuum values of the four-quark condensates. The
values GA in the third and sixth lines correspond to the gas approximation. The values in the fourth and seventh lines correspond to inclusion
of the three-body interactions, following Eq. (82). The results are presented for two values of the parameter κN [Eq. (78)].

�v (MeV) m∗ (MeV) λ2
m (GeV6) W 2

m (GeV2)

ρ = 0 0 940 1.94 2.16
ρ = ρ0, κN = 8 (*) 329 737 2.39 2.33
ρ = ρ0, κN = 8 (GA) 217 562 1.21 1.62
ρ = ρ0, κN = 8 206 602 1.41 1.69
ρ = ρ0, κN = 11 (*) 335 606 1.91 2.12
ρ = ρ0, κN = 11 (GA) 203 388 0.98 1.52
ρ = ρ0, κN = 11 180 445 1.20 1.58

The values which approximate the functions FV,I (M2) can be
treated as the solutions of the sum rules equations. Replacing
the effective threshold W 2

m(ρ) by its vacuum value W 2
0 we find

the approximate solution of the sum rules equations

LP
(
ρ; M2,W 2

0

)
Lq

(
ρ; M2,W 2

0

) = −�V (ρ);
LI

(
ρ; M2,W 2

0

)
Lq

(
ρ; M2,W 2

0

) = m∗(ρ),

(80)

which solve the problem of expressing the parameters of the
nucleon in nuclear matter in terms of the density-dependent
QCD condensates. Putting W 2

m = W 2
0 we find �V = 253 MeV

and m∗ = 599 MeV for ρ = ρ0 and κN = 8, while the
solutions of Eq. (79) are �V = 217 MeV and m∗ = 562 MeV
(see Table III). Hence, the accuracy of the approximation
W 2

m = W 2
0 for the self-energies �V and m∗−m is about 15%.

It becomes less accurate for larger values of κN providing the
errors of about 20% at κN = 11.

Note that inclusion of the four-quark condensates lead to
m∗ + �V < m; that is, the nuclear matter is bound.

The large impact of the four-quark condensates on nucleon
parameters is, to some extent, caused by employing the gas
approximation.

B. Beyond the gas approximation

Now we take into account the contributions to the four-
quark condensates, in which two pairs of quark operators act
on two different nucleons of the matter. We include only the
contributions containing the large parameter κN . These are the
scalar and scalar-vector contributions.

The contribution proportional to κ2
N can be obtained by

replacing the factor (〈0|ūu|0〉)2 on the RHS of Eq. (73) by
(κρ/2)2 [Eq. (76)]. It comes from the 4u condensate and
contributes to the q̂ structure. To obtain the contribution
proportional to the product κNvN it is sufficient to replace
the vacuum expectation value 〈0|d̄d|0〉 in Eq. (33) by κρ/2.
This contribution to the scalar structure I comes from 2u2d

condensates.
The corresponding contributions to the matrix elements

defined by Eq. (8) are

HSS = 1
4κ2

Nρ2; RV S = 1
4vNκNρ2. (81)

The contributions to the LHS of Eq. (5) are now

Ã6 = Ã
g

6 + 16π4

3
κ2

Nρ2; B̃6 = B̃
g

6 + 8π4vNκNρ2;
(82)

P̃6 = P̃
g

6 .

Thus, the large contribution of the four-quark condensate
in the scalar channel AI [see Eq. (66)], obtained in the gas
approximation becomes about 30% smaller owing to inclusion
of the three-body interactions.

The density dependence of the nucleon parameters is shown
in Figs. 5 and 6. The numerical results for ρ = ρ0 are shown
in Table III. One can see that the influence of the four-quark
condensates on the values of the nucleon effective mass
and of the residue becomes weaker than it was in the gas
approximation.

C. Results in the nonrelativistic quark model

Now we present the results with contributions of the four-
quark condensates calculated in framework of the NRQM. We
find that for κN = 8 they differ strongly from those obtained in
the PCQM (see Table IV). The vector self-energy �V is about

FIG. 6. Density dependence of the nucleon residue λ2
m and of the

effective threshold W 2
m for κN = 8 in the symmetric nuclear matter

corresponding to Eq. (79). The horizontal axis corresponds to the
density ρ related to its saturation value ρ0. The other notations are
the same as in Fig. 5.
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TABLE IV. Nucleon parameters in symmetric nuclear matter at the phenomenological saturation value of nucleon density obtained by
employing of the NRQM. The values GA in the first and third lines correspond to the gas approximation. The values in the second and fourth
lines correspond to inclusion of the three-body interactions, following Eq. (82). The results are presented for two values of the parameter κN

[Eq. (78)].

�v (MeV) m∗ (MeV) λ2
m (GeV6) W 2

m (GeV2)

ρ = ρ0, κN = 8 (GA) 305 685 1.60 1.89
ρ = ρ0, κN = 8 284 702 1.84 2.00
ρ = ρ0, κN = 11 (GA) 291 504 1.11 1.59
ρ = ρ0, κN = 11 253 530 1.39 1.71

300 MeV, and the effective mass m∗ differs from the vacuum
value only by about 100–130 MeV. The nuclear matter appears
to be unbound because m∗ + �V > m. This is due to a large
factorized term in the q structure which is not compensated by
the internal terms in the case of NRQM. For κN = 11 the scalar
term increases the value of m − m∗ and the matter becomes
bound. However, the values of the parameters differ much from
those predicted by the PCQM.

V. SUMMARY

We calculated the four-quark condensates in nuclear matter
in the gas approximation and included the most important
terms beyond it. This corresponds to inclusion of the two-body
forces and of the most important three-body forces. We applied
the results for solving the QCD sum rules equations [Eq. (5)].

The calculation of the four-quark condensates requires
certain model assumptions on the structure of the nucleons
which compose the matter. In the broad class of models
the nucleons are treated as the systems of valence quarks,
described by the constituent quarks and the sea quarks,
contained in pions. We showed that in the models which treat
the pions perturbatively, there is a remarkable cancellation of
the contributions to the sum rules which contain only the sea
quarks. Among the various contributions which involve the
valence quarks one can separate the factorized terms, where
two operators act on the nucleons of the matter, while two other
ones act on the QCD vacuum and internal terms in which all
four operators act on the valence quarks. In the interference
terms two of the operators act on the valence quarks. The other
two ones act on the sea quarks (i.e., on the pions) or connect
the pions with vacuum by the PCAC relations.

Calculations, carried out in the framework of PCQM
showed that the contributions of the four-quark condensates
to the scalar channel AI can be viewed as dominated by the
factorized terms. The contribution to the vector structure AP

is almost totally due to the internal terms. The vector structure
Aq is a result of strong compensation of the factorized term
given by Eq. (46) by the internal and interference terms.

Solving the sum rules we find the nucleon self-energies
presented by Eq. (79). Approximate solution presented by
Eq. (80) solves the problem of expressing the nucleon self-
energies in terms of the QCD condensates.

The values of the nucleon parameters at the phenomenolog-
ical value of the saturation density are presented in Table III.
One can see that the large reduction of the nucleon effective

mass m∗ and of the nucleon residue λ2
m is to some extent

an artifact of the gas approximation. The effect becomes less
pronounced when the most important terms beyond the gas
approximation are taken into account.

Anyway, the nuclear matter at the phenomenological
saturation value appeared to be bound. The values of the
four-quark condensates are consistent with the hypothesis
of the convergence of the power series in 1/q2 of the
polarization operator. Uncertainties in the experimental data on
the nucleon matrix element κN = 〈N |ūu + d̄d|N〉 [Eq. (78)]
lead to uncertainties in the quantitative results.

The density dependence of nucleon parameters found by
employing the PCQM are shown in Figs. 5 and 6. Also, in
Fig. 7, we compare the results for two values of κN .

It is instructive to have a look at the results obtained in the
NRQM. The contribution of the four-quark condensates to the
coefficient Aq differers strongly from that in PCQM [Eq. (67)]
because there is no relativistic reduction of the contribution of
the valence quarks to the expectation value 〈N |ūu|N〉 this time.
The results for the nucleon parameters presented in Table IV
contradict the nuclear phenomenology (the matter appears to
be not bound) for κN = 8. It is bound for κN = 11 but the
quantitative results differ from those obtained in the PCQM.

FIG. 7. Density dependence of the nucleon vector self-energy �V

and of the nucleon effective mass m∗ in the symmetric nuclear matter
corresponding to Eq. (79) with inclusion of the three-body forces. The
horizontal axis corresponds to the density ρ related to its saturation
value ρ0. The solid and dot-dashed lines show the results for κN = 8
and κN = 11, correspondingly.
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Thus, the results of calculations which include the four-
quark condensates are consistent with those obtained in the
framework of traditional nuclear physics. However, the quark
model of the nucleon should be sophisticated enough. It must
describe the relativistic dynamics of quarks and must respect
the chiral invariance.

The results of further investigation with more complete
inclusion of the many-body forces will be published elsewhere.
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APPENDIX A

Here we calculate the contribution of the four-quark
condensates to the polarization operator

�m(q2) = i

∫
d4xei(qx)〈M|Tj (x)j̄ (0)|M〉. (A1)

We employ the current suggested in Ref. [18]. It is

jγ (x) = εabc
(
uT

a Cγμub

)
(γ5γ

μdc)γ , (A2)

where u and d are the quark operators, a, b, c are the color
indices, C is the charge-conjugation matrix (CT = C−1 =
−C) and the upper index T denotes the transposition. Because
we want to calculate �m(q2) as a power series of q−2, we need
expansion of the function

Fγ ζ (x) ≡ Tjγ (x)j̄ζ (0)

= −iεabcεdef ua
α(x)(Cγμ)αβub

β(x)(γ5γ
μ)γ δd

c
δ (x)

× d̄f
τ (0)(γ νγ5)τζ ū

e
η(0)(γ νC)ηβ ū(0)dβ . (A3)

in powers of x2. For a product of the two quark operators we
can write

qa
f1α

(x)q̄b
f2β

(0)

= Gab
αβ(x)δf1f2 − 1

12

∑
X

q̄a
f1

(0)�Xqb
f2

(0)�X
αβδab

− 1

8

∑
X,A

q̄a
f1

(0)�XλAqb
f2

(0)�X
αβλA

ab + 0(x2), (A4)

with the fundamental matrices �X defined by Eq. (2), fi are
the quark flavors, while Gab(x) = G(x)δab, where

G(x) = i

2π2

x̂

x4
(A5)

is the propagator of a free massless fermion.
In the case of 4u condensates, we describe the product

dc
δ (x)d̄f

τ (0) in Eq. (A3) by the first term on the RHS of Eq. (A4),
while the other products of the field operators are given by the
two next terms on the RHS of that equation. Because∫

d4xG(x)ei(qx) = iq̂

q2
, (A6)

we come to Eq. (9) after doing some matrix algebra. We
employed that C�T

XC = ±�X with the plus sign in the vector
and tensor cases and the minus sign in other cases.

In the case of 2u2d condensates the product of two u quark
operators [e.g., ua

α(x)ūe
η(0)] is described by the propagator

Gab(x) given by Eq. (A5). Employing Eq. (A4) we describe
the product of the operators uūdd̄ in terms of the operators
ū�Xu · d̄�Y d, coming to Eq. (10). An alternative presentation
in terms of the operators ūZXd · d̄ZY u can be obtained by
employing the commutation relations for the quark operators
and presenting the products ūd and d̄u employing Eq. (A4).
This leads to Eqs. (37)–(39). The two presentations are tied by
the Fierz transform.

APPENDIX B

The general expression for the contribution of the factorized
vector-scalar term [Eq. (27)] to the LHS of Eq. (4) is [19]

�fact(q) − 2〈0|d̄d|0〉
3

∫
d4x

π2x4
(x · θ (x))ei(qx)ρp, (B1)

with θ (x) = θu(x) + θd (x), while

θq
μ(x) = 〈p|q̄(0)γμq(x)|p〉

= pμ

m
ϕa((px), x2) + ixμmϕb((px), x2), (B2)

where

q(x)q(0) + xαDαq(0) + · · · . (B3)

In the leading order we can put x2 = 0 in Eq. (B2) and
define [17,19]

ϕa(b)((px)) ≡ ϕa(b)((px, 0))
∫ 1

0
dαfa(b)(α)e−i(px)α, (B4)

with fa(α) = f (α) the proton deep inelastic structure func-
tions [30]. The moments of the functions fb(α) can be
expressed in the terms of the moments of the functions f (α)
[17]. Including the two lowest moments 〈αn−1f 〉 we find

�(q)fact= − 2〈0|d̄d|0〉
3q2

(
2(pq)

m
〈f 〉−4(pq)

m
〈αf 〉−m〈αf 〉

)
ρp.

(B5)

Using the normalization condition 〈f 〉 = 3 and the numerical
value 〈αf 〉 = 0.45 [31] we come to AI

V S = 1.30(1 − α/3).
Inclusion of the lowest correction to the vacuum expectation
value 〈0|d̄d|0〉 [19] leads to Eq. (48).

APPENDIX C

Here we give several examples of calculation of the internal
terms [Eqs. (35) and (36)]. For the vector and axial terms the
matrix elements for the 4u condensate defined by Eq. (16) is

hp
μν = aV (A)gμν + bV (A) pμpν

m2
, (C1)

with μ(ν) the indices of the vector and axial matrices γμ

and γμγ5. There is similar equation for the 2u2d condensate
described by the matrix element rN

μν .
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In the vector case one can calculate for the time components

h
p

00 = aV + bV =
∫

d3xf 2(x)

(
1 − β2 x2

R2

)2

, (C2)

and for the space components

1

3
h

p

ij δij = −aV = 4β2

3

∫
d3xf 2(x)

x2

R2
w, (C3)

with

w = 2〈χ |σ (1)
u · σ (2)

u |χ〉. (C4)

Here χ is the spin-wave function of the nucleon, while 1 and 2
label the two u quarks. Because the total spin of two u quarks
is S = 1, we find w = 2.

Similar equations can be written for the 2u2d condensate.
However, this time

w =
∑

〈χ |σ u · σ d |χ〉, (C5)

with the sum over all quarks of the nucleon. For the proton w =
〈χ |(σ (1)

u + σ (2)
u ) · σ d |χ〉. Because the spin of the proton is S =

1/2 we can write 1/4(σ (1)
u + σ (2)

u + σ d )2 = 3/4. Employing
(σ (1)

u · σ (2)
u ) = 1 we find w = −4. In the same way we find

w = −4 for the neutron as well.
This provides for the 4u condensate

aV = −4

3
N 2β2 = −0.20ε3

0;
(C6)

bV = 2N 2

(
1 + 13

6
β2 + 15

16
β4

)
= 0.26 ε3

0,

while for 2u2d condensate

aV = 8

3
N 2β2 = 0.04ε3

0;
(C7)

bV = 2N 2

(
1 + 1

6
β2 + 15

16
β4

)
= 0.21 ε3

0.

One can see that in axial case the time components turn to
zero [9]. Thus,

aA + bA = 0. (C8)

Employing the values of μXY and τXY [see Eqs. (9) and
(10)] we find the contributions presented by Eqs. (49)–(52).

In the axial-tensor case �X = γ5γ
λ(�X = γλγ5), �Y =

σμν , we obtain for the ingredients of Eq. (7)

Tr(γ αq̂γ β�X) = Tr(γ αq̂γ βγ 5γ λ) = Tr(q̂γ αγ βγ λγ 5)

= 4iεκαβλqκ, (C9)

while

γ5γα�Y γβγ5 = igμμ′
gνν ′

(gμ′αgν ′β − gμ′βgν ′α), (C10)

and thus

τAT μνλ = 2qρ ερμνλ. (C11)

Employing Eq. (23) for ωq we find that the axial and tensor
matrix elements are [9]

ω̄qγ0γ5ωq = 0;

ω̄qγiγ5ωq = σi + β2 (σx)σi(σx)

R2
, (i = 1, 2, 3), (C12)

ω̄qσ0jωq = −2β
xj

R
;

ω̄qσijωq = εijk

(
σk − β2 (σx)σk(σx)

R2

)
, (i = 1, 2, 3),

(C13)

where εijk is the standard three-dimensional asymmetric
tensor.

Thus, the indices μ, ν, and λ on the RHS of Eq. (C11) should
correspond to the space components, while ρ = 0. Hence, we
can write

τAT μνλ = 2q0ε
0ijk = −2q0ε0ijk, (C14)

with i, j, k being the space components, and ε0123 = 1. Hence,
we can put ε0ijk = εijk .

Thus,

τAT μνλrAT
μνλ = 2q0

∑
〈χ |σ u · σ d |χ〉

×
∫

d3xf 2(x)

(
1 − 15

16
β4

)
. (C15)

Hence,

τAT μνλrAT
μνλ = 7.83 q0N 2 = 0.77 q0ε

3
0. (C16)

This leads to Eq. (53):

AI
AT = 0.77. (C17)

APPENDIX D

Here we calculate some of the interference terms. The
contact interference and the vertex interference in the axial
case are described in Ref. [9] in detail. Consider here the
pseudoscalar vertex interference.

Start with the case of the 4u condensate. Only the neutral
pions contribute to the interference terms. For the matrix
element h = hN

Ps defined by Eq. (16) we obtain [9]

h = 8
3

19
9 J 0nu. (D1)

Here J 0 is the result of replacement of one of the UUπ0

vertices in the self-energy loop of the U quark,

�0 = − 1

2f 2
π

∫
d3xd3zg∗(x)S(x)D(x − z)S(z)g(z), (D2)

by the factor −if 2
π m2

π/2mu [see Eq. (61)]; that is,

J 0 = m2
π

2mu

I ; I = 1

2

∫
d3xd3zg∗(x)S(x)D(x − z)g(z).

(D3)

035201-13



E. G. DRUKAREV, M. G. RYSKIN, AND V. A. SADOVNIKOVA PHYSICAL REVIEW C 86, 035201 (2012)

In these equations,

g(x) = ψ̄(x)iγ5ψ(x),

D is the pion propagator, while [11]

S(x) = 1 − 3β2

2βR
+ β

2R3
x2

is the scalar field.
Using the explicit expressions for the functions ψ(x) we

obtain

I =
√

2β

4π2(1 + 3/2β2)2R2

∫
dy

y4
(
1 − β2

2 (1 + y2)
)

y2 + m2
π R2

2

e−y2
.

(D4)

Direct computation provides J 0 = 5.20 × 10−2ε3.

Thus, we obtain h = 0.27 nu. Because μPs = q̂/2 [Eq. (9)],
we find the contribution

Aq = 0.20 − 0.07α. (D5)

In the case of 2u2d condensates we write the contribution
in terms of the operators ūγ5dd̄γ5u (see Sec. II D 4). Defining
the matrix element in Eq. (38) as R̃P s = 〈M|T̃ ud

P s |M〉 = rρ,
we obtain

r = 4

3

19

9
JC(nu + nd ); JC = 2m2

π

mu + md

I, (D6)

with the numerical value JC = 7.56 × 10−2ε3
0 , leading to

Aq = 0.64, (D7)

with the total contribution of the pseudoscalar terms [Eq. (63)]

Aq = 0.84 − 0.07α. (D8)

Turn now to the axial-tensor interference. Only the 2u2d

operators contribute. Start with the case of neutral pions π0.
The π0DD vertex of the D quark self-energy loop can be
replaced by the axial-tensor condensate,

tλμν = 2
3 〈0|ju

λ |π0〉〈D|d̄σμνd|D〉. (D9)

Because only the space components contribute to polarization
operator [Eq. (C12)], we obtain

t�ij = 2
3 ifπεijr〈D|d̄k�σrd|D〉, (D10)

with the three-dimensional indices i, j, � corresponding to the
four-dimensional ones λμν. Using Eq. (C12) and employing
εijrεij� = 2δr� we obtain

τAT
rij t�ij = −

∑
ij

εrij t�ij = −4

3
ifπ 〈D|d̄(k · σ )d|D〉. (D11)

This leads to

h = 4
3

19
9 JAT nd ; JAT = 1

βR
I = 2.89 × 10−2ε3

0, (D12)

leading to

AI = 0.12 + 0.04α. (D13)

Proceeding in the same way in the case of charged pions and
using Eqs. (37)–(39) we find

AI = 4
3

19
9 JAT (nu + nd ),

providing

AI = 0.24. (D14)
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