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The event-by-event multiplicity distribution, the energy densities and energy density weighted eccentricity
moments €, (up to n = 6) at early times in heavy-ion collisions at both the BNL Relativistic Heavy lon Collider
(RHIC) (4/s = 200 GeV) and the CERN Large Hardron Collider (LHC) (/s = 2.76 TeV) are computed in the IP-
Glasma model. This framework combines the impact parameter dependent saturation model (IP-Sat) for nucleon
parton distributions (constrained by HERA deeply inelastic scattering data) with an event-by-event classical
Yang-Mills description of early-time gluon fields in heavy-ion collisions. The model produces multiplicity
distributions that are convolutions of negative binomial distributions without further assumptions or parameters.
In the limit of large dense systems, the n-particle gluon distribution predicted by the Glasma-flux tube model is
demonstrated to be nonperturbatively robust. In the general case, the effect of additional geometrical fluctuations
is quantified. The eccentricity moments are compared to the MC-KLN model; a noteworthy feature is that

fluctuation dominated odd moments are consistently larger than in the MC-KLN model.
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I. INTRODUCTION

Event-by-event relativistic hydrodynamic models do a good
job of describing the bulk features of heavy-ion collisions
at the BNL Relativistic Heavy Ion Collider (RHIC) and
the CERN Large Hadron Collider (LHC) [1]. However, the
hydrodynamic description of the collective properties of this
matter is sensitive to details of the initial conditions, the spatial
distributions of “frozen gluon states” within the incoming
nucleons, the event-by-event fluctuations in the number and
energy distributions of produced partons, and not least, the
thermalization of the initial nonequilibrium Glasma matter
formed shortly after the collision. The significant amount
of data now available on moments of flow distributions and
particle spectra offer the promise of being able to learn about
these interesting aspects of collective quantum chromodynam-
ics (QCD) as well as the possibility of disentangling their
properties from the hydrodynamic transport properties of a
thermalized quark-gluon plasma.

In a previous Letter [2], we introduced the IP-Glasma
model of early time dynamics which combines the IP-Sat
(impact parameter saturation model) model [3,4] of high
energy nucleon (and nuclear) wave functions with the classical
Yang-Mills (CYM) dynamics of the Glasma fields produced
after the heavy-ion collision [5-9]. The IP-Sat model is
formally similar to the classical color glass condensate (CGC)
McLerran-Venugopalan (MV) model for dipole cross sections
for nucleons and nuclei [10] but additionally includes Bjorken
x and impact parameter dependence through eikonalized gluon
distributions of the proton that are constrained by HERA
inclusive and diffractive e + p deeply inelastic scattering
(DIS) data [11] and by the available nuclear fixed target data
from EMC and E665 experiments [12]. A key dimensionful
quantity which determines the qualitative behavior of cross
sections is the saturation scale Qg (x, b) which is determined
self-consistently from the dipole cross sections. The model
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yields good x-squared fits' to available e + p small x HERA
collider data [11] and to fixed target e + A DIS data [12].

The IP-Glasma model relates the DIS constrained nuclear
dipole cross sections to the initial classical dynamics of high
occupancy gluon “Glasma” fields after the nuclear collision.
Given an initial distribution of color charges in the high energy
nuclear wave functions, the IP-Glasma framework computes
the strong early time multiple scattering of gluon fields by
event-by-event solutions of Yang-Mills equations. It is more
general and accurate relative to “k, factorization” models often
used in the small x literature, especially for the soft dynamics
that characterizes hydrodynamic flow.

The IP-Glasma model has a significant feature that is of ex-
treme importance for event-by-event flow studies. It naturally
includes the effect of several sources of quantum fluctuations
that can influence hydrodynamic flow.> An important source
of fluctuations, generic to all models of quantum fluctuations,
are fluctuating distributions of nucleons in the nuclear wave
functions. In addition there are fluctuations in the color charge
distributions inside a nucleon. This, combined with Lorentz
contraction, results in “lumpy” transverse projections of color
charge configurations that vary event to event. The scale of
this lumpiness is given on average by the nuclear saturation
scale Q; which corresponds to distance scales smaller than the
nucleon size [12]. For each such configuration of color charges,

'Since the work of Ref. [12], further data and combined analyses
of the ZEUS and H1 collaboration results is available. It is important
to revisit the IP-Sat fits to take this information into account. Work
in this direction is in progress but is outside the scope of the present
work. For nuclei, data from d + Au collisions as well as future p + A
and e + A collider experiments will help significantly constrain Q.

2A qualitatively similar model of the effect of initial state Glasma
fluctuations (on the scale 1/Q;) on hydrodynamic flow moments can
be found in Ref. [13].
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the QCD parton model predicts dynamical event-by-event
fluctuations in the multiplicities, the impact parameters and
the rapidities of produced gluons [14].

These dynamical fluctuations (to be distinguished from
geometrical fluctuations in the nucleon positions) are captured
in the CGC Glasma flux tube picture of the heavy-ion collision.
In this picture, the gauge fields produced in each event after the
nuclear collision are obtained by solving the CYM equations
for given color charge densities in the two incoming nuclei
and are therefore functionals of these densities. The n-particle
gluon probability distribution can be extracted from n-particle
gluon cumulants obtained by taking appropriate products of
the gauge fields and averaging these over the color charge
density weight functionals that are given by the CGC effective
theory. An equivalent method (followed here) for generating
the n-gluon multiplicity distribution is to compute single
inclusive multiplicities event by event.

In the perturbative regime Q; < k_, it was shown that the
n-particle multiplicity distribution is described by a negative
binomial distribution characterized by the mean multiplicity
and a parameter k [15]. This parameter, which is unity
for a Bose-Einstein distribution and infinity for a Poisson

distribution, is computed to be k = {N;;l Qf,S 'L, where S|
is the transverse overlap area of the collision. In Ref. [16], it
was shown from a nonperturbative computation of the double
inclusive gluon distribution in the Glasma that the Glasma
flux tube picture is robust. Fits based on k, factorization
to p 4+ p and A + A multiplicity distributions give ¢ ~ 1/6
[17,18]. A value of ¢ of this order also appears to be
required for a reasonable estimate of the amplitude of the
long-range dihadron “ridge” correlation in p + p collisions
[19]. The event-by-event solutions of CYM equations, as will
be discussed in this paper, will allow us to first obtain the
important result that the NBD distribution is nonperturbatively
robust, and to determine the parameters k and the mean
multiplicities 7.

With the initial conditions generated from the [P-Sat model,
the solution of the classical Yang-Mills (CYM) equations
in each event allows one to determine the evolution of the
spatial distributions of the produced matter as a function of
proper time. These are characterized by the spatial eccentricity
moments which can be defined as

V(rm cos(ng))? + (r" sin(ng))?
En = ) (1)
)

where (. ..) is the energy density weighted average. These spa-
tial eccentricity moments are in turn converted to momentum
space anisotropies by hydrodynamic flow. How efficiently this
is done can in detail be determined from the harmonic flow
coefficients v, defined through the expansion of the azimuthal
particle distribution as

dN N
4o = (1 n Xn:(zun cos(n¢))> . 2

Thus if viscous hydrodynamics is applicable, and the equation
of state of the hot quark-gluon plasma under control, one can
in principle extract information on the transport coefficients of
the flow by determining ab initio the initial spatial eccentricity
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moments €, on the one hand and measuring the anisotropy
moments v, on the other. Varying the centrality of the collision,
the nuclear species available, and the energy of the collision,
likely provides sufficient handles to extract the shear and bulk
viscosities of hot QCD matter with some degree of confidence.

The IP-Glasma model can be compared and contrasted
with previously conceived models of the initial conditions
which include various Monte Carlo based realizations of the
Glauber model (see [20]), and CGC inspired models such
as KLN [21,22], f(actorized)KLN [21,22], and rcBK [23]
models. The IP-Glasma model follows all these models by
sampling nucleon positions stochastically from a Woods-
Saxon distribution. The nucleons’ color charge distributions
are constrained on the average to reproduce HERA data that
provide information on the spatial and energy dependence
of gluon distributions in the proton. These color charge
densities are added at every transverse position and the total
nuclear color charge density is sampled to produce the color
charge distribution in a single event. Given this distribution,
multiparticle production is determined event by event from the
CYM equations.

By way of contrast, for instance in the MC-Glauber model
of Refs. [25,26], a Gaussian distributed energy density is
added for each participant nucleon. Its parameters are the
same for every nucleon in every event, with the width
tuned to be 0.4fm to best describe anisotropic flow data.
Unlike the IP-Glasma model, the MC-KLN models employ
k, factorization approximations to describe gluon production
on the average. Further, as noted in Ref. [27], they do not
include NBD fluctuations on the scale 1/Q;. Finally, in
distinction to all the stated models, the IP-Glasma model does
not assume instantaneous thermalization; it includes the effects
of pre-equilibrium flow through the Yang-Mills evolution until
the time where the components of the stress-energy tensor are
matched to those of viscous hydrodynamics.

Though the IP-Glasma approach is a significant improve-
ment relative to other models with regard to including pre-
equilibrium flow, we emphasize that it does not include
all essential features of the pre-equilibrium stage. These
include quantum fluctuation driven instabilities that change
the character of the CYM flow very significantly already
by times T ~ 1/Qj, and can generate significant amounts of
flow. Work in the direction of including these initial quantum
fluctuations is highly advanced already [28] and “proof of
concept” studies demonstrating their role in isotropization of
¢* theories with heavy-ion like initial conditions have been
performed [29-31]. It is out of the scope of this work to address
these pre-equilibrium flow studies but we anticipate including
them in future work.

The paper is organized as follows. In Sec. II, we discuss the
IP-Glasma model which combines the IP-Sat model of nucleon
gluon distributions with classical Yang-Mills evolution of
a nuclear collision. Color charge distributions are sampled
from a Gaussian distribution with variance gzua(x 1). This
variance is the color charge squared per unit area constructed
from the individual nucleon gu? and is proportional to
Q%q 4(x1). Given the color charge distribution, the classical
Yang-Mills fields for each nucleus can be determined, and
a unique solution for the gauge fields immediately after each
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collision obtained. These then provide the initial conditions for
numerical solutions of the Yang-Mills equations. The details
of the numerical computation are discussed in Sec. III. In
Sec. IV, we discuss results for the following: i) the dependence
of the initial multiplicity as a function of the number of
participants Np, compared to data at RHIC and LHC energies,
i) the multiplicity distributions, and the comparison of these
to negative binomial distributions whose parameters have
the form conjectured in the Glasma flux tube picture, iii)
even and odd eccentricity moments and their comparison to
those in the MC-KLN model. In the final section, we outline
the continuation of this work (in a follow-up paper) where
event-by-event hydrodynamic equations are solved with input
from the IP-Glasma model to determine the moments of flow
distributions. The IP-Sat model is discussed in the Appendix.

II. THE IP-GLASMA MODEL

We will present in this section details of the IP-Glasma
model first introduced in [2]. The present discussion addi-
tionally includes time evolution with the CYM equations in
2 41 dimensions. The IP-Glasma framework uses the IP-Sat
model [3,4] to determine fluctuating configurations of color
charges in two incoming highly energetic nuclei. A review of
the IP-Sat model can be found in the Appendix.

The first step in this framework is to determine the event-
by-event nuclear color charge densities of each of the nuclei
which generate the corresponding classical fields. This is done
as follows. Nucleon positions in the transverse plane of both
nuclei are sampled from a Fermi distribution

1+ w(r/R)

Kk(r) :KOH—ex—p(r_aR)’

3)

where « is the nucleon density, R the nuclear radius, a the
skin depth, and w denotes deviations from a spherical shape.?

We next determine the color charge squared per unit area
of both nuclei gz,ui( (X, X1) by summing the corresponding

quantities gz,uz(x, b, x,) of all individual nucleons in the
nucleus. Here x = (p)/+/s for zero rapidity, where (p,)
is the average transverse momentum of charged hadrons in
p + p collisions at a given /s and x, is the coordinate in
the plane transverse to the beam line. For gzuz(x, b,,x,)it
determines the position of the nucleon’s center, while b, is
the impact parameter relative to its center. The g2u’(x,b.)
are in turn proportional to the saturation scale Q_%’( »(x.b1)
provided by the IP-Sat dipole cross section for each nucleon as
discussed in the Appendix. The exact numerical factor between
g2n?(x,by) and Qi(p)(x, b, ) depends on the details of the
calculation [32]; we will discuss it further below.

The distributions gz,uzzq( p)(x, X1 ) are shown in Fig. 1. The
degree of lumpiness in this quantity is determined by the
nucleon size.

3For 1”7 Au, the parameters are, R = 6.38 fm, a = 0.535fm, w =
0, and for 27Pb, R = 6.62fm, a = 0.546 fm, w = 0. The overall
normalization k is irrelevant for sampling the positions.
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FIG. 1. (Color online) The incoming color charge densities
glap for two gold nuclei at /s = 200GeV. Increasing density
from yellow to red (light to dark).

Given g% p(x. X1), one can sample p?(x ) in each event
from the Gaussian distribution

(048 XL)PA 5 VL)) = &7 W) (X, x1)8P 8P (x . — y1).
(4)

The Gaussian sampled color charges p%(xT,x,) in the IP-
Sat/MV model act as local sources for small x classical gluon
Glasma fields. Here, a is a color index running from 1 to
N? — 1. We introduced a general dependence on x~ or x,
which depending on the direction the nucleus is moving,
is the longitudinal spatial light-cone coordinate. Generally,
light-cone quantities are defined as v = (v° #+ v*)/+/2, which
translates to proper time and spatial rapidity as 7 = +/2x+x~
and n = 0.5In(x*/x7~). This dependence allows for a finite
longitudinal width of the nucleus, which we will use in the
numerical calculation below.

The classical gluon fields are determined by solving the
classical Yang-Mills equations

[Dy, F*'1=J", ®)
with the color current
IV = 8"*pamy(xT,x1) (6)

generated by a nucleus A (B) moving along the x™ (x7)
direction (the upper index is for nucleus A). In Eq. (6) we
have assumed that we are in a gauge where A™ = 0 such that
temporal Wilson lines along the x™ (x ™) axis become trivial
unit matrices.

The solution to Eq. (5) is most easily found in Lorentz gauge
9, A" = 0, where the equation becomes a two-dimensional
Poisson equation

—VI A% = Pam (T, X1), (7)
whose solution can formally be written as
AX(B) = —pam(xT, XL)/Vi. (8)

It will be more convenient to work in light-cone gauge
AT(A7) =0 when computing the gluon fields after the
collision. The solution in this gauge is obtained by gauge
transforming the result in Lorentz gauge using the path-ordered
exponential

AB)(—
_p (X’XJ_)>’ ©)

v X, )= Pexp|—i dx
AB)(X1) P( gf VIt m?
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giving the pure gauge fields [10,33,34]

Al gy (x1) = e(x‘(x*))évA<B)(xuai Vig&0, (10)
A (AT =0. (11

The infrared regulator m in Eq. (9) is of order Agcp
and incorporates color confinement at the nucleon level.*
Physically, the solution (10),(11) is a gauge transform of
the vacuum on one side of the light-cone and another gauge
transform of the vacuum on the other side. We have chosen one
of them to be zero as an overall gauge choice. The discontinuity
in the fields on the light-cone corresponds to the localized
valence charge source [5].

The initial condition for a heavy-ion collision at time T =
0 is given by the solution of the CYM equations in Fock-
Schwinger gauge A" = (xTA~ +x~A")/t =0, which is a
natural choice because it interpolates between the light-cone
gauge conditions of the incoming nuclei. It is also necessary
for the Hamiltonian formulation that we adopt [gauge links in
the temporal (7) direction become unit matrices in this gauge].
It has a simple expression in terms of the gauge fields of the
colliding nuclei® [5,36]:

Al = Al + Al (12)
8. i

Al = 3[ Al (13)

3, A" =0, (14)

9, A" = 0. (15)

In the limit 7 — 0, A" = —E, /2, with E,, the longitudinal
component of the electric field. At v = 0, the only nonzero
components of the field strength tensor are the longitudinal
magnetic and electric fields, which can be computed nonper-
turbatively. They determine the energy density of the Glasma
at T = 0 at each transverse position in a single event [8,9].

The Glasma fields are then evolved in time 7 according to
Eq. (5). Over a time scale ~1/ Q; the fields are strong and the
system is strongly interacting. Due to the expansion of the sys-
tem, the fields become weak after this time scale and the system
begins to stream freely. Incorporation of quantum fluctuations
in a 3 + 1-dimensional CYM simulation will however lead to
instabilities, which will modify this behavior and potentially
keep the system strongly interacting for a more extended
period of time [37,38]. As noted previously, these instabilities

4Other prescriptions which do not explicitly introduce a mass [35]
are feasible but they all inevitably involve introducing a nucleon size
scale. This is because there is a Coulomb problem in QCD which is
cured only by confinement. The presumption here is that physics at
high energies is dominated by momenta ~Q; and is insensitive to
infrared physics at the scale m. From a practical point of view, we
observe that our results are weakly sensitive to small variations in the
scale m.

>The metric in the (t,Xx,,7n) coordinate system is g, =
diag(1, —1, —1, —72) so that A, = —t?A". The % components of
the gauge field are related by A* = £xA".

PHYSICAL REVIEW C 86, 034908 (2012)

could isotropize the system, naturally leading to a transition
to viscous hydrodynamic behavior. The detailed study of
instabilities and the origin of isotropization is a complex task
and beyond the scope of this work. For recent progress in this
direction see [28,39-41]. We emphasize that key aspects of
this work, the event-by-event determination of color charge
distributions and solutions of Yang-Mills equations will be es-
sential ingredients in these generalized frameworks as well. In
particular, in the framework of Ref. [28], the additional ingre-
dient is repeated solution of the CYM equations with slightly
different seeds drawn from an initial spectrum of fluctuations.

III. NUMERICAL COMPUTATION

We will now discuss the numerical implementation of the
continuum discussion in the previous section. Because the
classical gauge field configurations are boost invariant, our
computations are carried out on 2+ 1-dimensional lattices.
From the nuclear color charge density squared, determined as
described in the previous section, we can sample independent
color charges p(x_ ) (suppressing x from now on) according
to

8 MA( X1)

N, (16)

(ot x )0 (L)) = 808482 (x L — y1) >
where the indices k,/ =1,2,..., N, represent a discretized
x~ coordinate [32]. We typically use N, =10 and m =
Aqcp ~ 0.2GeV and will use a value of Q, >~ 0.75 g%u,
which is somewhat larger than the value determined in [32]
for the adjoint saturation scale. There is some uncertainty
in this relation and we have chosen 0.75 for comparison to
experimental data. Changing this value primarily changes the
overall normalization of the multiplicity and energy density.

For large nuclei, the use of local Gaussian color charge dis-
tributions is a valid approximation [10,34,42]. Modifications
to Gaussian distributions, relevant for smaller nuclei, have
recently been explored in [43].

On the lattice we work with link variables U 2( p),; instead

of explicit gauge fields. To determine U’ Ay We first need
to compute the path ordered Wilson line (9) in its discretized
version

“”(xu
Vap)(x1) = nexp T m el B 17

This quantity already allows us to demonstrate the de-
gree of correlation and fluctuations in the gluon fields
of the incoming nuclei. Figure 2 shows the correlator
Re[Tr(Vj(B)(O, 0)Vacp)(x, yYNI/N. for /s =2760GeV. The
characteristic correlation length is 1/Q;, leading to a finer
granularity® than the nucleon size scale (cf. Fig. 1). See also
[45] where the evolution of this structure with x was computed
by solving the IMWLK renormalization group equations.

This energy dependence of the granularity is opposite to the one
modeled in [44].
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FIG. 2. (Color online) The correlator 1/N.Re[Tr( V);( B)(O, 0)
Vs (x, ¥))] showing the degree of correlations in the gluon fields
for lead ions at 4/s = 2760 GeV. The colors—from blue to red (light
to dark)—denote increasing strength of gluon correlations.

To each lattice site j we then assign two SU(N,) matrices
V(a),j and V() ;, each of which defines a pure gauge configu-
ration with the link variables

i T
Ui = Vaw).j Va®), jté (18)

where +-¢; indicates a shift from j by one lattice site in the
i =1, 2 transverse direction. Note that Eq. (18) is a gauge
transform of the unit matrix, hence a gauge transform of the
vacuum A’ = 0.

The link variables in the future light-cone U j, are deter-
mined from solutions of the lattice CYM equations at T = 0,

et [(Ufa) + Ulp)) (1 + U™ = L+ UD (UG, + Ufy) ]}
=0, (19)

where 1 are the generators of SU(N,) in the fundamental
representation (the cell index j is omitted here). Equation (19)
reduces to Eq. (12) in the continuum limit, which can be shown
by expanding all links for small a: U’ ~ 1 +iagA’. The N> —
1 equations (19) are highly nonlinear and for N, = 3 are solved
iteratively.

We further need the lattice expression corresponding to
Eq. (13), which is the longitudinal electric field in the forward
light-cone [7]

mm=é§]W@m—%@mw%94>
i=x,y
—hee. = (U(x — i) = D(Uly(x1 —ir)
— Ulp)(x1 —i7)) + hc.], (20)

where we have indicated the cell by its coordinate x instead
of j for clarity. —iy indicates the shift in the —i direction by
one lattice spacing.

The lattice Hamiltonian in the boost invariant case is given
by [7.9]

aH = Z[ trEE’+—(N —RetrU; ;)

T a ~
+;trﬂ2+;2i:tr(¢—¢i)2:| s (21

where the sum is over all cells in the transverse plane. For
clarity, we have omitted the cell index j for all quantities
in this expression. ¢ is a scalar field, resulting from A,
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when disallowing n dependent gauge transformations, and
m=E,=¢/t is the longitudinal electric field. E' with
i € {1, 2} are the components of the transverse electric field
that initially are zero. The parallel transported scalar field in
cell j is given by

¢! =U! ipise U, (22)
and the plaquette is given by
vi,=UlU%, Ui, U (23)

With only longitudinal fields present after the collision, the

total energy density on the lattice at T = 0 is given by
2 1
e(t =0) = ——(N. —Retr Uy o) + —trn?,  (24)

a a
where the first term is the longitudinal magnetic, the second
the longitudinal electric energy density.

To evolve the system from t = 0 forward, we use the
Hamiltonian equations of motion obtained from taking the
Poisson brackets of the fields with the Hamiltonian (21)

2

U,- = ig—EiUi(no sum over i), 25)
T
¢ =1, (26)
B = LU+ U Ul - Ul - T+ L1 90
=22 1,2 1,—2 1.2 1.2 1 L1910l
(27)
o 1T ot ot oz
E° = 2g2 [UZ,I + U2,71 U2,1 Ug,,l TZ] + T [¢17 ¢]7
(28)
1 - -
P =~ o — 241, 29
7 TZM+¢ ¢] (29)
where T; = NLrtr[ULz + U2 — UIJ[’2 — UIT’?Z]I, and T, =

atrUs1 + Us_y — U3, — U3 |11 with the N, x N, unit
matrix 1. The subtraction of these traces takes care of the fact
that the components of F*" are traceless color matrices. Note
that the Hermitian conjugates of a plaquette simply reverse
direction.

To determine the energy density at times 7 >0 we
evaluate the 77 component of the energy-momentum tensor at
site j

2

TF* = zg Sw[E2 + B2 B2+ B,
+%ﬂ@—xmmw)
+(pj-or = Urj-e, ;U] ;_ )]

+ %tr[(% - Uy,quH@zU}T,,j)z
+($joes — Uy jo ez¢, a)]

+tfm +Z

where ), indicates the sum over the plaquette defined
in Eq. (23) and the three other plaquettes with the same

— (N, — Retr[Un]), (30)
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orientation connected to site j. Note that care has to be taken
that all quantities are defined at the same point, in this case
lattice site j.

IV. RESULTS
A. Energy density and dN,/dy

Having outlined the numerical procedure, we will now
present results from the CYM evolution of the IP-Sat initial
conditions. We begin by showing the evolution of the energy
density (30), integrated over the transverse plane fTEy in Fig. 3.
As can be seen from Eq. (24), initially the system consists of
only longitudinal chromomagnetic and chromoelectric fields.
Over the course of the evolution, the transverse components
of the energy density grow and catch up with the longitudinal
modes. The expansion of the system leads dE/tdy to drop
like 1/t and d E /dy becomes a constant.

Figure 4 shows the structure of the energy density in the
transverse plane after the collision, at time 7 = 0 fm [Eq. (24)]
and after classical Yang-Mills evolution in 2 + 1 dimensions
for At = 0.2 fm, which is of the order of 1/ Qj, the time scale
over which interactions are still significant. After this time,
expansion causes the fields to become weak and the system
becomes freely streaming. As shown in Fig. 3, at the later time
all four components of Eq. (21) contribute. As can be expected,
the distribution becomes smoother with the evolution.

We next compute the gluon multiplicity per unit rapidity
dNg/dy. Since the multiplicity is not a gauge invariant
quantity, we fix transverse Coulomb gauge (3; A’ = 0, with
i summed over 1, 2). Then the lattice expression for d N, /dy
is given by [9,46]

dN, 2 [d*r[g®
— = 5 — | —1i E,’ k Ei —k
D N2/ 7 [t r(Ei(K)E;(—K1))

ot (ﬂ(kl)N(—kl))} G31)

assuming a free massless lattice dispersion relation for the
interacting theory. This leads to the appearance of the square

B, — |
EL ---|]
Br

ET ——

dE/tdy [GeV/fm]

01 02 03 04 05 06
T [fm/c]

FIG. 3. (Color online) Components of the integrated energy
density dE /tdy as a function of T from one single event. Labels
indicate components of dE /tdy.
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am o C o4 g
8 8

FIG. 4. (Color online) Energy density (arbitrary units) in the
transverse plane at T = 0fm (upper panel) and 7 = 0.2fm (lower
panel). The structures are smoothed by the evolution over the first
At ~ 1/0Q;.

root of

- k k
k3 =4 |sin®> = +sin® 2 |. 32
T |:sm 2—i—sm > (32)

The result for (dNg/dy)/(Npa/2) VS. Npar at time T =
0.4fm, where N,y is the number of participant nucleons,
is shown in Fig. 5. The IP-Glasma model does not have
the concept of “wounded nucleons” because we treat the
nucleus as a coherent system of gluon fields correlated on
distance scales 1/Q much smaller than the size of a nucleon.
To determine Ny, we use the same Monte Carlo Glauber
(MC-Glauber) model as employed by the experimental col-
laborations. Nucleons that were sampled for each nucleus, as
described in Sec. III, are assumed to be participant nucleons
if the relative transverse distance between them and a nucleon
from the other nucleus is smaller than D = /oy /7, where
onyn 18 the total inelastic cross section, oyy = 42 mb for
/5 =200GeV Au+ Au collisions at RHIC and 64 mb for
/$ = 2.76 TeV Pb + Pb collisions at LHC. The reader should
note that the MC-Glauber model and the inelastic cross
sections are solely used to determine Npy to compare to
experimental data. They are not an input for the IP-Glasma
model.

In the upper panel of Fig. 5, we show the multiplicity
distribution as a function of Np for fixed coupling. We
multiplied the gluon multiplicity by 2/3 to convert to charged
particle multiplicity. Note that the overall normalization is
chosen (by varying the ratio between Q, and g’u and o

034908-6



EVENT-BY-EVENT GLUON MULTIPLICITY, ENERGY ...

14 r r r r T T T T
RHIC 200 GeV, fixed oy ==
o 12 F|LHC 2.76 TeV, fixed 0y == 1
= PHENIX 200 GeV =a
< 10 | |ALICE 2.76 TeV o 1
i
g 8
)
5 6 <
o
=
> 4 .
g
pd
© 2t il
0 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
Npart
14 T T T T T T T T
RHIC 200 GeV, running olg ==
o 12 F|LHC 2.76 TeV, running oty == .
E PHENIX 200 GeV =g
< 10 }|ALICE 2.76 TeV —e— .
i
s 8 1
q
g 61 @ 1
=
> 4 .
9
> W
© 2t 4
0 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
Npart

FIG. 5. (Color online) Gluon multiplicity (d N, /dy)/(Npa/2) at
T = 0.4fm/c times 2/3 compared to experimental charged particle
(dN/dy)/(Npa/2) data for /s =200GeV Au+Au and /s =
2.76 TeV Pb + Pb collisions as a function of Ny, for fixed coupling
(upper panel) and running coupling (lower panel). The pale blue
and red bands are a collection of the multiplicities for individual
events, with the solid lines representing the average multiplicity.
Experimental data from [47] and [48].

in the fixed coupling case) to agree with the RHIC data for
charged particles. This allows us to better compare the shape
of the result and the experimental data. (The pale bands denote
results from the individual events and demonstrate the range
of fluctuations around the mean. See below for more details.)
However, we know that there is entropy production in the
system and the initial gluon multiplicity should not account
for all observed final particles. The logarithmic uncertainty
in Q, as well as some numerical uncertainty (for details
see [16,32]) in the factor between Q; and g2  introduce some
freedom that allows to adjust the normalization of the initial
dN,/dy. This also allows to adjust the energy density when
fine tuning to experimental data when using this model with
a viscous hydrodynamic evolution model that accounts for
entropy production.

While the RHIC result is reasonably well described, both
the normalization and shape of the LHC result disagree
strongly with the experimental data for the fixed coupling
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case. Note that the IP-Sat model naturally generates different
x dependencies of Q; for protons and nuclei, the latter giving a
stronger dependence on x. Because we use the parametrization
of Q, from DIS of protons to construct nuclei, we get the
right spatial dependence of color charge distributions but the
x dependence for nuclei is off, and the stronger x dependence
has to be introduced by hand. We observe that our results are
consistent with Ref. [18].

The inclusion of running coupling as shown in the lower
panel of Fig. 5 improves the agreement with the LHC data
significantly. The shape is now very well described apart
from a very modest underprediction at small Npaq. This
discrepancy could be from entropy production in the later
evolution stages, whose relative contribution can be expected
to be somewhat larger for smaller systems. The scale i for the
running of

27
(11 = 3Np)In(it/Aqep)

was chosen to be i = (max(Q%(x1), 08(x1))), where the
average is over the whole transverse plane. As usual, there is
some ambiguity in choosing the scale, but we have verified
that using the minimum instead of the maximum or twice
the value did not make a significant difference for the shape
of the result. Note that the CYM evolution does not depend
on «y as it scales out from the equations of motion and only
enters in the final computation of the multiplicity. Furthermore
note that the use of MC-Glauber to determine Ny, is crucial
for reproducing the experimentally observed shape of the
result. In this way, we include both fluctuations in Ny, (along
the horizontal axis) as well as in d N /dy (along the vertical
axis). Individual events (15 000 each) are plotted as scattered
points in the background to show the degree of fluctuations
explicitly. In a forthcoming paper, we will evaluate how
event-by-event viscous hydrodynamic simulations modify this
computation.

(33)

as(t) =

B. Multiplicity distributions

In Fig. 6 we present the probability distribution of d N, /dy
at RHIC energies. An essential ingredient is the probability
distribution of impact parameters, which is determined by the
Glauber model to be

1— (1 —oynTap)*®

dPinel _ (34)
d*;  [d® (1 — (1 —oynTap)*E)

with the overlap function 74 g. One could in principle compute
this distribution in the Glasma framework, but a first principles
computation is extremely difficult. The probability for no
inelastic interaction (an essential ingredient in the above equa-
tion) at a given impact parameter requires an understanding of
diffractive/elastic interactions which is incomplete at present
in all QCD based frameworks. The Glauber model, with
parameters tuned to data, is therefore a good effective model
for this aspect of our computation.

We compute the n-particle multiplicity distribution by first
sampling the impact parameter b from a uniform distribution,
computing the resulting d N, /dy from the IP-Glasma model,
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FIG. 6. (Color online) Probability distribution of gluon multi-
plicities dN /dy at T = 0.4fm/c. Shown are also the distributions
for some limited ranges of impact parameter b, which are de-
scribed by negative binomial distributions. Experimental data from
STAR [49].

and when binning these values into the histogram shown
in Fig. 6, weight the result with a factor 27 b d Pier/d*b |
depending on the b value used in a given event. The STAR
data shown is uncorrected, which makes a direct comparison
difficult. We therefore scale dN/dy by a factor of 0.8 and
achieve good agreement with the data. This factor is very close
to the ratio of the uncorrected to corrected mean multiplicity
for 0-5% most central STAR data as quoted in Ref. [49].
Note, however, that this comparison is approximate since the
correction depends on d N /dy [49]. Figure 7 shows the same
distribution calculated for LHC energy.

We also show three distributions obtained by constraining
the impact parameter range to demonstrate that their shape re-
sembles a negative binomial distribution (NBD). The negative
binomial fluctuations of the transverse energy as emerging
from the IP-Glasma model have previously been discussed
in [2]. Here we show that they also appear in the multiplicity
distribution. In the Glasma flux tube framework [50,51],
negative binomial distributions

w8 . Tk+n) @k
B = rorarnar o Y
with
2 _
k = 4N62—1Q§sl (36)
T

arise [15], with k inversely proportional to the width of the
NBD. k here is proportional to the number of flux tubes
QfS 1, where S is the transverse size of the system. (Hence
smaller systems at a fixed energy generate more fluctuations.)
In the expression above, ¢ is an intrinsically nonperturbative
function which can be computed ab initio from solutions of
the CYM equations. To determine ¢ it is sufficient to compute
the double inclusive distribution by solving CYM equations
as done in Ref. [16]. Here we are computing the n-particle
inclusive distribution, and can thus also extract ¢ if the NBD
description of these distributions is robust. ¢ in general can
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FIG. 7. (Color online) Same as Fig. 6 for LHC energy /s =
2.76 TeV.

depend on Q25 ; however, a powerful test of how robust the
Glasma flux tube picture is depends on this dependence being
weak for large values of Q25 . We will therefore discuss the
behavior of ¢ below and what the results tell us about the
nature of different sources of quantum fluctuations.

Within the IP-Glasma model, we determine ;(QfS 1) by
extracting k from a fit with an NBD and computing an average
(Q}S.) by summing over the minimum of the two Q7 Ap) 1D
the whole transverse plane.

We first determine 72 and k of Eq. (35) from the fit to
the multiplicity distributions at fixed impact parameter b. The
results are shown in Fig. 8. Interestingly, the ratio k /7 is greater
than one for central collisions and at large impact parameters
approaches approximately k/i &~ 0.14, which is close to the
value determined from fits to distributions in p + p collisions
[27].

The corresponding ¢ values are shown in Fig. 9 as a
function of the average values of Q2S, for a given b. We
observe a strong dependence of ¢ on QfS 1, which is in
disagreement with the flux tube picture. The reason is that
the effect of fluctuations in the number of wounded nucleons
[which were not considered in the derivation of Eq. (36)] in
addition to fluctuations in the color charge distributions, make
the distribution wider (¢ smaller), especially at large impact

1400 ¢

1200 ¢

1000 |
=~ 800 | "

600 r ° .

400 r ° -

200 * e . -
0 . . . ® e o o ¥ §
O 2 4 6 8 10 12 14

b [fm]

=1
.

FIG. 8. (Color online) Average gluon number 7 and width
parameter k as a function of impact parameter b at /s = 200 GeV.
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FIG. 9. (Color online) Proportionality factor ¢ at RHIC energy
in k = ({(N? —1)/(27))Q3?S, as a function of 025, including all
fluctuations. Q2 corresponds to the average value for a given b. b
was varied in 1 fm steps from O to 13 fm.

parameters (small QZ2S,) where geometrical fluctuations
dominate.

This behavior of ¢ is compatible with previously extracted
values from fits based on k| factorizationto A + A multiplicity
distributions [18], where small d N /dy required small values
of zeta and large d N /dy larger values to achieve a good fit.
The IP-Glasma model automatically produces this variation of
¢, leading to very good agreement with the experimental data
as shown in Fig. 6.

To be able to better compare to the flux tube picture and
Eq. (36), we now consider only the effect of fluctuations in
color charges. To do so we average over the nuclear color
charge density squared over many nucleon configurations. This
results in a smooth distribution that removes fluctuations in the
wounded nucleon number and positions.

This is in the spirit of the original Glasma flux tube
perturbative [15] and nonperturbative [16] computations. The
result for this {smeomn 1S shown in Fig. 10. After starting out
near 1, Zsmooth drops and approaches a constant value of
approximately {gmooth = 0.2 for large QfS | . This means that at

1 =
average nucleon positions =
0.8t [ fixed b=0 fm ° i
0.6 " 1
o n
04r " ]
‘5 .

0.2F "o " & - 1

°

0 5000 10000 15000

QS

FIG. 10. (Color online) Proportionality factor ¢ in k = (£(N? —
1)/(2m)) Qf S, as a function of Qf S, for averaged nucleon positions
(squares) and with nucleon fluctuations at fixed impact parameter b =
0fm (circles). At large QS the result for the smooth distribution
approaches a constant as predicted by the Glasma flux tube model for
n-gluon correlations. The result for fluctuating nucleon positions at
constant b = 0 fmis very similar and becomes very weakly dependent
on Q%S .
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low parton densities, k is initially more constant than expected
in the Glasma flux tube picture but then becomes proportional
to Qf,S | at high parton densities as anticipated.

The fact that ¢ at small impact parameters (cf. Fig. 9)
approaches that in the smooth case for the same Q2S, gives
hope that there is a chance to experimentally access a regime
where the flux tube picture is valid. Fixing » = 0fm and
increasing the energy, and this way increasing Q2S, while
keeping S, as constant as possible, reduces fluctuations in the
nucleon number. Indeed we find that the result for the extracted
¢, shown as blue circles in Fig. 10, is very close to the one
obtained with smooth initial distributions, and its dependence
on 02, becomes weak at large Q25 .

C. Eccentricities

In Ref. [2], we presented results for ¢, and 3 defined in
Eq. (1) and compared to results from an MC-Glauber model
and the MC-KLN model [23,52,53]. Here we extend this study
by comparing eccentricities up to &¢. The results are shown in
Fig. 11 and the conclusions that can be drawn are mainly that
the purely fluctuation driven odd harmonics ¢3 and &5 from
the IP-Glasma model are larger than those from the MC-KLN
model [54] for all b, while ¢, is smaller than that computed
in the MC-KLN model, in particular for b > 3fm. As a
consequence, the ratio &,/¢e3 is smaller than in the MC-KLN
model, which is going to decrease the ratio of v,/v3 obtained
after hydrodynamic evolution, making it more compatible with

08 |p.Glasma s |
=0 Ve ®
L N i
05 o5, )
mE '
0.4 +¢& ° .
c
w
0.3 1
MC-KLN
02 Jx L 0 - €, 1
— e
0.18= — %
0 2 4 6 8 10 12 14
b [fm]
0.5+ IP-Glasma * 1
=0
04 *° |
* &g
& 0.3 1
0.2F
0.1 e,
0 2 4 6 8 10 12 14

b [fm]

FIG. 11. (Color online) Even (upper panel) and odd (lower panel)
eccentricities from the IP-Glasma model compared to those from
MC-KLN.
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FIG. 12. (Color online) Time evolution of the eccentricities from
the IP-Glasma model at impact parameter b = 8 fm.

experimental observation. g4 and g¢ are almost equal or larger
than those from the MC-KLN model. We make the comparison
to MC-KLN at t = 0fm/c, because at later times we would
also have to take into account the pre-equilibrium flow built up
in the CYM simulation. This effect will be included in detailed
event-by-event simulations that convert the spatial anisotropies
into momentum anisotropies in a follow up paper in this series.
To show the effect of the CYM evolution on the eccentricities
themselves we show as an example of their time evolution for
b = 8fm in Fig. 12. As expected already in [2], the change in
all ¢, is very weak over the first 0.4 fm/c. After this time all ¢,
begin dropping as the systems is freely streaming and hence
becoming more isotropic.

V. SUMMARY AND OUTLOOK

This paper expands on the IP-Glasma model of fluctuating
initial conditions for heavy-ion collisions first presented in
Ref. [2]. More details of the computations are presented as
well as novel results for the single inclusive and n-gluon
multiplicity distributions and higher even and odd eccentricity
moments. In addition, the CYM equations are solved for finite
proper times t unlike Ref. [2] where results were extracted
only for r = 0.

We observed that the running coupling CYM results give
good agreement with the RHIC and LHC single inclusive
multiplicity distributions as a function of Np. The com-
puted n-particle inclusive multiplicity distribution shows good
agreement with the uncorrected STAR data on the same
once a constant correction factor is applied. A prediction is
made for multiplicity distributions at the LHC. We further
observe that our results are well described as a convolution of
negative binomial distributions at different impact parameters.
The parameters of the negative binomial distributions are
extracted, and it is observed that, in the approximation of
smoothed nucleon configurations, for large parton densities,
the predictions of the Glasma flux tube picture are recovered.
For the realistic situation of fluctuating wounded nucleon
configurations, one still obtains NBDs albeit with significantly
wider widths. The nonperturbative coefficient ¢ introduced
in the Glasma flux tube description quantifies the effect of
wounded nucleon fluctuations. Predictive power, in particular
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for central impact parameters at higher energies, is still retained
because ¢ is (nearly) energy independent, while the width
parameter k [in Eq. (36)] has a strong energy dependence
controlled by the saturation scale Q2.

The computation of eccentricity moments is performed up
to €¢. It is seen that g, is smaller than in the MC-KLN model
(used as an initial condition in many hydrodynamic studies),
while the odd moments are larger, pointing to the additional
role of multiplicity fluctuations in the IP-Glasma model.

An essential follow up to this work is to match the
results of the IP-Glasma model, event-by-event, to viscous
hydrodynamic simulations. This will allow one to gauge
the effects of dissipative flow in modifying the energy and
multiplicity distributions and on the conversion of spatial
anisotropies into momentum anisotropies. These have the
potential to significantly enhance our understanding of the
transport properties of the quark-gluon plasma, with the caveat
that a systematic treatment of pre-equilibrium flow including
instabilities can alter some of these conclusions significantly.
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APPENDIX: THE IP-SAT MODEL

The impact parameter dependent dipole saturation model
(IP-Sat) [4] is a refinement of the Golec-Biernat—Wiisthoff
dipole model [55,56] to give the right perturbative limit when
r; — 0 [3]. It is equivalent to the expression derived in the
classical effective theory of the CGC, to leading logarithmic
accuracy [57].

The proton dipole cross section in this model is expressed
as

p
O dip

5T, x, b)) =2[1 —exp(=F(ri,x, b))l (Al)
d’b,.
with
o, ~2
F(ri,x,b) = AR as(i)xgx, p)Tp(by).  (A2)
Here the scale ji° is related to dipole radius r, as
4
= — + g, (A3)
rg

and the leading order expression for the running coupling is
given by Eq. (33). The model includes saturation as eikonalized
power corrections to the DGLAP leading twist expression
and may be valid in the regime where logs in Q? dominate
logs in x. The saturation scale for a fixed impact parameter
is determined self-consistently by requiring that the dipole
amplitude [within brackets in Eq. (A1)] have the magnitude
N, rg,b))=1—e"12, with Qip = 2/r§. We note that
there is an overall logarithmic uncertainty in the determination
of Qf,p(x, b,).

034908-10



EVENT-BY-EVENT GLUON MULTIPLICITY, ENERGY ...

For each value of the dipole radius, the gluon density
xg(x, i?) is evolved from i3 to > using LO DGLAP
evolution equation without quarks,

dxg(x, B°) _ as(i?) /‘ x (x
= dzP, —g| -, . A4
d log fi2 27 J, ¢ gg(z)zg Z H (A%

Here the gluon splitting function with N flavors and C4 =3
and T = 1is

b4 -z
Pgo(2) =6 |:(1 ot + - +z(1 — Z)i|
1Ny
+ (7 -5 )5(1 - 2). (A5)
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The initial gluon density at the scale fij is taken to be of the
form

xg(x, i) = Agx (1 — x)*°. (A6)

An important feature of the IP-Sat model is the b dependence
of the dipole cross section, which is introduced through a
gluon density profile function 7'(b). This profile function is
normalized to unity and is chosen to have the Gaussian form

(b0 1 —b,?

p = eX s
P 2w BG P 2BG
where Bg is a parameter fit to the HERA diffractive data. This
corresponds to (b?) = 2B, the average squared gluonic radius
of the proton, which corresponds to a very small transverse
radius ~0.5 fm and a three-dimensional radius of ~0.61 fm
[58].
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