
PHYSICAL REVIEW C 86, 034904 (2012)

Photon production from a quark-gluon plasma at finite baryon chemical potential
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We compute the photon production of a QCD plasma at leading order in the strong-coupling with a finite
baryon chemical potential. Our approach starts from the real-time formalism of finite-temperature field theory.
We identify the class of diagrams contributing at leading order when a finite chemical potential is added and
resum them to perform a full treatment of the Landau-Pomeranchuk-Migdal effect similar to the one performed
by Arnold, Moore, and Yaffe [J. High Energy Phys. 11 (2001) 057] at zero chemical potential. Our results show
that the contribution of 2 �→ 3 and 3 �→ 2 processes grows as the chemical potential grows.
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I. INTRODUCTION

Heavy-ion collision experiments at RHIC typically create
a medium where the net baryon density is nonvanishing [1,2].
As we enter a new era of precision measurements, it is
therefore important to consider the effect of a nonvanishing
baryon chemical potential on the thermal photon yield of
the quark gluon plasma. Previously, the effect of nonzero
chemical potential in 2 ↔ 2 processes was studied in [3–6].
The complete leading order calculation of photon production
including the effect of collinear enhancement in the 2 → 3 and
3 → 2 cases was first carried out by Arnold, Moore, and Yaffe
(AMY) starting from first principles within the framework
of quantum field theory at finite temperature [7]. The analysis
of [7], however, is mostly carried out at zero chemical potential.
The effect of adding a chemical potential was mentioned, but
a detailed analysis was not fully performed.

The chemical potential will modify the quark and gluon
self-energies as well as change the statistical factors, thereby
potentially modifying the power-counting analysis of AMY. In
this paper, we will precisely determine under which circum-
stances the power counting must be modified to account for the
presence of a chemical potential. We also explore numerically
the consequences of including a chemical potential in the
photon production.

As in the previous cases, the most convenient basis to work
in when analyzing the parametric sizes of diagrams is the
Keldysh or r, a basis whereas the rates are most conveniently
written in the usual 1, 2 basis. The addition of a finite chemical
potential also changes the way in which we switch from the
1, 2 basis to the r, a basis, and we will carefully explain the
required changes.

The organization of this paper is as follows. In Sec. II A,
we briefly recall the structure of perturbation theory in the
real-time formalism and outline the basic formula giving
photon production in terms of Feynman diagrams. In Sec. II B,
we show how to generalize a result of Heinz and Wang [8]
that allows one to express Green’s functions in the 1, 2 basis
in terms of a reduced set of Green’s functions in the r, a

basis. In Sec. II C, we show how a finite chemical potential
alters quark and gluon thermal masses. Then, in Sec. III,
we perform a power-counting analysis to determine which
diagrams contribute at leading order in the strong coupling g

and resum these in Sec. IV. Finally, some numerical results
are shown in Sec. V.

II. DIAGRAMMATIC APPROACH TO CALCULATING
PHOTON PRODUCTION

A. Perturbation theory at finite temperature and chemical
potential

We start by briefly outlining the structure of real-time
perturbation theory at finite chemical potential. Since we are
interested in a QCD plasma, our starting point is the QCD
Lagrangian

L =
∑
f

ψ̄f (/∂ − M − g /AaT
a)ψf − 1

4
Fa

μνF
μν
a , (1)

where the sum is over the Nf fermion flavors and the
gauge group is SU(Nc) with Nc = 3.1 This Lagrangian has a
conserved charge Q̂ ≡ ∑

f

∫
d3xψ

†
f (x)ψf (x) which is equal

to the net fermion (quark) number. The density operator de-
scribing the grand-canonical ensemble is therefore e−β(Ĥ−μQ̂).
In the imaginary-time formalism, one can show that this
changes the Matsubara frequencies from iωn to iωn + μ

[9,10]. The chemical potential here is hence the quark chemical
potential, which is 1/3 of the baryon chemical potential.

To connect the imaginary- and real-time formalisms, one
defines the retarded and advanced propagators as

GRet(x) = iθ (t)〈{ψ(x), ψ̄(0)}〉β,μ, (2)

GAdv(x) = −iθ (−t)〈{ψ(x), ψ̄(0)}〉β,μ. (3)

The anticommutators above are replaced with commutators for
gauge fields. By using the spectral representation of imaginary-
time propagators (for instance, see [9,10]) one can show that
the retarded propagator is obtained by analytically continuing
the Matsubara propagator through the prescription iωn + μ �→
p0 + iε and the advanced propagator is obtained from the
continuation iωn + μ �→ p0 − iε, where p0 is an arbitrary
real number.

1Our metric convention is gμν = diag(1, −1, −1, −1).
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In the real-time formalism, one is forced to double the
degrees of freedom because when constructing a generating
functional from the partition function, the time integration
contour has to traverse the real-time axis once forward and
backward (the Schwinger-Keldysh closed time path) [11]. The
first set of fields ψ1, ψ̄1, and A

a,μ

1 corresponds to fields with a
time argument on the forward directed part of the contour and
conversely the set of fields ψ2, ψ̄2, and A

a,μ

2 corresponds to
fields with time arguments on the backward directed part.

For computational purposes, it is sometimes more conve-
nient to use a basis other than the 1, 2 basis above. One such
basis is the r, a or Keldysh basis [11,12], defined as follows:

ϕr = ϕ1 + ϕ2

2
, (4)

ϕa = ϕ1 − ϕ2, (5)

where ϕ denotes any of our fields. By using the above algebraic
relation and the spectral representation of propagators in the
r, a basis, one can show that for fermions

Grr (P ) = (
1
2 − nf (p0 − μ)

)
ρ(P ), (6)

Gar (P ) = GAdv(P ), (7)

Gra(P ) = GRet(P ), (8)

Gaa(P ) = 0. (9)

The above equations allow us to compute real-time propagators
by analytically continuing imaginary-time ones. From now on,
we use capital letters for four-momenta and lowercase letters
to denote the magnitude of the three-momenta. For instance,
P = (p0, p) in the above expressions and p = |p|.

To tie this formalism to the problem of photon production,
we recall the standard formula that relates the emissivity of
the plasma to a Wightman current-current correlator [9,10]:

d�γ

dV
= d3k

(2π )32|k|
∑
a=1,2

ε(a)
μ (K)ε(a)

ν (K)Wμν(K), (10)

where we have defined the Wightman current-current correla-
tor by

Wμν(K) =
∫

d4x eiK·x〈jμ(0)jν(x)〉β,μ. (11)

Wightman functions are most naturally expressed in the 1, 2
formalism of the real-time theory:

d�γ = αEM

π2

d3k
|k|

∫
d4P1

(2π )4

∫
d4P2

(2π )4

[
(p1‖ + k)2 + p2

1‖
]

2p1‖(p1‖ + k)

× (P1⊥ · P2⊥)G1122(−P1,K + P1,−K − P2, P2),

(12)

where G1122 is a fermionic four-point function where two
external vertices are of the “1” type and the others are of the “2”
type. The “parallel” component of p is always defined relative
to the fixed direction of the emitted photon momentum k.

A schematic diagram for d�γ is shown in Fig. 1. Our
convention is that fermion momenta flow into the shaded box.
Arrows going into the shaded box correspond to insertions of
the particle operator ψ , and arrows coming out of it correspond
to antiparticle insertions ψ̄ .

K

Q2 = K + P1

Q1 = −P1

Q3 = −K − P2

Q4 = P2

FIG. 1. The momentum assignments for computing the Wight-
man function. Arrows on fermion lines going into the shaded box
correspond to insertions of the particle operator and those coming out
of it correspond to insertions of the antiparticle operator. All momenta
flow into the shaded box.

B. Going from the 1, 2 to the r, a basis

For power counting and actual computations, the r, a basis
is more convenient than the 1, 2 basis. By using the algebraic
relation between fields in the 1, 2 and r, a bases [cf. Eq. (4)],
we can express G1122 as a linear combination of the 16 possible
four-point functions in the r, a basis. The result is

G1122 = Grrrr + 1
2Grarr + 1

2Garrr + 1
4Gaarr

− 1
2Grrar − 1

2Grrra + 1
4Grraa − 1

4Grara

− 1
4Garra − 1

4Graar − 1
4Garar + 1

8Garaa

− 1
8Gaara + 1

8Graaa − 1
8Gaaar + 1

16Gaaaa. (13)

One can show that, in general, Gaa···a(1, 2, . . . , n) = 0, and
hence we can immediately eliminate one of the 16 terms in the
above (see, for example, [12]). Wang and Heinz [8] showed
that the remaining 15 terms can be reexpressed in terms of 7
four-point functions and their complex conjugates.

The authors of Ref. [8] only considered the case of a real
scalar field. However, their derivation works equally well for
fermions (see Appendix A). Hence the following results from
the reference still hold:

G1122 = α1Gaarr + α2Gaaar + α3Gaara + α4Garaa

+ α5Graaa + α6Garra + α7Garar

+ β1Ḡ
∗
aarr + β2Ḡ

∗
aaar + β3Ḡ

∗
aara + β4Ḡ

∗
araa

+ β5Ḡ
∗
raaa + β6Ḡ

∗
arra + β7Ḡ

∗
arar , (14)

with the coefficients αi and βi composed of Fermi-Dirac
distribution functions instead of Bose-Einstein distribution
functions and Ḡ denoting the charge conjugate (ψ̄ ↔ ψ) of G.
Here all G···(Q1,Q2,Q3,Q4) are functions of four-momenta.
Our convention is that the momenta Q2 and Q4 correspond to
the insertion of ψ and Q1 and Q3 correspond to the insertion
of ψ̄ .

This expression greatly reduces the number of diagrams
we need to estimate. As a matter of fact, what emerges from
our power-counting analysis is that only Gaarr contributes to
photon production at leading order. This is because only this
labeling gives rise to pinching poles as we will explain shortly.
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Thus, we only need to know the coefficients α1 and β1. These
are given by

α1 = nf

(
q0

1 + μ
)
nf

(
q0

2 − μ
)
, (15)

β1 = −[
1 − nf

(
q0

3 + μ
)][

1 − nf

(
q0

4 − μ
)]

× 1 − nf

(
q0

1 + μ
) − nf

(
q0

2 − μ
)

1 − nf

(
q0

3 + μ
) − nf

(
q0

4 − μ
) . (16)

This is proven in Appendix A. One can intuitively understand
the signs of μ in the above by recalling that nf (E − μ) is
the distribution function for particles while nf (E + μ) is the
distribution function for antiparticles. Since Q1 and Q3 corre-
spond to antiparticle insertions, they must be associated with
the distribution nf (q0

i + μ), and conversely for Q2 and Q4.
As we will discuss in Sec. III, all gluon exchange momenta

must be soft at leading order in the strong coupling g.
Therefore, we have that P1 � P2 in Fig. 1. Hence, Q1 � −Q4

and Q2 � −Q3 and, consequently, β1 � nf (q0
1 + μ)nf (q0

2 −
μ) = α1. Further, one can verify that Ḡaarr (−P1,K +
P1,−K − P2, P2) = Gaarr (−P1,K + P1,−K−P2, P2) (see
Appendix B). Therefore, only the real part of Gaarr is relevant
to photon production at leading order.

C. Self-energies at finite chemical potentials

When we compute the Wightman correlator to derive the
photon production, we need to do a power-counting analysis
to identify all leading order diagrams. In this analysis, the
appearance of “pinching poles” makes it crucial to resum the
thermal self-energies into the quark and gluon propagators.
Therefore, we need to know how the presence of a chemical
potential affects the self-energies of quarks and gluons. This
is well known and dates back to the original paper by Braaten
and Pisarski on hard thermal loops [13].

In order to keep our work self-contained, we review the
derivation of self-energies with a full inclusion of a chemical
potential in Appendix C. In this section, we simply quote the
final results.

The gluon polarization tensor at finite chemical potential μ

takes the form

�μν(P ) = m2
D

(
−δ

μ

0 δν
0 +

∫
d�

4π

p0vμvν

p0 − v · p + iε

)
, (17)

where, in the above, m2
D = g2(Nf T 2

6 + NcT
2

3 + Nf μ2

2π2 ) is the
Debye mass, and vμ = (1, v) with v = k/|k|.

Similarly, the quark self-energy at finite chemical potential
is

�T (P ) = g2C2(F )

8

(
T 2 + μ2

π2

) ∫
d�

4π

/v

p0 − v · p + iε
.

(18)

The above two results show that the only effect of the
chemical potential is to shift the dependence of self-energies
on T 2 by a μ2 term. As we will see, the consequence of this
is that, in carrying out our power-counting analysis, we need
not alter the arguments of Arnold, Moore, and Yaffe as long
as μ � O(T ).

III. POWER COUNTING WITH A FINITE CHEMICAL
POTENTIAL

When evaluating the Wightman function, there are two
regions of the spatial part of the loop momentum integration
that are of interest: 1. the non-collinear region, where p1,⊥ and
p2,⊥ are both O(T ), and 2. the near-collinear region, where
p1,⊥ or p2,⊥ is O(gT ) or less.

The non-collinear region corresponds to the contributions
of the basic 2 �→ 2 processes treated by Kapusta et al. [14]
and Baier et al. [15]. The near-collinear region will have both
pinching pole and near-collinear enhancements. It corresponds
to the contribution of the bremsstrahlung and inelastic pair
annihilation processes modified by the Landau-Pomeranchuk-
Migdal (LPM) effect.

We briefly review how pinching pole enhancements arise.
As will be shortly shown, the leading order diagrams for
photon radiation all contain a pair of fermionic propagators
as shown in Fig. 2. The spatial part p of the loop momentum
P is assumed to be nearly collinear with k. In other words,
p⊥ ∼ gT . Given that we impose the collinearity of p and k,
we may focus just on the frequency integral∫

dp0

2π
GAdv(K + P )GRet(P )

=
∫

dp0

2π

1[(
p0 + i�p

2

)2 − E2
p

][(
p0 + k0 − i�p + k

2

)2−E2
p+k

] ,

(19)

where we have absorbed the Dirac matrix structures into the
vertices. In Eq. (19), �p = Im[�(P )]/(2Ep) is the decay width
of the quark generated by the imaginary part of the self-energy.
To leading order in g, it can be replaced by its asymptotic value
� = limp→∞(�p) [16,17].

The poles of the integrand are at the following locations:
p0 = ±Ep − i

2� and p0 = −k0 ± Ep+k + i
2�. It is straight-

forward to see that Ep+k ≈ p‖ + k when p, k are O(T )
and collinear. Hence the two pole positions p0 = Ep − i�/2
and p0 = −k0 + Ep+k + i�/2 almost coincide at p‖ ≡ p · k̂

although they are located on opposite halves of the contour
(cf. Fig. 3).

P

P + K ra

ra

FIG. 2. The pair of fermionic propagators carry momenta which
differ by K . We assume that K is nearly collinear with P and that the
other parts of the diagram are essentially constant over the region of
width g2T centered around the pinching poles of the integrand.
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p + iΓ/2

p − iΓ/2−p − iΓ/2

−p − 2k + iΓ/2

p0

FIG. 3. The locations of the four poles of the frequency integrand
when p and k are nearly aligned. The poles above the real line belong
to Gadv(K + P ) and the ones below belong to Gret(P ). The integration
contour is along the real axis. We see that two of the poles nearly
coincide at p‖. These poles are said to “pinch” the integration contour.

We use the residue theorem to close the contour and pick
up the contributions of the poles located below the real axis.
For the case where p‖ > 0, this gives∫

dp0

2π
GAdv(K + P )GRet(P )

� −i

2Ep(k + Ep − Ep+k − i�)(k + Ep + Ep+k − i�)
.

(20)

When p‖ < 0, the factors in the denominators should be
replaced by the general expressions

Ep − Ep+k + k → Ep sign (p‖) − Ep+k sign (p‖ + k) + k

= δE, (21)

Ep + Ep + k + k − i� →Ep sign (p‖) + Ep + ksign(p‖ + k) + k

� 2(p‖ + k). (22)

Therefore, the frequency integral is approximately∫
dp0

2π
GAdv(K + P )GRet(P ) � 1

4p‖(p‖ + k)(� + iδE)
.

(23)

But � and δE are both of order g2T , while p and k are hard.
Hence, we get a 1/g2T 3 enhancement from the frequency
integral. These enhancements make a large class of diagrams
contribute at leading order even though we would naively
expect them to be subleading.

Suppose that in the above demonstration we had not
taken the integrand to be the product of an advanced and
a retarded propagator but rather

∫
GAdv(P )GAdv(P + K) or∫

GRet(P )GRet(P + K). Then all poles would have been
on one side of the frequency integration contour only and

r

r

r

a

a

a

a

a

aa

a

r

r

r

r

r

r

r

r

rr

r

a

a r

r

r

r

FIG. 4. All ladder diagrams contribute at leading order when the
gluon exchange momenta are soft.

we could have closed it on the side with no poles. Since
the contribution from great circles at infinity vanishes, this
means that the integral would vanish. Hence pinching pole
enhancements only arise when we have a retarded and an
advanced propagator. This is the reason why only Gaarr

contributes to the leading order photon production. Because
there is no aa propagator [cf. Eq. (9)] and an interacting vertex
must contain an odd number of a fields [12], any other labeling
leads to reduction of the number of pinching poles.

We will illustrate general power-counting arguments by
estimating the size of the ladder diagram shown in Fig. 4.
We start with the ladder diagram that has only a single rung
(Fig. 5). Notice that the assignment of the r, a indices ensures
we have a retarded and an advanced propagator in each pair
of quark propagators. To get a pinching pole enhancement, we
need the quark with momentum P to be nearly collinear with
the emitted photon. Further, if the gluon carries a soft exchange
momentum Q ∼ gT , then it cannot disturb the collinearity of
the quark with the emitted photon. Therefore, the second pair
of propagators also gives a pinching pole enhancement. So we
have a g−2 × g−2 enhancement. A soft gluon rr propagator is
of order g−3T −2 because of the Bose-Einstein factor, provided
μ � O(T ). However, a soft gluon also brings in a phase-space
suppression of order g3, which cancels this enhancement.

Gathering all powers, we have for suppressions

(i) g2 from the integral over P⊥, which is O(g2) since this
is the near-collinear regime,

(ii) g3 from the soft Q spatial integral over Q,
(iii) g2 from two gluon exchange vertices, and
(iv) g2 from the P⊥ · (P + Q)⊥ factor arising from the

contraction with the external photons,

and for enhancements we have

(a) g−2 × g−2 from two pinching pole enhancements and

(b) g−3 from the soft gluon propagator.

K

P

P + K

Q

P + K + Q

P + Q

a a

a
a

a

a

r

r

r

r

r

r

FIG. 5. A ladder diagram with one rung only. It has two pinching
pole enhancements and a further enhancement coming from the size
of the soft gluon rr propagator.
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Dµ(P ; K) = + + +...

FIG. 6. The resummed vertex Dμ sums all ladder diagrams with one photon vertex removed. All external legs are amputated.

Adding up all powers of g, we get that this two-loop diagram
is of order g2, the same as the non-collinear one-loop diagram.

The above analysis easily extends to ladder diagrams with
an arbitrary number of rungs. Each additional rung brings with
it one more pinching pole enhancement, giving a g−2, and a soft
gluon propagator of order g−3. It also brings in a g3 suppression
from the spatial integral over the new soft gluon momentum
and a g2 suppression from the two additional gauge boson
exchange vertices. Adding these up, we get a net contribution
of g0, so that at least all ladder diagrams contribute at leading
order.

One ought to make an important remark at this point. Since
the thermal mass of the gluon goes roughly as T 2 + μ2/2π2,
the spectral function can be of higher order than g−2 if μ is of
order T/g. In this case, the size of the soft rr gluon propagator
fails to cancel the g3 phase space suppression that we get
from a soft gluon loop momentum. Consequently, all ladder
diagrams are subleading when μ = O(T/g), and it becomes
unnecessary to resum the contributions of all ladder diagrams.

The rest of the power-counting analysis aims at identifying
which combinations of external r, a indices contribute at
leading order, showing that all other diagram topologies are
subleading, and also proving that gauge boson momenta of
order higher or less than gT also give subleading contributions.
As we have argued, as long as μ � T/g, the size of the
propagators comprising each diagram is parametrically the
same as in the analysis of [7]. We will not pursue it here in
more detail.

IV. RESUMMATION OF LADDER DIAGRAMS

In the regime where μ � O(T ), the power-counting anal-
ysis of [7] is unchanged. Therefore, the conclusion that one
needs to resum ladder diagrams (and only these) to get the
photon emissivity at leading order is also valid. Hence, we can
apply the same resummation procedure as [7]. Here we briefly
outline that resummation procedure.

Graphically, the sum we need to evaluate is illustrated in
Fig. 6. We have defined the photon resummed vertex Dμ as
the sum of all ladder diagrams with the leftmost photon vertex
and pair of quark propagators removed. From Fig. 6, one
sees that each ladder is constructed from the previous one
by concatenating a gluon rung attached to two quark-gluon
vertices and a pair of quark propagators to the previous one,
where the quark propagators must be evaluated at the location
of pinching poles. The ladder diagrams form a geometric
series:

Dμ = Iμ + MFIμ + MFMFIμ

+MFMFMFIμ + · · · . (24)

The graphical operator F adds the pinching pole pair of
propagators. In the above equation, each F contributes a pair
of pinching poles:

F(P ; K) = GAdv(K + P )GRet(P )

≈ −1

4p‖(p‖ + k)

1

� + iδE
4πδ[2p0 + k0

− Epsign(p‖) − Ep+ksign(p‖ + k)]. (25)

The operator M adds the rung as illustrated in Fig. 7:

M(P,Q,K) = ig2CF 4p‖(p‖ + k)K̂μK̂νG
μν
rr (Q). (26)

Finally, Iμ is the bare photon vertex on the far end of the ladder
diagram as illustrated in Fig. 8.

The resummed vertex Dμ then satisfies the following
integral equation:

Dμ(P,K) = Iμ(P,K) +
∫

Q

M(P,Q,K)F(P + Q,K)

×Dμ(P + Q,K). (27)

After defining the variable f μ(p, k) ≡ 4p‖(p‖ +
k)

∫
dp0

2π
F(P,K)Dμ(P,K), the integral equation (27)

becomes [7]

2P μ + Kμ = iδEf μ(p, k) +
∫

d3q
(2π )3

C(q)[f μ(p, k)

− f μ(p + q⊥, k)]. (28)

After applying a sum rule, the collision kernel C(q) is found
to have the simple form [18]∫

dq‖
2π

C(q) = 1

q2
⊥

− 1

q2
⊥ + m2

D

(29)

with p and k strictly collinear. The term δE is the difference
between the locations of the pinching poles of the quark
propagators, as seen in Eq. (21). Through the energies of
the quarks, it includes their asymptotic thermal masses m∞.
Therefore, the chemical potential enters through both mD and

F(P ; K) =

P + K

P

M(P,Q,K) = Q

P

P + K

FIG. 7. The graphical operator F adds a pair of propagators
evaluated at the location of the pinching poles. The rung M adds
a soft gauge boson propagator.
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K

P

Iµ(P,K) =

FIG. 8. Bare quark-photon vertex Iμ.

m∞. Recall that

m2
D = g2

(
Nf T 2

6
+ NcT

2

3
+ Nf μ2

2π2

)
, (30)

m2
∞ = g2C2(F )

4

(
T 2 + μ2

π2

)
. (31)

Finally, the contribution of the 2 �→ 3 and 3 �→ 2 processes
to the Wightman correlator (and thus to the photon emissivity)
is given by

W
μν

LPM (K) =
∫

d4P

(2π )4

(p‖ + k)2 + p2
‖

p‖(p‖ + k)
nf (p0 + k0 − μ)

× [1 − nf (p0 − μ)]Iμ(P,K)

× Re[F(P,K)Dν(P,K)]. (32)

V. NUMERICAL CALCULATIONS

Following a method developed by Aurenche et al. [19],
we can solve Eq. (27) numerically by solving the differential
equation in impact parameter space. As in Ref. [20], we
decompose the photon emission rate as follows:

(2π )3 d�

d3k
= A(k)

[
ln(T/m∞) + 1

2
ln(2k/T )

+C2↔2(k/T ) + Cbrem+ann(k/T )

]
, (33)

where

A(k) = 2αEM

(
dF

∑
r=u,d,s

qr
2

)
m2

∞
k

nf (k). (34)

Here, k is the magnitude of the emitted photon’s momentum
and nf is the Fermi-Dirac factor.

Since the 2 ↔ 2 part of the spectrum has been already
calculated [3–6], we only plot νb+a(k) ≡ A(k)Cbrem+ann(k/T )
in Fig. 12. The plots show the contribution of the 2 �→ 3 and
3 �→ 2 processes with the full treatment of the LPM effect.
The temperature of the plasma was taken to be 250 MeV. We
see from Fig. 12 that as the ratio μ/T increases, the photon
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FIG. 9. Combined q and q̄ bremsstrahlung contribution to the
photon emission. The ratio against the μ = 0 case increases with
increasing μ/T .

production rate also increases. This finding is consistent with
the behavior of the 2 ↔ 2 emission rates.

One of the reasons for this enhancement turned out to be just
the statistical factors in Eq. (32). These factors represent three
different processes depending on the sign of p0 and the relative
sizes of |p0| and k0 = k > 0. To illustrate the effect of nonzero
μ in each of the three processes, consider the following ratio
of the statistical factors in Eq. (32) and the same statistical
factors with μ = 0:

r = nf (p0 + k0 − μ)[1 − nf (p0 − μ)]

nf (p0 + k0)[1 − nf (p0)]
. (35)

When p0 > 0, the underlying physical process is the
bremsstrahlung from the quarks. In this case, the ratio is
mostly greater than 1. Hence the rate is enhanced. This
reflects the fact that a positive chemical potential enhances
the number of quarks more than the Pauli-blocking factor
reduces the emission rate. When p0 < 0, [1 − nf (p0 − μ)] =
nf (|p0| + μ) becomes the antiquark phase-space density.
For p0 < 0 and k < |p0|, the factor nf (−|p0| + k − μ) =
1 − nf (|p0| − k + μ) represents the Pauli-blocking factor for
the antiquark bremsstrahlung. In this case, a positive chemical
potential reduces the phase density of antiquarks but enhances
the Pauli-blocking factor. But since Pauli blocking can never
be enhanced above 1, the effect is to reduce the photon
emission rate. The combined effect of quark bremsstrahlung
and antiquark bremsstrahlung is a net enhancement, as shown
in Fig. 9.

For p0 < 0 and k > |p0|, the factor nf (−|p0| + k − μ)
represents the density of quarks that can annihilate with
antiquarks to produce a photon with energy k. In this case r is
always smaller than 1, reflecting the fact that the annihilation
process is necessarily controlled by the lesser number of
antiquarks. In Fig. 10, we show the contribution of the
annihilation process to the photon emission rate for various
values of μ.
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FIG. 10. Pair annihilation contribution. The ratio against the μ =
0 case decreases with increasing μ/T .

Among these three effects, the enhancement of the quark-
bremsstrahlung dominates because it increases much faster
than the reductions in the annihilation contribution and the
antiquark bremsstrahlung. Therefore, overall, the effect of
having μ > 0 is to enhance the photon production at the same
temperature, as shown in Figs. 11 and 12. This trend was also
observed in studies of 2 ↔ 2 processes [4]. In one previous
study of 2 ↔ 2 processes [3], it was found that increasing
the chemical potential decreases photon production. However,
this was for constant energy density instead of constant
temperature.

Phenomenologically, the baryon chemical potential at the
Relativistic Heavy Ion Collider (RHIC) is about 30 MeV and at
the Super Proton Synchrotron (SPS) it is about 240 MeV [21].
The quark chemical potential is therefore about 10 and 80 MeV
for RHIC and SPS, respectively. With T = O(200 MeV), the
enhancement at RHIC is negligibly small and it will be modest
at SPS, no more than 5%.
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FIG. 11. Plots of the ratios νb+a(μ)/νb+a(μ = 0) for 0 � μ � T .
For μ of the order of the temperature T of the plasma, the photon
emission rate increases by about 10% relative to the μ = 0 value.
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FIG. 12. Plots of the ratios νb+a(μ)/νb+a(μ = 0) for 0 � μ �
10T . As μ/T increases, so does the ratio.

VI. CONCLUSION

In this paper, we have explored the effect of nonzero baryon
chemical potential in thermal photon production. Following
the zero chemical potential study [7], we have computed
photon production from non-Abelian plasmas at leading order
by resumming ladder diagrams to fully incorporate the LPM
effect. After a careful analysis, we have found that, as long as
μ � O(T ), the formulation in [7] is still valid with appropriate
changes in the statistical factors, thermal masses, and the
Debye mass. However, when μ = O(T/g), resummation of
ladder diagrams is no longer necessary because thermal masses
become O(T ) instead of O(gT ). Hence, inverse powers of
thermal masses no longer provide enhancements.

Numerically, it is found that the inclusion of a chemical
potential up to μ � T enhances the photon emission rate
moderately, up to 30% when μ = T . This trend is also valid
for hard photons from the 2 ↔ 2 process [4]. Since the quark
chemical potential is relatively small compared to typical
quark-gluon plasma temperatures at RHIC and the Large
Hadron Collider (LHC), we expect a relatively small effect
from a finite μ on thermal photon production at RHIC and the
LHC although it could be significant at SPS energies and also
for the lower energy runs at RHIC.
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APPENDIX A: KUBO-MARTIN-SCHWINGER CONDITION
WITH FINITE μ

In this Appendix, our goal is to prove Eq. (14). This
equation was proven in Ref. [8] for the case of scalar fields.
Their argument exploits the Kubo-Martin-Schwinger (KMS)
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condition to derive a system of equations that allows them to
solve for Grrrr , Grrra , Grrar , Grarr , Garrr , Graar , Grara , and
Grraa in terms of Gaarr , Gaaar , Gaara , Garaa , Graaa , Garra ,
Garar , and their complex conjugates. Their procedure also goes
through for Dirac fermions in the grand canonical ensemble
provided we modify the usual KMS condition to include a
chemical potential.

Consider first the commutation relation between Dirac field
operators and the conserved charge Q̂:

[Q̂, ψ] = −ψ ⇒ eβμQ̂ψ = e−βμψeβμQ̂,
(A1)

[Q̂, ψ̄] = ψ̄ ⇒ eβμQ̂ψ̄ = eβμψ̄eβμQ̂.

For Green’s functions in the 1, 2 basis, these commutation
relations allow us to relate Green’s functions whose 1, 2 index
assignments are opposite each other. Indeed, consider

G2..21..1(x1, . . . , xn)

= 〈T̃ [ψ†(x1) · · ·ψ†(xr )ψ(xr+1) · · · ψ(xm)]

×T [ψ†(xm+1) · · · ψ†(xl)ψ(xl+1) · · · ψ(xn)]〉β,μ. (A2)

Note that the 2 index refers to the space-time points x1, . . . , xm

and the 1 index refers to the points xm+1, . . . , xn. We have also
omitted spinor indices in the above for simplicity. Using the
fact that eβĤ is a time evolution operator in imaginary time
[ψ(t + iβ) = e−βĤ ψ(t)eβĤ ], we obtain

G2..21..1(x1, . . . , xn)

= 〈
T̃

[
eβĤ ψ†(x0

1 + iβ
) · · ·ψ†(x0

r + iβ
)

×ψ
(
x0

r+1 + iβ
) · · ·ψ(

x0
m + iβ

)
e−βĤ

]
×T [ψ†(xm+1) · · · ψ†(xl)ψ(xl+1) · · · ψ(xn)]

〉
β,μ

. (A3)

The operators e±βĤ can be pulled outside of the reversed
time-ordering symbol. Therefore, when writing out the thermal
average explicitly in terms of the density operator e−β(Ĥ−μQ̂),
we obtain

G2..21..1(x1, . . . , xn)

= 1

Z
Tr

{
eβμQ̂T̃

[
ψ†(x0

1 + iβ
) · · · ψ†(x0

r + iβ
)

×ψ
(
x0

r+1 + iβ
) · · · ψ(

x0
m + iβ

)]
×e−βĤ T [ψ†(xm+1) · · · ψ†(xl)ψ(xl+1) · · · ψ(xn)]

}
.

(A4)

We want to commute the operators inside the reverse time-
ordering operator past eβμQ̂ and use the cyclicity of the trace to
take them to the right of the operators inside the time-ordering
symbol. Equation (A1) shows that, in doing this, we pick up
a factor of eβμ when we are commuting a ψ† operator and a
factor of e−βμ for a ψ operator. Let us define the symbol σi

to be equal to 1 if the space-time point xi has a ψ† operator
insertion at it or −1 if it has a ψ insertion. With this notation,
we obtain the following generalization of the KMS boundary

condition to n-point functions:

G2..21..1(x1, . . . , xn)

= 1

Z
e
∑

i|ai=2 σiβμTr
{
e−β(Ĥ−μQ̂)T [ψ†(xm+1) · · · ψ†(xl)

×ψ(xl+1) · · · ψ(xn)]T̃
[
ψ†(x0

1 + iβ
) · · · ψ†(x0

r + iβ
)

×ψ
(
x0

r+1 + iβ
) · · · ψ(

x0
m + iβ

)]}
. (A5)

Finally, we use the well-known formula φ(t + a) = ea∂t φ(t)
to obtain

G2..21..1(x1, . . . , xn)

= e
β

∑
i|ai=2(i∂ti

+σiμ)〈
T [ψ†(xm+1) · · · ψ†(xl)

×ψ(xl+1) · · · ψ(xn)]T̃
[
ψ†(x0

1

) · · · ψ†(x0
r

)
×ψ

(
x0

r+1

) · · · ψ(
x0

m

)]〉
β,μ

. (A6)

We are allowed to take the e
∑

i|ai=2 iβ∂ti operator outside of
the time-ordering symbol provided we take time-ordering to be
given by the T ∗ prescription. That is, the time-ordered n-point
function is defined to be the path integral of the product of the
n operators weighted by the exponential of i times the action.
For a discussion of this prescription, see, for example, [22].

We define the “tilde conjugate” G̃ of a Green’s function G to
have the same 1, 2 index assignment but with the time-ordering
symbols reversed. Therefore, we can express our previous
result as

G2..21..1(x1, . . . , xn) = e
β

∑
i|ai=2(i∂ti

+σiμ)
G̃1..12..2(x1, . . . , xn).

(A7)

Wang and Heinz [8] use the fact that, in momentum space,
tilde conjugation is equivalent to complex conjugation. As this
is a key fact, we proceed to extend it to fermion fields at finite
chemical potential. For notational simplicity, we will focus on
the case where there are four fermion operators, two of which
bear “1” indices and the other two of which bear “2” indices.
Although this is not necessary for this discussion, we have also
included the γ matrices which appear in the current-current
correlator (11). Extensions to other cases should be obvious:

G2211(Q1,Q2,Q3,Q4)

=
∫ 4∏

i=1

d4xi eiQi ·xi 〈T̃ [ψ̄(x1)γ μψ(x2)]

× T [ψ̄(x3)γ νψ(x4)]〉β,μ. (A8)

Taking a complex conjugation and changing xi → −xi , we
obtain

G∗
2211(Q1,Q2,Q3,Q4)

=
∫ 4∏

i=1

d4xi eiQi ·xi 〈T [ψ̄(−x4)γ νψ(−x3)]

× T̃ [ψ̄(−x2)γ μψ(−x1)]〉β,μ. (A9)

Next, we make use of CPT invariance. Recall that the Dirac
bilinear ψ̄γ μψ transforms as follows under the anti-unitary
CPT transformation �:

�ψ̄(x)γ μψ(y)�−1 = −ψ̄(−y)γ μψ(−x). (A10)
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Then, by using anti-unitarity, thermal expectations of a product of fields can be related as follows:

〈T [ψ̄(−x4)γ νψ(−x3)]T̃ [ψ̄(−x2)γ μψ(−x1)]〉∗β,μ

= 1

Z

∑
n

〈n|e−β(Ĥ−μQ̂)T [ψ̄(−x4)γ νψ(−x3)]T̃ [ψ̄(−x2)γ μψ(−x1)]|n〉∗

= 1

Z

∑
n

〈�n|�e−β(Ĥ−μQ̂)T [ψ̄(−x4)γ νψ(−x3)]T̃ [ψ̄(−x2)γ μψ(−x1)]�−1|�n〉

= 1

Z

∑
n′

〈n′|e−β(Ĥ+μQ̂)T [�ψ̄(−x4)γ νψ(−x3)�−1]T̃ [�ψ̄(−x2)γ μψ(−x1)�−1]|n′〉

= 1

Z

∑
n′

〈n′|e−β(Ĥ+μQ̂)T [ψ̄(x3)γ νψ(x4)]T̃ [ψ̄(x1)γ μψ(x2)]|n′〉

= 〈T [ψ̄(x3)γ νψ(x4)]T̃ [ψ̄(x1)γ μψ(x2)]〉β,−μ. (A11)

We have used CPT invariance in commuting � past e−βĤ and relabeling the eigenstates |n′〉 = �|n〉. Further, note that the sign
of μ changes as we commute � past eβμQ̂. Combining the above with our previous result, we obtain

G∗
2211(Q1,Q2,Q3,Q4) =

∫ 4∏
i=1

d4xi eiQi ·xi 〈T [ψ̄(−x4)γ νψ(−x3)]T̃ [ψ̄(−x2)γ μψ(−x1)]〉β,μ

=
∫ 4∏

i=1

d4xi eiQi ·xi 〈T [ψ̄(x2)γ μψ(x1)]T̃ [ψ̄(x4)γ νψ(x3)]〉β,−μ

= ˜̄G2211(Q1,Q2,Q3,Q4), (A12)

where Ḡ denotes the charge conjugate (ψ̄ ↔ ψ) of G.
Recapitulating, we have the two equations

G2..21..1(K1, . . . , Kn) = e
β

∑
i|ai=2(k0

i +σiμ)
G̃∗

2..21..1(K1, . . . , Kn),

G̃2..21..1(K1, . . . , Kn) = Ḡ∗
2..21..1(K1, . . . , Kn). (A13)

The above can be taken as the starting point to reproduce
the derivation of Heinz and Wang. However, the latter also
uses the energy conservation condition

∑
i k

0
i = 0 and the

identity nb(k0
i ) + nb(−k0

i ) = −1. In order for the derivation
of Heinz and Wang to proceed in the same manner, we need
suitable generalizations of these to treat fermions at finite
chemical potential. By charge conservation, we must have that∑n

i=1 σi = 0 – In other words, the Green’s function in question
must have an equal number of ψ† and ψ insertions to not
vanish. Therefore, we can define k̃0

i ≡ k0
i + σiμ and maintain

“energy conservation”
∑n

i=1 k̃0
i = 0. Also, by performing the

customary replacement nb(k0
i ) �→ −nf (k̃0

i ), we preserve the
relation nb(k0

i ) + nb(−k0
i ) = −1 since nf (E) + nf (−E) = 1

in general.
The only relations among the k0

i ’s that Heinz and Wang
use is energy conservation, and the only property of the
Bose-Einstein distributions they use is nb(k0

i ) + nb(−k0
i ) =

−1. This is because, after they have used the KMS condition
like we have done above, their work consists of algebraic
manipulations such as solving large systems of equations
involving the Bose-Einstein distribution. In their work, it is
possible to treat G and G∗ as independent variables rather

than considering the real and imaginary parts of G. Hence,
it causes no harm to their derivation to replace G∗ by Ḡ∗ as
is required by (A13). We conclude that we could in principle
perform the exact same manipulations as Heinz and Wang
by relabeling every nb(k0

i ) as −nf (k̃0
i ). The net result is that

we make the same replacements in their final results, bearing
in mind that ψ† insertions come with a −nf (k0 + μ) and ψ

insertions come with −nf (k0 − μ).
Heinz and Wang [8] obtain

α1 = nb

(
q0

1

)
nb

(
q0

2

)
(A14)

and

β1 = −[
1 + nb

(
q0

3

)][
1 + nb

(
q0

4

)]1 + nb

(
q0

1

) + nb

(
q0

2

)
1 + nb

(
q0

3

) + nb

(
q0

4

) .

(A15)

By making the replacements we have prescribed above, we get

α1 = nf

(
q0

1 + μ
)
nf

(
q0

2 − μ
)

(A16)

and

β1 = −[
1 − nf

(
q0

3 + μ
)][

1 − nf

(
q0

4 − μ
)]

× 1 − nf

(
q0

1 + μ
) − nf

(
q0

2 − μ
)

1 − nf

(
q0

3 + μ
) − nf

(
q0

4 − μ
) (A17)

as required.
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APPENDIX B: A SIMPLE IDENTITY INVOLVING CHARGE CONJUGATES

In this Appendix, we want to show that Ḡaarr (K1,K2,K3,K4) = Gaarr (K1,K2,K3,K4). It is sufficient to prove the
corresponding identity in position space:

Gaarr (x1, x2, x3, x4) ≡ 〈TC[ψ̄a(x1)ψa(x2)ψ̄r (x3)ψr (x4)]〉β,μ

⇒ Ḡaarr (x1, x2, x3, x4)

= 〈TC[ψ̄a(x2)ψa(x1)ψ̄r (x4)ψr (x3)]〉β,−μ

= 1

Z

∑
n

〈n|e−β(Ĥ+μQ̂)TC[ψ̄a(x2)ψa(x1)ψ̄r (x4)ψr (x3)]|n〉

= 1

Z

∑
n

〈Cn|Ce−β(Ĥ+μQ̂)TC[ψ̄a(x2)ψa(x1)ψ̄r (x4)ψr (x3)]C†|Cn〉

= 1

Z

∑
n′

〈n′|e−β(Ĥ−μQ̂)CTC[ψ̄a(x2)ψa(x1)ψ̄r (x4)ψr (x3)]C†|n′〉

= 1

Z

∑
n′

〈n′|e−β(Ĥ−μQ̂)TC[Cψ̄a(x2)ψa(x1)C†Cψ̄r (x4)ψr (x3)C†]|n′〉

= 1

Z

∑
n′

〈n′|e−β(Ĥ−μQ̂)TC[ψ̄a(x1)ψa(x2)ψ̄r (x3)ψr (x4)]|n′〉

= Gaarr (x1, x2, x3, x4).

APPENDIX C: COMPUTATION OF SELF-ENERGIES AT
FINITE CHEMICAL POTENTIALS

In this Appendix, we closely follow the zero-μ analysis
in [23] to compute self-energies in the hard thermal loop
approximation with a finite chemical potential.

Consider first the gluon self-energy �ab
μν . The color struc-

ture of this tensor is trivial, so that �ab
μν = δab�μν . We have

four diagrams to consider: the quark loop, the gluon loop, the
gluon tadpole, and the gluon ghost. Only the quark loop is
affected by the presence of a chemical potential and hence we
make it the focus of our attention. With all momenta labeled,
this diagram is shown in Fig. 13.

Our strategy is to evaluate this diagram in imaginary time,
invert it to get the gluon propagator, and then analytically
continue the result to retarded frequencies to get the real-time
ra propagator from which all other propagators in the r, a basis

P

K

Q = K − P

FIG. 13. The quark loop is the only contribution to the gluon
self-energy that is affected by the finite chemical potential μ.

may be obtained. Proceeding, we first get

�μν(PE)

= g2Tr(T aT a)
∫

{dKE} Tr
[
γμS

′(μ)
F (KE)γνS

′(μ)
F (QE)

]
.

(C1)

In the above, the integration measure is {dKE} =
T

∑∞
r=−∞

∫
(dk), where (dk) = d3k

(2π)3 is the spatial momentum
integration measure. Since we have factored out the color
structure of the gluon self-energy, there is no sum over a in
the Tr(T aT a) factor. Further, KE = (iωr, k) is the fermionic
loop momentum and QE = KE − PE = (iωr − iωn, k − p)
is the difference between the momentum of the gluon [PE =
(iωn, p)] and the virtual quark. The frequency iωn = 2πnT is
bosonic, and the frequency iωr = 2π (r + 1

2 )T is fermionic.
The color matrices T a are the generators of SU(3) in the
fundamental representation. In this representation, the group
factor Tr(T aT a) is simply 1

2 . S
′(μ)
F denotes the fermion propa-

gator time evolved using the “thermodynamics Hamiltonian”
Ĥ − μQ̂ since this is what satisfies the periodic boundary
condition (see Appendix A for KMS conditions at finite μ).

The cleanest way to compute the above is to use the spectral
representation

S
′(μ)
F (iωr , k) =

∫ β

0
dτ eiωr τ

∫ ∞

−∞

dk0

2π
[1 − nf (k0 − μ)]

× /Ke−τ (k0−μ)ρ0(K). (C2)

Indeed, this expansion of the propagator makes the frequency
sum trivial. After performing the spin trace and employing
standard identities involving the Fermi-Dirac distribution, we
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obtain

�(a)
μν(iωn, p) = 2g2Nf

∫
(dk)

∫
dk0

2π

∫
dq0

2π
ρ0(K)ρ0(Q)

× (KμQν + QμKν − gμνK · Q)
nf (k0 − μ) − nf (q0 − μ)

k0 − q0 − iωn

. (C3)

For the spatial component of the self-energy tensor, the result is

�ij (iω, p) = 2g2Nf

∫
(dk)

1

4EkEq

[
[kiqj + qikj + δij (EkEq − k · q)]

×
(

nf (Ek + μ) − nf (Eq + μ)

iω + Ek − Eq
− nf (Ek − μ) − nf (Eq − μ)

iω − Ek + Eq

)
+ [kiqj + qikj − δij (EkEq + k · q)]

×
(

1 − nf (Ek + μ) − nf (Eq − μ)

iω + Ek + Eq
− 1 − nf (Eq + μ) − nf (Ek − μ)

iω − Ek − Eq

)]
(C4)

where we have used ρ0(K) = π
Ek

[δ(k0 − k) − δ(k0 + k)]. The
above expression holds for arbitrary external momenta. Hence-
forth, we only consider the hard thermal loop approximation
so that p � k after the analytic continuation iω �→ p0 + iε

has been performed. It turns out that the self-energies in the
hard thermal loop approximation are also valid for arbitrary
external momenta P at the one-loop order [16,17]. Hence, we
will freely use our results as the self-energies of the gluons
and quarks when estimating the size of their propagators.

Using the fact that p � k, we obtain

�ij (p0, p) = −g2Nf

∫
(dk)

[
vivj

v · p
p0 − v · p + iε

× d

dk
[nf (k − μ) + nf (k + μ)]

+ (vivj − δij )
1

k
[nf (k − μ) + nf (k + μ)]

]
,

(C5)

where v = k/|k|. After an integration by parts and an applica-
tion of the result∫ ∞

0
(dk)k

(
1

eβ(k+μ) + 1
+ 1

eβ(k−μ) + 1

)
= π2T 2

6
+ μ2

2
(C6)

we get

�ij (p0, p) = −g2Nf

(
μ2

2
+ π2T 2

6

) ∫
d�

8π3

×
[
vivj − δij − 2(vivj )

v · p
p0 − v · p + iε

]
.

(C7)

By symmetry, we have
∫

d�vivj = 1
3

∫
d�δij . Thus, we fi-

nally obtain the hard thermal loop part of the gluon polarization
tensor:

�ij (P ) = g2Nf

(
μ2

2
+ π2T 2

6

) ∫
d�

4π3

p0vivj

p0 − v · p + iε
.

(C8)

By going through the same analysis, we can evaluate the
other components of the gluon polarization tensor. If we
include the contributions of the three other loops, we finally
have

�μν(P ) = m2
D

(
−δ

μ

0 δν
0 +

∫
d�

4π

p0vμvν

p0 − v · p + iε

)
, (C9)

where, in the above, m2
D = g2(Nf T 2

6 + NcT
2

3 + Nf μ2

2π2 ) is the
Debye mass and vμ = (1, v).

The contribution of the quark loop to the gluon self-energy
corresponds to the screening of the strong interaction by quarks
in the medium. It is therefore natural to expect that the chemical
potential of the quarks will have an influence on the repeated
scattering events that occur during the photon emission
process. The chemical potential also appears explicitly in the
quark propagator and thus affects the thermal mass of the
quarks. This will affect the integral equation that we will derive
for photon production, so we turn to computing the self-energy
of the quarks. The relevant diagram is shown in Fig. 14.

The expression corresponding to the diagram in Fig. 14 is

�(PE) = g2T aT a

∫
{dQE}γμS

′μ
F (PE − QE)γνG

μν(QE).

(C10)

In the above,
∫ {dQE} ≡ T

∑∞
n=−∞

∫
(dq) denotes a sum over

bosonic frequencies followed by an integration over the spatial
part of Q. As usual, T aT a = C2(F )1 = 4

3 1, where 1 is the

P K

Q

FIG. 14. The chemical potential appears explicitly in the quark
propagators, whence we need to resum the self-energy of the quark.
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identity matrix in SU(3). In the Coulomb gauge, we find

�(iωn, p)

= −g2C2(F )
∫

{dQ}
[
γ0S

′(μ)
F (KE)γ0

×
(

− 1

q2
+

∫
dq0

2π

ρL(q0, q)

q0 − iωn

)

+ γiS
′(μ)
F (KE)γj (δij − q̂i q̂j )

(∫
dq0

2π

ρT (q0, q)

q0 − iωn

)]
,

(C11)

where we have used the spectral representation of the lon-
gitudinal and transverse parts of the Coulomb gauge gluon
propagator following [23]. Here q̂i = qi/q. The above shows
explicitly that we have three contributions to the quark self-
energy: �(P ) = �C(P ) + �L(P ) + �T (P ).

The term �C(P ) is the contribution of the 1/q2 term in the
longitudinal piece of the gluon propagator. This corresponds
to the instantaneous Coulomb interaction term. Explicitly, it
takes the form

�C(PE) = g2C2(F )
∫

{dQE} 1

q2
γ0S

′(μ)
F (KE)γ0. (C12)

Once again, using the spectral representation of the fermion
propagator, we obtain

�C(P ) = −g2C2(F )
∫

(dq)
1

q2

∫ ∞

−∞

dk0

2π

× [1 − nf (q0 − μ)]ρ0(K)γ0 /Kγ0. (C13)

This has no term proportional to g2T 2. Thus, we will not
pursue its computation any further, but we will rather focus
on the transverse part. As for the longitudinal part, ρL = 0
at tree level, so that it gives a vanishing contribution. This is
not true for dressed propagators, and, in particular, ρL does
contribute to the quark damping rate. After employing the
spectral representation of the fermionic propagators, we obtain
for the transverse self-energy

�T (PE) = −g2C2(F )
∫

(dq)
∫

dk0

2π

∫
dq0

2π

× (δij − q̂i q̂j )(γ i /Kγ j )ρ0(K)ρT (q0, q)

×1 + nb(q0) − nf (k0 − μ)

k0 + q0 − (iωr + μ)
. (C14)

Retarded boundary conditions are obtained from the above
by taking the analytic continuation iωr + μ �→ p0 + iε. Sim-
plifying the Dirac structure and applying the hard thermal
loop approximation as in the gluon self-energy calculation, we
get

�T (P ) = g2C2(F )

8

(
T 2 + μ2

π2

) ∫
d�

4π

/v

p0 − v · p + iε

(C15)

with vμ = (1, v).
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