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The decay of the hot and rotating compound nucleus 241Pu∗ formed in the reaction 9Be + 232Th around
the Coulomb barrier (≈42.16 MeV), at energies ranging from 37 to 48 MeV, is studied using the dynamical
cluster-decay model (DCM) with the effects of static and dynamic deformations included. With the inclusion
of dynamical deformations both the preformation probability P0 and the tunneling probability P , and hence the
cross sections, change considerably. The only parameter of the model, namely, the neck-length parameter, varies
smoothly with excitation energy or temperature of the system both at above- and below-barrier energies, whose
value depends strongly on the limiting angular momentum, which in turn depends on the sticking and nonsticking
moments of inertia. The relative effect of static and dynamic deformations on the neck-length parameter �R

is also studied which indicates the reaction time scale for both static and dynamic choices of deformation. In
addition, the exclusive role of angular momentum and “barrier modification” effects at sub-barrier energies
are also addressed. Although calculated anisotropies are consistent with the results of Appannababu et al.
[Phys. Rev. C 83, 067601 (2011)], no significant contribution of a noncompound nucleus in the form of incomplete
fusion is seen on the basis of DCM calculations.
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I. INTRODUCTION

Fusion reactions induced by weakly bound projectiles have
contributed immensely in the development and understanding
of nuclear reaction dynamics in recent years. These reactions
are sensitive not only to the entrance channel of interacting
heavy ions forming the compound nucleus but also to the
other aspects of the intermediate composite as it equilibrates
in energy, mass, angular momentum, and orientation degrees
of freedom. The entrance channel properties of the reacting
systems such as target deformation, entrance channel Coulomb
repulsion, and in particular mass-asymmetry play a major
role in compound-nucleus-based nuclear reaction dynamics
as well as for non-compound-nucleus processes such as
quasifission (QF), incomplete fusion (ICF), deep inelastic
collision (DIC), etc. It is well known that the entrance channel
mass asymmetry η [=(AT − AP )/(AT + AP ), where AT and
AP are the target and projectile mass, respectively] with respect
to the Businaro-Gallone critical mass asymmetry αBG plays
an important role in the reaction dynamics [1,2]. Several
measurements involving reactions with lighter projectiles such
as 6,7Li, 9Be, 10,11B, and 12C on deformed actinide targets
have shown that the anisotropies exceed the standard statistical
saddle-point model (SSPM) predictions by large amounts, at
sub-barrier energies. This anomalous behavior of the fragment
anisotropies has been a subject of extensive investigations
both experimentally and theoretically in the recent past. It was
reported in Ref. [3] that anomalous fragment anisotropies in
case of highly fissile target nuclei arise due to an admixture of
compound-nucleus (CN) fission along with non-compound-
nucleus (nCN) fission events in the form of QF, ICF, or
DIC. Various models such as the pre-equilibrium fission
model of Ramamurthy and Kapoor [3,4] and entrance-channel-
dependent (ECD) K-state model by Vorkapic and Ivanisevic [5]

were proposed to explain the anomalous fission fragment
angular distribution for the systems having contribution from
non-compound-nucleus fission. A systematic study [6] on the
behavior of the stable weakly bound projectiles 6,7Li and 9Be
on heavy targets such as 208Pb and 209Bi was made and it was
observed that complete fusion (CF) is suppressed by around
30%. This fusion suppression was observed to be associated
with the presence of ICF.

Recently, a 9Be beam has been used and fission fragment
anisotropies, together with fission excitation functions, have
been measured for the compound nucleus 241Pu∗ formed by
the 9Be + 232Th reaction over a wide range of energies spread
around the Coulomb barrier [7]. As expected, σfiss for the
highly fissile 241Pu∗ is the major contributor to the total
decay cross sections and the contribution from the evaporation
residue (ER) cross section σER is not measured in [7].
Comparison of anisotropy data for the CN 241Pu∗ is in good
accord with the predictions of SSPM at above-barrier energies
but show significant deviations for energies below the barrier.
The higher anisotropy observed for the 9Be + 232Th reaction
cannot be explained in terms of other reaction mechanisms
such as quasifission since it takes place for more symmetric
systems and usually for projectiles heavier than A = 20 [8].
Also for this system η > αBG, and therefore deviation of the
fission fragment angular distribution from statistical theory is
not expected on the basis of the pre-equilibrium fission model
[3,4]. Thus, the noted deviation in the measured anisotropy
data from SSPM predictions seems to be associated with the
possible breakup of the loosely bound 9Be projectile nucleus
as suggested in Ref. [7].

In the present work we have applied the dynamical cluster-
decay model (DCM) of Gupta and collaborators [9–22] to
study the decay of the odd compound system 241Pu∗ (αBG =
0.882) formed in the 9Be + 232Th (η = 0.925) reaction [7].
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The projectile, the target, and the compound nucleus formed
are all strongly deformed so the role of deformation and
orientation effects is expected to be important in the context
of the present study. The calculations are performed for
deformed fragments using quadrupole (β2) deformations
having “optimum” orientations θopt taken from Table I of
Ref. [23] and the higher multipole deformations (β2-β4)
having “compact” orientations θc of hot configurations [24].
In addition, the possible fragmentation path in reference
to temperature-dependent (dynamic) deformations [25,26]
is also worked out in the framework of DCM to analyze
the possible role of temperature-dependent deformations in
the reaction under consideration. The dynamic deformations
disappear exponentially as a function of temperature. This
means that with the increase in temperature (T ), the effect
of dynamic deformations decreases and approaches zero at
higher temperature. It is observed that with the inclusion of
temperature-dependent (dynamic) deformations of the decay-
ing fragments, the potential energy surface (PES) changes
quite significantly and as a result the relative preformation
probabilities P0 for all fragments gets modified accordingly.
Also the scattering potential (corresponding barrier position,
height, and frequency) is modified with the inclusion of
temperature-dependent deformations of outgoing fragments,
thereby affecting the tunneling probability P through the
barrier.

In this paper we use the data of Ref. [7] to fix the only
parameter of DCM, the “neck-length parameter” �R. For
deformations up to β2 (quadrupole), the fission distribution
remains asymmetric for both static and dynamic deformation
cases, whereas a small contribution of symmetric fission is also
observed when higher order static deformation effects up to β4

(hexadecapole) are included. The calculated fission-fragment
anisotropies are found to be consistent with the SSPM and pre-
equilibrium fission (PEQ) model predictions at above-barrier
energies, but calculations fail to reproduce the same at near-
and below-barrier energies, in agreement with [7]. The main
aim of this paper is (i) to study the role of static and dynamic
deformations in the decay of 241Pu∗ using the DCM at both
below- and above-barrier energies; (ii) to identify the time
scale at which fission fragments are emitted for static and
dynamic choice of deformations; (iii) to investigate the barrier
modification effect, particularly in the below-barrier region,
as such an effect is known to be important for resolving the
issue of fusion hindrance in coupled channel calculations;
(iv) to investigate fission anisotropies in the context of the
9Be + 232Th reaction; and (v) to explore the possibility of an
nCN competing channel, if any, on the basis of the DCM. This
information is expected to impart important information for
overall understanding of fusion-fission dynamics involved in
weakly bound reactions.

The organization of the paper is as follows: A brief account
of the DCM for a hot and rotating compound nucleus, with
effects of deformations and orientations of the two nuclei or
fragments included, is presented in Sec. II. The results of our
calculations for both the fission excitation functions and the
fission fragment anisotropies are discussed in Sec. III. Finally,
the results are summarized in Sec. IV.

II. THE DYNAMICAL CLUSTER-DECAY MODEL

The DCM [9–22], an adaptation of the preformed-cluster
model for ground-state decays [27–29], is based on dynamical
(or quantum-mechanical) fragmentation theory. It is worked
out in terms of the collective coordinates of mass and charge
asymmetries

η = A1 − A2

A1 + A2
and ηZ = Z1 − Z2

Z1 + Z2
,

the relative separation R, multipole deformations βλi (λ =
2, 3, 4, . . . ; i = 1, 2), and orientations θi (i = 1, 2) of two
nuclei or fragments. Here 1 and 2 stand, respectively, for heavy
and light fragments. For the decay of a compound nucleus, the
coordinates η and R refer, respectively, to nucleon division (or
nucleon exchange) between the outgoing fragments and the
transfer of kinetic energy of the incident channel (Ec.m.) to
the internal excitation of the outgoing channel. By using these
coordinates, in terms of the 	 partial waves, the compound
nucleus decay or the fragment formation cross section is given
by

σ =
	max∑
	=0

σ	 = π

k2

	max∑
	=0

(2	 + 1)P0P, k =
√

2μEc.m.

h̄2 , (1)

where the preformation probability P0 refers to η motion and
the penetrability P to R motion. μ = [A1A2/(A1 + A2)]m =
1
4Am(1 − η2) is the reduced mass with m as the nucleon
mass. 	max is that value of angular momentum at which the
preformation factor for light particles becomes negligibly
small. Both P0 and P depend on 	, T , βλi , and θi of the
two nuclei.

The preformation probability P0(Ai) = √
Bηη|ψ[η(Ai)]|2

(2/A), i = 1 or 2, is the solution of the stationary Schrödinger
equation in η, at fixed R = Ra , the first turning point of the
penetration path shown in Fig. 1 of Ref. [13]. Thus P0 contains
the structure information of the compound nucleus that enters
via the fragmentation potential

VR(η, T )

=
2∑

i=1

[VLDM(Ai, Zi, T )] +
2∑

i=1

[δUi] exp
(−T 2/T 2

0

)
+VC(R,Zi, βλi, θi, T ) + VP (R,Ai, βλi, θi, T )

+V	(R,Ai, βλi, θi, T ). (2)

Here VP , VC , and V	 are the temperature-dependent nuclear
proximity, Coulomb, and angular-momentum-dependent po-
tentials, respectively, for deformed and oriented nuclei. VLDM

is the T -dependent liquid drop energy of Davidson et al.
[30], with its constants at T = 0 refitted [31] to give recent
experimental binding energies [32], and δU , the “empirical”
shell corrections, from Myers and Swiatecki [33], approaches
zero exponentially with T . T0 = 1.5 MeV from the classical
work of Jensen and Damgaard [34], which means that the shell
correction term becomes nearly zero for T > 4 MeV. Note that
the highest temperature is 1.27 MeV in reference to available
data, and hence the shell correction effects seem important. It
is to be noted that so far we have used static deformations βλi

034613-2



DECAY OF 241Pu∗ FORMED IN 9Be + . . . PHYSICAL REVIEW C 86, 034613 (2012)

(λ = 2, 3, 4) taken from the theoretical estimates of Möller
et al. [35] in the framework of the DCM. However, in general,
static deformation of the nucleus has its origin in shell effects
and at high excitation energies the shell effects vanish and
thus static deformation should approach zero [25,26,34]. So
in order to simulate this effect the deformation parameter βi

is taken to be temperature dependent in the DCM by using the
relation [25,26]

βλi(T ) = exp(−T/T0)βλi(0), i = 1, 2, (3)

where βλi(0) is the static deformation and T0 is the temperature
of the nucleus at which shell effects start to vanish (T0 =
1.5 MeV) [25]. Thus the choice of temperature-dependent
deformation parameter is consistent with static deformation
when the temperature approaches zero, i.e., T → 0. The mass
parameters Bηη(η) entering the P0 calculation are taken as
the smooth classical hydrodynamical masses [36], used for
reasons of simplicity. The T -dependent nuclear proximity for
deformed, oriented nuclei [37] is given by

Vp(s0(T )) = 4πR̄(T )γ b(T )�(s0(T )), (4)

where b(T ) = 0.99(1 + 0.009T 2) is the nuclear surface thick-
ness, γ = 0.9517[1 − 1.7826(N−Z

A
)2] MeV fm−2 is the sur-

face energy constant, and R(T ) is the mean curvature radius.
� in Eq. (4) is a universal function; it is independent of the
shapes of the nuclei or the geometry of the nuclear system,
but it depends on the minimum separation distance s0(T ) (for
details see Ref. [37]).

The Coulomb potential for a multipole-multipole interac-
tion between two separated nuclei is given by

VC(R,Ai, βλi, θi, T ) = Z1Z2e
2/R(T ) + 3Z1Z2e

2

×
∑

λ,i=1,2

Rλ
i (αi, T )

(2λ + 1)R(T )λ+1
Y

(0)
λ (θi)

×
{
βλi + 4

7

[
β2

λiY
(0)
λ (θi)

]}
, (5)

and the centrifugal potential is

V	(R,Ai, βλi, θi, T ) = h̄2	(	 + 1)

2I (T )
, (6)

with I = IS = μR2 + 2
5A1mR2

1(α1, T ) + 2
5A2mR2

2(α2, T ),
the moment of inertia in the sticking limit, or, alternatively,
the one calculated in the nonsticking limit I = INS = μR2.

The penetrability P in Eq. (1) is the WKB integral

P = exp

(
−2

h̄

∫ Rb

Ra

{2μ[V (R) − Qeff]}1/2dR

)
, (7)

with Rb as the second turning point satisfying V (Ra, 	) =
V (Rb, 	) = Qeff(T , 	) = T KE(T ). The first turning point Ra ,
taken to be the same for all 	 values, is defined as

Ra = R1(α1, T ) + R2(α2, T ) + �R(T )

= Rt (α, T ) + �R(T ), (8)

with the radius vectors (i = 1, 2)

Ri(αi, T ) = R0i(T )

[
1 +

∑
λ

βλiY
(0)
λ (αi)

]
, (9)

where the temperature-dependent nuclear radii R0i(T ) are
taken from the work of [38] and are given by

R0i(T ) = [
1.28A

1/3
i − 0.76 + 0.8A

−1/3
i

]
(1 + 0.0007T 2).

(10)

T (in MeV) is calculated from Ec.m. and the incoming Q

value, since the CN excitation energy E∗ = Ec.m. + Qin =
(ACN/a)T 2 − T with the level density parameter a = 9–11,
depending on the mass ACN of the compound nucleus. In the
present calculations, we have taken a = 9.

�R(T ) in Eq. (8) is the neck-length parameter that
assimilates the neck formation effects between two nuclei
and is similar to that used in both the scission-point [39] and
saddle-point [40,41] statistical fission models. The choice of
parameter Ra (equivalently, �R) for the best fit to the data
corresponds to the effects of “barrier lowering” in it for each
decay channel, defined for each 	 as the difference between V 	

B

and V 	(Ra), the barrier height and the actually used barrier, as

�V 	
B = V 	(Ra) − V 	

B. (11)

Finally, the dependence of anisotropy on different quantities
can also be explored through the DCM within the SSPM
approach [42],

A = 1 + 〈	2〉/4K2
0 , (12)

where K2
0 is the variance of the K distribution and 〈	2〉 is

the mean square angular momentum of the fissioning nucleus
related to the total 	 value (equivalently, 	max of the compound
nucleus). Here, K2

0 is related to the effective moment of
inertia of the compound nucleus, Ieff , and the saddle-point
temperature T by

K2
0 = T × Ieff/h̄

2.

Ieff is calculated by using the finite-range rotating liquid
drop model [43] with T being the temperature of the
fissioning nucleus. The value of 	max depends on the use
of IS or INS in the centrifugal potential explained in
Eq. (6).

The preference of IS over INS in the calculations of
fission cross section is discussed through the variation of the
centrifugal potential in Fig. 1 calculated at a fixed 	 value for
the decay of 241Pu∗ → 232Th + 9Be using static deformations
(β2i alone) having the “optimum” hot orientations of Ref. [23].
It is observed that there is large difference in the magnitude
of the centrifugal potential within the range of the reaction
dynamics (i.e., ∼8 to 14 fm). The INS approximation gives a
large centrifugal potential as compared to IS at the same R.
Since we are using a proximity interaction in our model the
use of IS is justified as the structure effects due to proximity
forces are more visible for the sticking moment of inertia. It
may be noted that the use of INS in the centrifugal potential
weakens the nuclear proximity interaction (attractive) and
hence a V	(IS) with a relatively lower magnitude is preferred.
On the other hand, the fission anisotropies are calculated by
using an Ieff based on the finite-range liquid drop model [43]
and proximity forces are not involved in these calculations, so
the use of the INS limit is more appropriate.

034613-3



GUDVEEN SAWHNEY, RAJ KUMAR, AND MANOJ K. SHARMA PHYSICAL REVIEW C 86, 034613 (2012)

FIG. 1. The variation of centrifugal potential V	 with two choices
of sticking IS and nonsticking INS limits of moment of inertia
for the 241Pu∗ → 232Th + 9Be reaction calculated at the highest
Ec.m. = 47.76 MeV for 	 = 21h̄.

III. CALCULATIONS AND DISCUSSION

In this section, we study the characteristics of decay barrier
height, potential energy surfaces, preformation probability,
penetrability, and barrier-lowering effect using the DCM, for
both static and dynamic deformations in the decay of the
compound nucleus 241Pu∗ formed in the 9Be + 232Th reaction.
The angular momentum dependence of the above-mentioned
variables is studied to get fission excitation functions to be
compared with experimental data [7]. These calculations are
performed for the sticking moment of inertia IS , which is
found to be more appropriate for obtaining the fission cross
sections which involve a comparatively larger limiting 	max

value, whereas the nonsticking moment of inertia INS is found
more appropriate for anisotropy calculations [14].

The scattering potentials in Fig. 2, at fixed T = 1.27 MeV
(equivalently, Ec.m. = 47.76 MeV) for 	 = 0 and 	max cases,
show that the barrier position as well as barrier height
get modified with the inclusion of deformation and orien-
tation degree of freedom, thereby affecting the tunneling
probability. Solid lines are for spherical shapes, and dashed
and dotted lines are with static and dynamic choices of
quadrupole deformation parameter β2 alone. Note that the
calculated compound-nucleus-decay cross section in the DCM
depends on penetrability P as given by Eq. (1), and hence
on the deformations and orientations of nuclei. Similarly,
the fact that the orientation degree of freedom θ modifies
the barrier strongly is illustrated in Fig. 3 for the 	 = 0
case.

In order to see the relative effect of static and dynamic
deformations, we have plotted the (decay) barrier height VB as
a function of light fragment mass A2 for the decay of 241Pu∗
formed in the 9Be + 232Th reaction at two different 	 values

FIG. 2. The scattering potential V (R) for the decay of 241Pu∗ →
232Th + 9Be at Ec.m. = 47.76 MeV calculated at 	 = 0 and 	max with
both fragments taken with static and dynamic considerations up to
β2i alone having the “optimum” hot orientations θ

opt
i of Table I in

Ref. [23].

in Fig. 4, with deformation effects included up to quadrupole
deformation β2 alone. It is clearly evident that the decay barrier
height (VB) increases as a function of fragment mass, inde-
pendent of static and dynamic deformations. This behavior is
similar to that observed for the static deformations in the decay
of the heavy compound systems 215Fr∗ and 204Po∗ [14,19]. The

FIG. 3. Scattering potential V (R) for the 241Pu∗ → 232Th + 9Be
reaction at various illustrative orientations for the case of static
multipole deformations included up to hexadecapole at 	 = 0.

034613-4



DECAY OF 241Pu∗ FORMED IN 9Be + . . . PHYSICAL REVIEW C 86, 034613 (2012)

FIG. 4. The barrier height VB as a function of light fragment
mass (A2), for the decay of 241Pu∗ formed in the 9Be + 232Th reaction,
calculated at two different 	 values for both static and dynamic choices
of deformation up to quadrupole (β2) alone.

VB distribution for the fission window with fragments A2 =
100–113, chosen to fit the respective experimental data [7], is
more pronounced at both 	= 0 and 	= 100h̄ values, as shown
in the inset of Fig. 4. One can clearly see that VB decreases,
and hence the decay probability increases, with the inclusion

of dynamical deformations in the decay of 241Pu∗. In other
words, the decay barrier height is strongly influenced with
the inclusion of static and dynamic deformations for a heavy
nuclear system having fission as its prominent decay channel.
Therefore a comprehensive study of static and dynamic defor-
mations in the fragmentation process of a nuclear system may
impart useful information in the context of nuclear reaction
dynamics.

Figure 5 shows the fragmentation potential V (A), mini-
mized in mass coordinate ηA, at the two extreme 	 values
plotted on either side of the Coulomb barrier (Ec.m. =
37.13 MeV and Ec.m. = 47.76 MeV), for the 9Be + 232Th
reaction. Here we have plotted the cases of static and dynamic
deformations up to quadrupole deformation β2 alone [panels
(a) and (b)], as well as for higher multipole deformations up to
hexadecapole (β2-β4) [panels (c) and (d)]. These calculations
are made for different neck-length parameters �R, chosen to
fit the experimental data on fission cross sections.

We notice the following interesting results in Fig. 5:

(i) The fragmentation potentials are quite similar for both
static and dynamic deformations up to β2 alone, except
for the fissioning region. Also some extra valleys at
17B and 26Mg fragments are observed for the case
of β2(0) [Figs. 5(a) and 5(b)], but they get ruled out
in calculations due to their negligible penetrability P

values.
(ii) With the inclusion of temperature dependence in higher

multipole deformations (β2-β4) of the decaying frag-
ments, the PES changes significantly for A2 > 50 and
hence the relative preformation probability P0 for all

FIG. 5. Fragmentation potentials V (A2) as a function of fragment mass number A2 for the decay of 241Pu∗, plotted at extreme 	(h̄) values,
for both static and dynamic choices of deformation up to quadrupole (β2) alone and hexadecapole (β2-β4) deformed fragments.
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fragments would change accordingly. However, there
is no noticeable change in the structure of V (A2) up to
A2 = 50, except in the characteristics of emitted light
particle (LPs).

(iii) The contributing LP(s) change in going from 	= 0 to
	max with the inclusion of higher multipole deforma-
tions up to β4 [Fig. 5(c)]. However, the result does
not remain consistent with the increase in energy from
below to above the barrier.

(iv) The ER contribution (A2 � 4) is prominent (lower
in energy) at 	= 0 whereas at 	= 	max the fission
fragments start dominating in the decay process.

(v) The 	max value remains the same over a wide range of
incident energies for both static and dynamic cases for
the β2 deformed case as well as for β2-β4 deformed
fragments.

The above results are investigated further in terms of the
preformation probability P0 plotted as a function of fragment
mass number (Ai, i = 1, 2) (see Fig. 6). We notice from
Figs. 5(a) and 5(b) and 6(a) and 6(b) that for the β2-deformed
choice of nuclei, asymmetric fragmentation is preferred for
both static and dynamic deformations, and the fragments in
the mass range A2 = 100–113 (plus complementary heavy
fragments) contribute toward fission fragments. In other words,
the fragmentation behavior remains asymmetric for both cases
over the range of energy under consideration, although one
may see some contribution of symmetric fission fragments
as well but its magnitude is negligibly small. With the
inclusion of higher multipole deformations (β2-β4) of the

decaying fragments, the relative preformation probability P0

shows some variation, as is evident from Figs. 6(c) and 6(d).
The distribution yield is asymmetric for static as well as
dynamic deformations just like that for the β2-deformed case.
Here again some symmetric fragments are prominent for the
β2-β4(0) case. In other words, some symmetric fragments
are appearing particularly in the static deformed case, and
their contribution seems more prominent for higher order
deformations and at higher incident energies. The emergence
of a symmetric mass distribution along with the observed
asymmetric fragmentation indicates a possible fine structure
in the fission of the 241Pu∗ nucleus.

For a further analysis of different fission regions we have
shown in Fig. 7 the symmetric fission (SF) peak to asymmetric
fission (AF) peak ratio plotted as a function of Ec.m. for the
static higher multipole deformations (β2-β4) of the decaying
fragments. Here the AF peak corresponds to fragment mass
A2 = 102–110 and the SF peak corresponds to A2 = 120
at all measured energies. In order to predict the relative
contribution of the SF to AF peak ratio at higher energies,
the �R values are obtained by extrapolating the fitted �R

values for the measured fission cross sections. It is clear from
Fig. 7 that the symmetric fission region contributes a very
small amount, though nonzero (∼1.6%), to the FF (fusion
fission) cross section at the highest extrapolated center-of-mass
energy in comparison to ∼0.63% at the highest available Ec.m.

(=47.76 MeV), which signifies the asymmetric fragmentation
path in the decay of the 241Pu∗ nuclear system. These
differences in the fission valley structure of fragmenta-
tion potentials or, equivalently, in preformation yields due

FIG. 6. Preformation probability P0 as a function of fragment mass number Ai , i = 1, 2, calculated by using the fragmentation potential
of Fig. 5.
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FIG. 7. The SF peak to AF peak ratio plotted as a function of
the incident Ec.m. for the 241Pu∗ compound system. The filled circles
show the peak ratio at extrapolated energies.

to static or dynamical considerations in higher multipole
deformations up to hexadecapole on either side of the
Coulomb barrier suggest the presence of a fine structure
or substructure of fission fragments. In other words, the
inclusion of static and dynamical deformations in the DCM

provides some new insight into the understanding of nu-
clear structure effects related to the decay of the 241Pu∗

nucleus.
Figure 8 shows the 	-summed preformation probability

P0, penetrability P , and cross sections σ , with summation
up to 	 = 	max, as a function of the light-mass fragment
A2 at the highest Ec.m. = 47.76 MeV (T = 1.27 MeV).
Figure 8(a) show the results with static and dynamic
deformations up to β2 alone and Fig. 8(b) shows the same
for higher multipole deformations (β2-β4). We note that the
	-summed P is almost constant and thus contributes mainly to
the magnitude of the cross sections, independent of static or
dynamical deformation effects for quadrupole as well as for
the hexadecapole deformed fragments. Also P tends to zero
for the 17B fragment (and also for 26Mg), which occurs as a
strong minimum in the fragmentation potential of Fig. 5 or
as a maximum in the preformation probability of Fig. 6. On
the other hand, σ follows the behavior of P0, which shows an
interesting structure with significant preformation factors for
asymmetric mass fragments. The preformation probability P0

and penetrability P change with the inclusion of dynamical
deformations, thereby affecting the compound-nucleus-decay
cross sections. However, the preformation probability is more
sensitive and gets strongly modified as compared to the
penetrability. It may be pointed out here that the reported
FF cross sections correspond to asymmetric fission (ACN/2 ±
20) and the fragments in the mass range A2 = 100–114 seem
to contribute toward fission cross sections over a wide range
of incident energy; however, no individual fragments are
identified in the experiment [7].

FIG. 8. The 	-summed preformation probability P0, penetration probability P , and cross section σ for the decay of 241Pu∗ as a function
of fragment mass A2 at Ec.m. = 47.76 MeV for both static and dynamic choices of deformation. Part (a) shows the comparison for deformed
choice of nuclei up to β2 and part (b) shows that for deformations up to β4.
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FIG. 9. Variation of cross section for an asymmetric fission
fragment of mass A2 = 109 (σA2=109), and the summed cross section
for LPs (A2 = 1–4) (σLPs), as a function of angular momentum for
the decay of 241Pu∗.

The above result of a favored asymmetric fragmentation in
the DCM is also depicted in Fig. 9, where the DCM-calculated
cross section for the LPs (A2 = 1–4 summed) is compared with
the most probable asymmetric fragment A2 = 109 (shown in
Fig. 8) alone, as a function of angular momentum, up to 	max. It
is clear from the figure that the contribution of the light-particle
cross section σLPs , summed to 	max, is almost zero compared
to the cross section of the most probable asymmetric fragment
for both static and dynamic deformations up to β2 alone. In-
terestingly, although the 	max (=143h̄) obtained for dynamical
considerations up to β2 is large, its cross section for the most
probable asymmetric fragment (A2 = 109) is smaller as com-
pared to static consideration up to β2 having a lower 	max value
equal to 139h̄. This occurs because the preformation probabil-
ity P0 and penetrability P for the 109Ru∗ fragment with β2(0) is
larger than that with β2(T ) such that the product P0P is larger,
and hence so is the compound-nucleus-decay cross section.

Figure 10 shows the fission cross section σfiss as a function
of Ec.m. for the compound system 241Pu∗, calculated using
the DCM and compared with the experimental data along
with coupled-channel code CCFUS calculations [7]. The DCM-
calculated σfiss fit the data very nicely at all energies for
both static and dynamic deformations up to β2 alone and
β2-β4 deformed fragments. Such a nearly exact comparison
between the calculations and data for both static and dynamic
deformations indicate that the QF component is either small or
missing. We have also calculated the σLPs contribution, which
is negligibly small at all energies (∼10−1 to 10−7 mb) and
decreases with decreasing c.m. energy. This means that σfiss is
the main contribution to the total decay cross section, thereby
indicating the highly fissile nature of 241Pu∗.

FIG. 10. The DCM-calculated σfiss for the decay of the CN 241Pu∗

formed in the 9Be + 232Th reaction, compared with experimental data
along with CCFUS predictions [7] for both static and dynamic choices
of deformation up to (a) quadrupole (β2) alone and (b) hexadecapole
(β2-β4) deformed fragments.

The only parameter used to fit the data is the neck-
length �R(T )[=Ra(T ) − R1(α1, T ) − R2(α1, T )], as shown
in Fig. 11. It is to be noted that the neck-length parameter
�R, that fixes the barrier-lowering parameter �VB , for the
best fit to the fission data given in Table I is found to depend
strongly on the limiting 	max value, which in turn depends on
whether the sticking or nonsticking limit of the moment of
inertia is used for angular momentum effects in the potential.
All the calculations presented above are for the sticking
moment of inertia IS , which is found to be more appropriate
for fitting the fission cross sections [14]. We find that �R

varies smoothly from above-barrier to below-barrier energies
for both static and dynamic considerations. The choice of
different �R indicates different reaction time scales for static

FIG. 11. The variation of fitted parameter �R with Ec.m. for the
fission decay of the CN 241Pu∗ formed in the 9Be + 232Th reaction
for both static and dynamic cases upto (a) β2 alone and (b) β2-β4

deformation parameters.
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TABLE I. The fission cross sections for 241Pu∗ formed in the 9Be + 232Th reaction, calculated with the DCM for static and dynamic
deformations up to quadrupole (β2) alone, and up to hexadecapole (β2-β4), at different Ec.m. values, compared with experimental (Expt.)
data [7].

β2(0) (	max = 139h̄) β2(T ) (	max = 143h̄) β2-β4(0) (	max = 147h̄) β2-β4(T ) (	max = 147h̄) Expt.
Ec.m. �R σfiss �R σfiss �R σfiss �R σfiss σfiss

(MeV) (fm) (mb) (fm) (mb) (fm) (mb) (fm) (mb) (mb)

37.13 1.003 4.88 0.691 4.93 0.723 4.96 0.694 4.93 4.932
39.05 1.043 27.1 0.823 27.1 0.853 28.0 0.827 27.9 27.973
41.95 1.11 143 0.98 143 0.958 143 0.976 142 142.744
47.76 1.227 581 1.138 588 1.137 584 1.13 584 583.04

and dynamical deformations. The use of static and dynamic
choices of deformation up to β4 deformed fragments indicates
almost the same value of the neck-length parameter �R;
however, the same is not true for deformation effects up to
β2 alone, where �R for static deformations is much higher
than that for dynamical deformations.

The barrier modification effect is also worked out as an
in-built property of the fitting parameter, the neck-length
parameter, shown in Fig. 12(a) as a function of Ec.m. for the
decay of 241Pu∗ at 	 = 	max and in Fig. 12(b) as a function of 	

at the highest c.m energy, Ec.m. = 47.76 MeV. One may observe
that the barrier modification is minimum for the highest energy
and becomes larger and larger as the c.m. energy decreases,
with a maximum up to 10 MeV for static deformations up
to hexadecapole (β2-β4) deformed fragments. The maximum
barrier modification for dynamic deformations up to β2 alone
is ∼9.5 MeV. In general, the �VB value for dynamical case
lies in between that for the β2 static and the β2-β4 static cases.
It is to be noted that the“compact” orientations change with
the inclusion of temperature-dependent deformations whereas
the “optimum” orientations remain intact, which means that
“compact” orientations are sensitive to the magnitude of both
the quadrupole and higher multipole deformations. The overall
conclusion of the above calculations is that the “barrier-

FIG. 12. (a) Barrier-lowering parameter �VB as a function of
Ec.m. for the decay of 241Pu∗ to 232Th + 9Be fragments, illustrated for
the case of 	 = 	max. (b) The same as (a) but for �VB as a function
of 	 at Ec.m. = 47.76 MeV.

lowering” effect at sub-barrier energies is clearly present in the
DCM irrespective of static or dynamic deformation effects.

It is clearly evident from Fig. 12(b) that �VB decreases
in magnitude with the increase in angular momentum and the
modification becomes small but not negligible at large values
of angular momentum because with the inclusion of the 	-
dependent potential the barrier position (RB) starts shifting to-
ward the left and thereby comes closer to Ra . Thus the present
study clearly points out the importance of static and dynamical
deformations (and orientations) in the DCM along with the
explicit role played by angular momentum 	 in the decay of the
241Pu∗ nucleus. Since the present study is confined to a small
limited energy range, the role of dynamical deformations is less
pronounced here but it could be of further interest to investigate
the same case over a wide range of energies spread around the
Coulomb barrier, which could impart important information
regarding the dynamics involved in heavy-ion reactions.

Finally, we have calculated the fission fragment
anisotropies (A) using the DCM within the SSPM approach
[42] [see Eq. (12)]. Note that the nonsticking moment of inertia
INS corresponds to the supposition of prompt emission of frag-
ments, used generally for the experimental determination of the
	 value. We find that INS is more appropriate for the anisotropy
calculations [14,19] whereas the sticking moment of inertia
IS is more appropriate for obtaining the fission cross sections,
which has consequences for the limiting 	max value being much
larger than for the nonsticking moment of inertia, i.e., INS . A
comparison of 	max values from Tables I and II for the two
limits of moment of inertia shows that anisotropies are fitted at
a relatively much smaller 	max value, as a result of the use of the
INS approach in the DCM. This is because the structure infor-
mation for the fission cross section comes explicitly through
the preformation probability P0. The preformation factor being

TABLE II. The fission anisotropies calculated using the DCM for
241Pu∗ formed in the 9Be + 232Th reaction, at various Ec.m. values.
Calculations here refer to the nonsticking limit of the moment of
inertia.

Ec.m. (MeV) 	max (h̄) Anisotropy A

37.13 12 1.237
39.05 12 1.230
41.95 15 1.340
47.76 21 1.606
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FIG. 13. The DCM-calculated fission anisotropies for the CN
241Pu∗ formed in the 9Be + 232Th reaction, using the nonsticking
moment of inertia INS , at various Ec.m. values compared with
experimental data along with SSPM and PEQ model predictions [7].
The arrow shows the position of the Coulomb barrier.

a relative quantity in the DCM, turns out to be small or less
than one for each decay product and therefore higher angular
momentum values are used to address the σfiss when IS is used.

For the calculation of anisotropy we have taken the same
value of neck-length parameter �R as obtained for the
best fit to the data on fission cross-sections with β2(0),
where deformations are taken from the theoretical estimates
of Möller et al. [35]. Figure 13 shows the comparison of
fission anisotropies calculated using the DCM to the available
experimental data along with the results of the SSPM and PEQ
model predictions for the decay of the CN 241Pu∗ at various
center-of-mass energies spread across the Coulomb barrier. It
may be noted here that the choice of neck-length parameter
for the above-barrier predictions of SSPM anisotropy is
obtained by extrapolating the values of Fig. 11 for static
β2 deformations. The behavior of the DCM-based fission-
fragment anisotropies is found to be consistent with the SSPM
or PEQ model (see Fig. 13). It is clear from this figure that
at energies far above the barrier, the calculations are able to
explain the fission anisotropy data, but they fail to reproduce
the same at near- and below-barrier energies. The disagreement
between the calculated and experimental anisotropies at these
near- and below-barrier energies suggests a contribution from
nCN fission in the reaction. The nCN fission may be attributed
to QF and/or ICF processes. The excellent agreement between
DCM-calculated fission cross sections and experimental data
leaves very small possibility for quasifission component in
the decay of 241Pu∗. Hence, the deviation of the theoretical
estimates from the anisotropy data for 241Pu∗ may be attributed
to the possible breakup of the loosely bound projectile nucleus
9Be, in agreement with Appannababu et al. [7].

Generally, fusion induced by a weakly bound projectile
leads to two distinct processes: complete fusion, in which the
entire projectile fuses with the target nucleus, and incomplete
fusion, where only a part of the projectile fuses with the target
nucleus. In Ref. [6] the contribution of fission cross sections
comes mainly from CF since fission following ICF is expected
to be negligible due to the lower angular momentum and

excitation energy brought in by an ICF fragment. It would be of
further interest to investigate the contribution of evaporation
residues formed in the ICF process due to the breakup of
the 9Be nucleus into 8Be + 1n or into 5He + 4He in order to
have a complete understanding regarding the dynamics of the
fusion-fission process with stable weakly bound projectiles. It
may be noted that DCM calculations are sensitive to the choice
of neck-length parameter �R, which is taken in reference to
available experimental data. In the present case the data are
available only for fission cross sections and hence appropriate
values of �R could not be estimated for ER and/or ICF paths.
However, if one takes the same value of �R as reported in
Table I for fission, then the contribution of ER or ICF remains
negligibly small. In general, �R for ER is expected to be
larger than that for fission, so the possibility of an ER and/or
an ICF component in the 9Be + 232Th → A1 + A2 reaction is
not completely ruled out. An experimental confirmation of ER
and ICF data may resolve the issue.

IV. SUMMARY

The role of dynamic deformations is studied in the DCM
for the 9Be + 232Th →241Pu∗ reaction at both below- and
above-barrier energies. The DCM gives a good description of
the fusion-fission cross sections, at various incident energies
or compound nucleus excitation energies E∗, within a single
parameter description �R for both static and dynamic choices
of deformation up to quadrupole (β2) alone and up to
hexadecapole (β2-β4) deformations. The preformation factor
P0 is shown to get modified with the inclusion of dynamical
deformations and hence the cross sections change consider-
ably. The change in penetrability P is not as strong as that for
P0. The interesting feature of this study is that the fission mass
distribution remains asymmetric, independent of static and
dynamic deformation effects studied up to quadrupole β2 or
for higher order hexadecapole deformations, although a slight
appearance of a symmetric peak is observed for the β4 static
case. This appearance of a symmetric peak in the fission mass
distributions indicates a possible fine structure or substructure
in the fusion-fission of the compound nucleus 241Pu∗. In order
to see the possible contribution of nCN in the decay of 241Pu∗,
calculations have also been made for the fission fragment
anisotropies using the SSPM approach. The anisotropy data
for the 9Be + 232Th reaction are underestimated by the DCM
at below-barrier energies and the difference goes on decreasing
with the increase in excitation energy and is consistent with the
SSPM or PEQ model at above-barrier energies. The possibility
of QF is ruled out and ER data are required for verification
of the ICF component. The present study clearly points out
the importance of static and dynamical deformations. More
systematic studies regarding the dependence of deformation
on temperature in different regions of fissility may be useful
for an overall understanding of nuclear reaction dynamics.
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