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Brueckner-Hartree-Fock–based optical potential for proton-4,6,8He and proton-6,7,9,11Li scattering
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Proton-nucleus scattering provides a useful tool to determine either the parameters entering in the assumed
shape of the neutron distribution or to test the reliability of the theoretically calculated neutron distributions in
the target nuclei. We have used the Bethe-Brueckner-Hartree-Fock approach to calculate the optical potential
for analyzing the experimental observables (e.g., differential cross section and polarization) for p-4,6,8He and
p-6,7,9,11Li scattering. The calculation requires mainly two inputs: (1) the nucleon-nucleon (NN) interaction
and (2) the nucleon distributions in target nuclei. Various local realistic internucleon (NN) potentials such as
Reid93, Urbana v-14, and Argonne v-18 along with several model nucleon density distributions are employed in
generating the nucleon-nucleus optical potential. We study the sensitivity of the calculated physical observables
on the NN interaction and the density distributions used. It is observed that all the NN interactions and also
the different density distributions reproduce rather well the experimental differential cross sections while the
calculated polarization is more sensitive to the NN interaction and also to the density distribution used. Thus the
polarization data can be used as an additional constraint on the determination of nucleon (especially neutron)
density distributions in nuclei. Some results of the representative cases highlighting these features are presented
and discussed in detail for illustration.
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I. INTRODUCTION

Knowledge of the nucleon distributions in nuclei is of
fundamental importance. The neutron distribution in nuclei
can be obtained only indirectly, in contrast to the corresponding
proton distribution which can be reliably determined through
electron scattering. Proton-nucleus scattering provides a useful
tool to determine either the parameters entering in the assumed
shape of the neutron distribution or to test the reliability of the
theoretically calculated neutron distribution. The calculations
employ a microscopic complex optical potential generated
within the Bethe-Brueckner-Hartree-Fock (BHF) formalism.
This g-matrix folding procedure has been and is still being used
quite successfully to extract the neutron distributions in several
nuclei and also in a variety of isotopic chains of nuclei (for
example, see [1]). The method has also been used [2] to extract
the parameters appearing in the assumed neutron distributions
or to validate theoretically calculated neutron distributions
in neutron-rich, loosely bound nuclei by reproducing their
available experimental differential cross sections (see, for
example, [3]). Further, the method has been used to study
neutron-rich exotic nuclei having possible halo structures,
such as 6,8He, 11Li [4], and 22C [5]. Due to their unstable
(short-lived) nature, only recently have the experimental
polarization (Ay) data in p-A scattering involving these exotic
nuclei started to appear. These experiments needed to be
performed in inverse kinematics. For example, the elastic
scattering of radioactive ions from hydrogen [6] in inverse
kinematics corresponds to proton scattering from the heavy
ions. Very recently, the analyzing power or polarization (Ay)
for p-6He scattering at 71 MeV/nucleon has been reported [7].
Uesaka et al. [7] have used the Bonn B potential in the
Brueckner-Hartree-Fock approach along with single-particle
densities obtained by employing a harmonic oscillator and

also a Woods-Saxon potential to generate the required optical
potential for analyzing the experimental data. The differential
cross section is reasonably well reproduced at forward angles.
On the other hand, the analyzing power does not seem to
be compatible with the g-matrix folding model predictions,
indicating its sensitivity to the model used for the nuclear
structure. It should be pointed out that the reported analyzing
power data have substantial errors and therefore the need for
more accurate measurements is stressed.

Helium isotopes offer a unique and very interesting example
for accurate microscopic theoretical studies. 4He is the lightest
doubly magic nucleus, 6He is expected to have a neutron
halo akin to that of the celebrated 11Li, and 8He is supposed
to have a thick neutron skin. We present here systematic
analysis of p-4,6,8He and p-6,7,9,11Li scattering data using
a BHF-based optical potential. Relativistic kinematics is
used, which necessitates a recalculation of the self-consistent
nucleon-nuclear matter optical potential. The spin-orbit part of
the potential is calculated by carefully avoiding the short-range
approximation [8]. We use an effective mass correction [9],
leading to a modification of the real and imaginary parts of both
the central and spin-orbit components of the optical potential.
The resulting optical potential is complex and is energy and
density dependent (for details see Ref. [10]). We employ local
realistic internucleon (NN) potentials—Urbana v-14 [11],
Argonne v-18 [12], and Reid93 [13]—along with several
model nucleon density distributions required in generating
the nucleon-nucleus optical potential to study the sensitivity
of the calculated observables such as the differential cross
sections and polarization on the NN interactions and the
nucleon density distributions used. It is found that all the
NN interactions and different density distributions satisfac-
torily reproduce the experimental differential cross sections
whereas the calculated polarization is more sensitive to the
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NN interaction as well as to the density distribution used.
Thus the polarization data impose an additional constraint
on the determination of nucleon (especially neutron) density
distributions in nuclei. The experimental analyzing power data
presently available have substantial errors and therefore more
accurate and additional polarization data are needed to extract
reliable nucleon (neutron) density distributions in these loosely
bound neutron-rich nuclei.

Section II presents briefly the method of calculating the
optical potential. The results are presented and discussed in
Sec. III. The main conclusions are contained in Sec. IV.

II. METHOD OF CALCULATION

A. Optical potential

In order to calculate the microscopic nucleon optical
potential for finite nuclei in Brueckner theory, one essentially
requires two inputs: the realistic NN interaction to calculate the
reaction matrices and point-nucleon density distributions to be
used for folding the reaction matrices using the local density
approximation (LDA) [14,15]. We solve the Bethe-Goldstone
integral equation to obtain reaction matrices using three
modern local soft-core Urbana v-14 [11], Argonne v-18 [12],
and Reid93 [13] internucleon potentials. We use relativistic
kinematics for calculating the momentum of both the incident
and target nucleons in calculating the effective interaction.

Self-consistency is achieved in about five cycles for each
of the 17 nuclear matter densities spread evenly over the
range of Fermi momentum kF = 0.6–2.0 fm−1, in the incident
momentum region 0.1–8.0 fm−1. The self-consistent BHF
calculations have been performed for nuclear matter at a
large number of densities. We fold the appropriate numerically
computed complex reaction matrices (as defined in Ref. [10])
over the proton- and neutron- density distributions (Sec. II B)
using the LDA to obtain both central and spin-orbit parts
of the potential. In view of the importance of spin effects,
we avoid the normally used [16] short-range approximation
and calculate the folding integral for the direct part of the
spin-orbit potential without any approximation [8]. Such a
reaction matrix approach has been successfully applied in the
past (see, for example, Refs. [4,7,10,17]).

The numerically calculated energy- and density-dependent
complex reaction matrices are folded [18,19] over the nucleon
density distributions in the nucleus to obtain the microscopic
nucleon-nucleus real (imaginary) parts of the central V (E, r)
(W (E, r)) and the spin-orbit VSO (E, r) (WSO(E, r)) compo-
nents of the optical potential.

In order to obtain agreement with the experimental data,
following normal practice, we multiply each component of
the calculated potential by scaling parameters λ. The potential
(U (E, r)) used to calculate observables in a spherical optical
model code is

U (E, r) = λRV (E, r) + iλIW (E, r) + λR
SOVSO (E, r)

+ iλI
SOWSO(E, r). (1)

Thus, in principle, there are four adjustable (scaling) pa-
rameters (λR , λI , λR

SO , and λI
SO) to obtain a best fit to the

experimental data by minimizing χ2/DF (where DF stands
for degrees of freedom).

In practical calculations, only a few (or no) scaling param-
eters are used. In particular, for 4He, the agreement with the
experiment for the differential cross section and polarization
remains almost unchanged, with or without scaling parameters
(i.e. all λ’s are unity). For the case of 6,8He and 7,9,11Li, the
agreement with the experiment is improved with the optimal
value of λI = 0.7 and keeping all the remaining λ’s fixed to
unity. However, for 6Li, it is found that λI = 1.2 and λR = 0.7
are required to obtain the improved fit to the experiment.

In the present work, three-body terms of the nucleon-
nucleon forces have been neglected. In fact, it has recently
been shown [20] that the effect of the three-body force
on the microscopically calculated potential is to reduce the
strengths of the central part of the optical potential in the
nuclear interior only. The effect on the spin-orbit potential is
nearly insignificant. This results in a slight improvement in the
agreement with the experiment for the polarization for p-12C,
p-40Ca, p-90Zr, and p-208Pb scattering, while the agreement
for the differential cross sections is almost unaffected. Hence
we do not expect substantial change in the proton scattering
observables at the low energies considered in the present work.
Our preliminary results concerning the effect of three-body
forces confirm this conjecture. A detailed investigation dealing
with the effects of the three-body force on the calculated optical
potential is in progress.

B. Semiphenomenological densities

It is well known that the shell model or other mean-
field calculations do not make allowance directly for very
low binding energies of the valance nucleons (neutrons).
Therefore, these calculations do not necessarily yield the
correct description of loosely bound nuclei. It is therefore
a common practice to use in the reaction calculations the
semi-empirical or model nucleon density distributions that
take the effects like “halo” and “skin” into account. The density
that has also been employed in the present work has been used
successfully in the past to describe the reaction cross sections
of loosely bound nuclei (see Refs. [5,21]).

A semiphenomenological model for nucleon density distri-
butions within a nucleus with Z protons and N neutrons has
been proposed in the literature [22]. The model satisfies two
important physical requirements, namely, the correct behavior
near the center (r → 0) and the right asymptotic behavior
(r → ∞). The former implies that the power series expansion
of the density near the origin will have only even powers of
r , whereas the latter means that, asymptotically, the density
should behave as

ρi(r) → r
−2αi

i e−r/ai , (2)

with

ai = h̄√
8mεi

(3)

and

αi = qαf

√
mc2

2εi

+ 1. (4)
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Here, αf is the fine-structure constant; i = n or p; q = Z − 1
for protons and 0 for neutrons; εi is the corresponding
nucleon separation energy; and m is the reduced mass,
which, for simplicity, is taken to be the nucleon mass. The
following simple expression fulfilling the above requirements
was proposed [22]:

ρi(r) = ρ0
i

1 + [ (1+(r/R)2)
2

]αi [e(r−R)/ai + e−(r+R)/ai ]
. (5)

Here, the normalization constants ρ0
n and ρ0

p have been
determined from the requirements

4π

∫
ρnr

2dr = N, (6)

4π

∫
ρpr2dr = Z. (7)

The only parameter that is unknown here is R (the radius
parameter), which is determined by reproducing the experi-
mentally measured rms radius of charge density. The same
radius parameter is used in the neutron densities as well.

The loosely bound nuclei, having neutron/proton excess,
evidently, have a small separation energy and hence a promi-
nent tail in the corresponding density profile. For such systems,
the “core” (tightly bound) and “tail” (loosely bound) parts
should be treated adequately. For example, let N,Z be the
neutron and proton numbers of the neutron-rich nucleus. Let
Nc,Zc be the neutron and proton numbers of the core. For
neutron-rich nuclei we take Zc = Z. Then, according to the
model discussed in [21], the neutron density distribution for
the nucleus (N,Z) is written as

ρn(N,Z; r) = ρcore(Nc,Z; r) + ρtail(N − Nc; r).

Here, the core part of the density is given by Eq. (5), with
separation energy corresponding to the core nucleus. For the
tail part, which is normalized to N − Nc, we use [21]

ρtail = N0

(
r2

(r2 + R2)2

)
e−r/at , (8)

with N0 being a normalization constant and at as defined above
in Eq. (3) with separation energy corresponding to the loosely
bound nucleus. By assuming that the experimental charge
radius of the nucleus (N,Z) is known, the parameter R in
the core as well as in the tail part is taken to be the same as
that for the actual nucleus. In a loosely bound nucleus, the core
density is taken as it is, and in the tail part, the R parameter from
the actual nucleus is used. The proton densities correspond to
those obtained by using the actual experimental charge radii.
In this model, the neutron densities of 6,8He and 8,9,11Li are
expressed as [21]

ρn(6He; r) = ρn(N = 2, Z = 2; r) + ρn(2; r),

ρn(8He; r) = ρn(N = 2, Z = 2; r) + ρn(4; r),

ρn(8Li; r) = ρn(N = 4, Z = 3; r) + ρn(1; r),

ρn(9Li; r) = ρn(N = 4, Z = 3; r) + ρn(2; r),

ρn(11Li; r) = ρn(9Li; r) + ρn(2; r).

TABLE I. The calculated neutron (rn), proton (rp), and matter
radii (rm), using R fixed by reproducing experimental charge radii
(rc). The matter radii obtained reported earlier have also been included
for comparison.

R (fm) rn (fm) rp (fm) rm (fm) rc (fm)

0.892 1.469 1.472 1.471 1.675a

4He 1.473 1.473 1.473 1.676b

1.425 1.425 1.425 1.634c

1.668 3.205 1.907 2.839 2.067
6He 2.586d

2.54e

1.490 3.069 1.755 2.799 1.928
8He 2.946d

2.60f

6Li 1.028 2.359 2.387 2.373 2.550
7Li 1.582 2.526 2.252 2.412 2.402
8Li 1.626 2.854 2.155 2.614 2.295

1.582 2.713 2.068 2.516 2.199
9Li 2.579d

2.30e

2.072 3.677 2.334 3.364 2.434
11Li 2.964d

3.53e

aReference [23].
bReference [30].
cReference [31].
dReference [4].
eReferences [24,25].
fReference [32].

The calculated neutron (rn), proton (rp = √
r2
c − 0.64), and

matter [rm = (Zrp + Nrn)/(Z + N )] radii along with the
corresponding charge radii (rc) are listed in Table I. The charge
radii used in the present work have been adopted from [23]. The
rm values obtained by Karataglidis et al. [4], from the Glauber
model analysis [24,25], as well as from a few-body analysis
(for 8He) have also been presented for comparison. It should
be noted that the values of radii of the phenomenological
density reported here differ slightly from those reported in [21],
primarily due to the fact that the charge radii of these isotopes
were unknown at that time. It is only recently that they have
been reported in the literature [26–29]. Due to the presence
of loosely bound nucleons, the charge radii of these nuclei
turn out to be larger than what was expected earlier from the
Glauber model analysis (see the discussion in Ref. [21]). In
the case of 4He, we use the density obtained by unfolding the
experimental [sum of Gaussians (SOG)] charge density [30].
In addition, the point-proton density distribution reported by
McCarthy et al. [31] has also been used.

III. RESULTS AND DISCUSSION

We now present and discuss the results of p-4,6,8He
scattering followed by that of p-6,7,9,11Li scattering.
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A. He isotopes

The nuclei in this region involve a small number of nucleons
and therefore basic and fundamental accurate theoretical calcu-
lations are feasible. In fact, several sophisticated calculations
have been reported for He isotopes (specially for 4He) in which
techniques such as Green’s function Monte Carlo [33], the
resonating group method [34], the microscopic multicluster
model [35], Fadeev-Yakubovsky four-body equations [36],
hyperspherical functions [37], and the ab initio shell model
have been employed.

1. 4He
4He is quite unique; it is the lightest doubly magic and most

tightly bound nucleus. The most sophisticated calculations for
4He predict that the point-proton density in the extreme interior
is around 0.2 proton/fm3 or more, which is much larger than
the commonly expected value. It is interesting to point out that
in spite of the available accurate descriptions of the 4He nu-
cleus its calculated density distributions have seldom been used
in the analysis of p-4He scattering where the experimental data
for both differential cross section and the polarization exist.

For 4He we have calculated the point-proton density
distribution by unfolding the experimental charge distribution
resulting from a model-independent analysis of the electron
scattering data in terms of a SOG [30]. The neutron density
distribution is assumed to be the same as the proton distri-
bution. Two such sets [30] and [31] labeled as unfolded and
McCarthy et al., respectively, are shown in Fig. 1. The same
results are also plotted in the inset on a semilog scale. It is seen
that the two densities are almost similar as expected, except
at small distances (0.5 to 1.0 fermi). The rise (peak) around
0.8 fm is due to the unfolding of the experimental SOG density.

The calculated differential cross section (dσ/d	) for a
71.9-MeV proton incident on a 4He target, calculated using
Reid93, Urbana v-14, and Argonne v-18 realistic internucleon
(NN) potentials along with the unfolded density distribution is
displayed in Fig. 2. All three interactions yield more or less the
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FIG. 1. Extracted (unfolded) point-proton density distribution
in 4He. The charge densities have been taken from [30]. The
corresponding densities, reported by McCarthy et al. [31] are also
presented for comparison. The same results are plotted in the inset on
a semilog scale.
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FIG. 2. (Color online) The calculated differential cross section
for 71.9-MeV p-4He scattering obtained by using different NN
interactions: v-18, v-14, and Reid93. The unfolded densities, as
described in the text, have been used. The corresponding experimental
values, taken from [38], are also shown for comparison. Here, all three
interactions (v-18, v-14, and Reid93) yield almost the same results.
Therefore the corresponding curves almost coincide.

same results. Therefore, the respective curves almost coincide.
Thus, it is difficult to distinguish the curves individually in the
figure. Further, the corresponding results obtained by using
the second set [31] of the density distribution is expected to be
very similar (see Fig. 3). Clearly, the calculation somewhat
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FIG. 3. (Color online) The calculated differential cross section
for 71.9-MeV p-4He scattering obtained by using different density
distributions: unfolded and that reported by McCarthy et al. [31].
The Argonne v-18 interaction has been employed. The experimental
data, also shown, have been taken from [38]. Here, the results
obtained by using the two densities are almost identical. Therefore
the corresponding curves almost coincide.
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FIG. 4. (Color online) The calculated polarization (Ay) for
71.9-MeV p-4He scattering obtained by using different NN inter-
actions: v-18, v-14, and Reid93. The unfolded densities, as described
in the text, have been used.

underestimates the experimental differential cross sections
[38] at lower angles up to θcm ∼ 70◦. Figure 3 shows similar
results obtained by using both sets of density distributions and
the v-18 NN potential. Clearly, the two density distributions
yield almost identical results; hence, the respective curves
coincide, making it difficult to distinguish them from each
other. However, it is found that the two calculations differ
from the corresponding experiment as observed in Fig. 3.
Similar results for polarization (Ay) are displayed in Figs. 4
and 5, respectively, along with the corresponding experimental

0 10 20 30 40 50 60 70 80 90
θ

c.m.
 (degrees)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
ol

ar
iz

at
io

n

Unfolded Densities
McCarthy et al.

Expt.

p - 
4
He (71.9 MeV)

(v-18)

FIG. 5. (Color online) The calculated polarization (Ay) for
71.9-MeV p-4He scattering obtained by using different density
distributions: unfolded and that reported by McCarthy et al. [31].
The Argonne v-18 interaction has been employed.
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FIG. 6. (Color online) Point-proton density distribution in 6He:
Pheno [21], Karataglidis et al. [4], and Korsheninnikov et al. [6].

data taken from Ref. [38]. Both the calculated (varying
between 0.0 and ∼0.6) and the experimental (varying between
0.1 and −0.2) polarization ranges have small magnitudes.
The calculated results somewhat overestimate the experiment
though both exhibit similar trends. Figure 4 indicates that
the results obtained with an unfolded density distribution and
using Reid93 and Urbana v-14 NN interactions are identical
while that of Argonne v-18 are somewhat smaller and therefore
are closer to the experiment. Figure 5 clearly shows that the
results obtained with the v-18 interaction and using both sets
of density distributions are almost identical as anticipated
and slightly overestimate the experiment. It is observed that
the calculated results for 4He deviate the most from the
corresponding experimental values. Such a strong deviation
may be attributed to the inadequacy of the LDA for such a
light nucleus.

2. 6He

Recently, Uesaka et al. [7] reported analyzing power
Ay (polarization) data for p-6He elastic scattering at
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FIG. 7. (Color online) Neutron density distribution in 6He: Pheno
[21], Karataglidis et al. [4] and Korsheninnikov et al. [6]. The same
results are plotted in the inset on a semilog scale.
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FIG. 8. (Color online) The calculated differential cross section
for p-6He (71 A MeV) scattering obtained by using v-18, v-14,
and Reid93 NN interactions, with semi-empirical (Pheno) nucleon
density distributions. The corresponding experimental values [7] of
the differential cross sections are also presented for comparison.

71 MeV/nucleon using a polarized proton target. The authors
analyzed both the differential cross section (dσ/d	) and the
Ay data within the g-matrix folding model using the Bonn
B NN potential along with single-particle wave functions
generated using a Woods-Saxon (WS) potential with and
without a halo component. Earlier, Karataglidis et al. [4]
(Korsheninnikov et al. [6]) analyzed (dσ/d	) data for p-6He
elastic scattering at 72 A MeV (70 A MeV). The former
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FIG. 9. (Color online) The calculated differential cross section for
p-6He (71 A MeV) scattering obtained by using nucleon density dis-
tributions of Pheno [21], Karataglidis et al. [4], and Korsheninnikov
et al. [6]. The corresponding experimental data [7] are also shown for
comparison.
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FIG. 10. (Color online) The calculated polarization (Ay) for
p-6He (71 A MeV) scattering obtained by using v-18, v-14, and
Reid93 NN interactions, with semi-empirical (Pheno) nucleon density
distribution. The corresponding experimental values [7] of the
differential cross sections are also presented for comparison.

authors [4] employed the g-matrix folding model using the
Reid93 NN potential together with an ab initio shell model
and its variant for calculating the density distributions with and
without a halo component. The latter authors [6] carried out
optical model calculations within the eikonal approximation
and the density distribution obtained using the cluster-orbital
shell model (α + 2n model for 6He) approximation (COSMA)
[39]. We have used in our calculations local Reid93, v-14,
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FIG. 11. (Color online) The calculated polarization (Ay) for
p-6He (71 A MeV) scattering obtained by using nucleon density dis-
tributions of Pheno (ours), Karataglidis et al. [4], and Korsheninnikov
et al. [6]. The corresponding experimental data [7] are also shown for
comparison.
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FIG. 12. (Color online) Point-proton density distribution in 8He:
Pheno [21] and Karataglidis et al. [4].

and v-18 NN potentials and the density distributions of both
Korsheninnikov et al. [6] and of Karataglidis et al. [4] with a
halo component. In addition we have also employed semi-
empirical density distributions proposed and successfully
applied by some of us [5,21,22] for the description of loosely
bound nuclei. The proton and the neutron density distributions
used are presented in Figs. 6 and 7, respectively. The neutron
densities have also been plotted in the inset of Fig. 7 on a
semilog scale to demonstrate the possible halo structure. These
density distributions (Pheno and those reported in Refs. [4,6])
substantially differ from each other at small r , for protons as
well as for neutrons. All three calculations (Pheno and those
reported in Refs. [4,6]), as seen from Fig. 7, indicate halo
structure for the neutron density distribution as expected.

The calculated dσ/d	 for 71 A MeV p-6He scattering is
displayed in Fig. 8 obtained by using the Pheno density distri-
bution and all the three: v-18, v-14, and Reid93 interactions.
Similar results obtained by using the v-18 interaction, and
all three nucleon density distributions are displayed in Fig. 9.
Figures 8 and 9 clearly indicate that all three interactions and all
three density distributions considered here, though different,
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FIG. 13. (Color online) Neutron density distribution in 8He:
Pheno [21] and Karataglidis et al. [4]. The same results are plotted in
the inset on a semilog scale.
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FIG. 14. (Color online) The calculated differential cross section
for p-8He scattering at different energies (15.66, 25, and 61.3 A MeV)
obtained by using v-18, v-14, and Reid93 NN interactions. The semi-
empirical (Pheno) nucleon density distribution is used. The data at
25 MeV (15.66 MeV) are multiplied by a scaling factor of 10 (100).

reproduce the experiment rather well. The quality of agreement
is nearly the same in all cases.

Corresponding results for the polarization are presented in
Figs. 10 and 11, respectively. It can be seen from Fig. 10 that
the calculation using all three interactions along with the Pheno
density distribution qualitatively reproduces the experimental
trend but does deviate in magnitude, and the results with the
v-18 interaction are the closest to the experiment. On the other
hand, the v-18 results presented in Fig. 11 indicate that the
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FIG. 15. (Color online) The calculated differential cross section
for p-8He scattering at different energies (15.66, 25, and 61.3 A MeV)
obtained by using nucleon density distributions of Figs. 12 and 13.
The data at 25 MeV (15.66 MeV) are multiplied by a scaling factor
of 10 (100).
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use of different density distributions leads to different results,
which deviate from the experiment. The results with the Pheno
density distribution are closest and qualitatively reproduce the
experiment. This observation implies that the polarization data
are indeed sensitive and introduces an additional constraint
to the nucleon density distribution used in the calculation.
However, it is important to note that the present polarization
data are few and also have large experimental errors. Hence, to
determine reliably the nucleon density distribution (specially
of neutrons) one needs additional and accurate experimental
polarization data, which hopefully, will be available in the near
future.

3. 8He

Recently, Mackintosh and Keeley [17] reported differential
cross section data for p-8He scattering at three different
energies: 15.66, 25, and 61.3 A MeV. Therefore, to investigate
the energy dependence we have repeated the calculation for
p-8He scattering at all three energies. All three (v-18, v-14, and
Reid93) NN interactions along with two (Pheno [21] and that of
Karataglidis et al. [4] with a halo component) nucleon density
distributions have been used to calculate the corresponding
optical potentials. These density distributions are shown in
Figs. 12 and 13 for protons and neutrons, respectively. The
neutron densities have also been plotted in the inset of Fig. 13
on a semilog scale to emphasize the extended neutron density
distribution. It is found that the two density distributions
(Pheno and that reported by Karataglidis et al. [4]) are clearly
different at small r as well as at large r , for protons as well as
for neutrons. Neutron distributions indicate thick neutron skin,
which is absent in the corresponding proton distributions. The
calculated differential cross sections (dσ/d	) with the Pheno
density distribution for all three energies are shown in Fig. 14
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FIG. 16. (Color online) The calculated polarization (Ay) for p-
8He at different energies (15.66, 25, and 61.3 A MeV) obtained by
using v-18, v-14, and Reid93 NN interactions. The semi-empirical
(Pheno) nucleon density distributions are used in the calculation.
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FIG. 17. (Color online) The calculated polarization (Ay) for p-
8He at different energies (15.66 and 61.3 A MeV) obtained by using
nucleon density distributions of Figs. 12 and 13. The NN interaction
employed here is v-18.

for all three interactions and in Fig. 15 for the v-18 interaction
and both density distributions (Figs. 12 and 13).

We note that all the interactions with the Pheno density
distribution yield almost identical results and reproduce the
experiment rather well at all three energies as expected.
Further, the two [4,21] sets of density distributions yield almost
identical results, which are very close to the experiment at
all three energies (see Fig. 15). The corresponding calculated
results for polarization are displayed in Figs. 16 and 17,
respectively. The figures show that all the interactions give
almost similar results at each energy. Different interactions
yield slightly different magnitudes of the first maxima and its
position shifts toward smaller angles with increase in energy.
Further, the results presented in Fig. 17 are found to be more
sensitive to the density distribution used. The two sets of
density distributions give almost similar shapes at all energies,
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FIG. 18. (Color online) Semiphenomenological (Pheno) point-
proton density distributions in 6,7,8,9,11Li.
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FIG. 19. (Color online) Semiphenomenological (Pheno) point-
neutron density distributions in 6,7,8,9,11Li.

though the magnitude of the first maxima is appreciably
different. Unfortunately, no experimental data exist with which
to compare the calculation.

B. Li isotopes

The Pheno proton and neutron density distributions used
in the calculation for the case of p-6,7,8,9,11Li are displayed
in Figs. 18 and 19, respectively. The neutron halo structure is
evident from Fig. 19 for 11Li as expected.

The calculated differential cross sections obtained by using
v-18, v-14, and Reid93 NN interactions along with the
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FIG. 20. (Color online) The calculated differential cross section
for p-Li scattering obtained by using different NN interactions:
Reid93, v-18, v-14, and semiphenomenological (Pheno) nucleon
density distributions (Figs. 18 and 19). The data for 7Li, 9Li, and
11Li have been multiplied by scaling factors of 102, 104, and 106,
respectively. The experimental data for 6Li and 7Li have been taken
from Refs. [40,41], respectively, whereas those for 9Li and 11Li have
been taken from Ref. [42].
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FIG. 21. (Color online) The calculated polarization (Ay) for
p-Li scattering using different NN interactions: Reid93, v-18, v-14,
and semiphenomenological (Pheno) nucleon density distributions
(Figs. 18 and 19).

Pheno nucleon density distributions for p-6,7,9,11Li scattering
are shown in Fig. 20. The corresponding experimental data
[40–42] are also shown for comparison. Clearly, all the
interactions reproduce the corresponding experiment well.
The calculated analyzing power (polarization) is displayed
in Fig. 21. It is observed from the figure that 6Li exhibits a
stronger (weaker) first maxima (minima), as compared to those
of 7,9,11Li. Further, the position of the first minima shifts toward
smaller angles with increasing mass number. Unfortunately,
apart from 6Li, no experimental data for polarization exist and
therefore no detailed comparison between the calculation and
the experiment can be made. Hopefully, our prediction for po-
larization can be tested when the corresponding experimental
data become available in the future.

IV. SUMMARY AND CONCLUSIONS

The Bethe-Brueckner-Hartree-Fock–based optical poten-
tial is used in the calculation of experimental observables (e.g.,
differential cross section and polarization) for p-4,6,8He and
p-6,7,9,11Li scattering. We have used various local realistic
internucleon (NN) potentials such as Reid93, Urbana v-14,
and Argonne v-18 along with several model nucleon den-
sity distributions required in generating the nucleon optical
potential. We study the sensitivity of the calculated physical
observables on the NN interaction and the density distributions
used. It is observed that all the NN interactions and so also
the different density distributions reproduce rather well the
experimental differential cross sections while the calculated
polarization is found to be more sensitive to the NN interaction
and the density distribution used. Thus the polarization data
impose an additional constraint on the determination of nu-
cleon (especially neutron) density distributions in nuclei, and
therefore they may play an important role in the determination
of reliable neutron distributions in nuclei.
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