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Collective excitations and trajectory deflection are investigated to lower the applicable energy range of the
intranuclear cascade model to around 50 MeV. First, inclusive (p, p′x) reaction processes that lead to noncollective
and collective excitations are formulated under the Born approximation. Then, collective excitations and trajectory
deflection are introduced into the framework of the intranuclear cascade model. As collective excitations, low-
energy vibrational excitations and giant resonances are considered. The trajectory deflection is assumed to be
given by the experimental angular distribution of proton-nucleus elastic scattering. Finally, numerical calculations
are conducted for (p, p′x) reactions on 56Fe at 29.9 and 61.5 MeV. The predictive capability of the proposed
model is validated through comparison with experimental observations. The proposed model gives reasonably
good predictions of (p, p′x) reactions and proton elastic scatterings.
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I. INTRODUCTION

The intranuclear cascade (INC) model [1,2] is among
the most powerful tools for predicting the cross sections
of nucleon-nucleus spallation reactions and plays an im-
portant role in transport code systems such as PHITS [3]
and GEANT4 [4]. Over the years, many studies [5–12] have
been devoted to improving the accuracy of the INC model.
As a consequence, the INC model now has high predictive
power at energies above a few hundred MeV. For broadening
the applicability of transport codes, however, extension of
the INC model to energies below 100 MeV is necessary. Since
the exciton model [13,14] is used to calculate the inclusive
spectra of nuclear reactions in this low-energy domain, an
interesting avenue of research is to explore whether the
INC model can be applied to account for these spectra. To
this end, major modification of the INC model is necessary
in order to include physical aspects neglected in previous
studies.

The essential difference between low- and high-energy
reactions should be the strength ratio of collective and non-
collective excitations. Collective states populated in (p, p′x)
reactions are observed below excitation energies of 20 MeV.
When the beam energy is 50 MeV or lower, observed spec-
tra correspond to transitions involving collective excitation.
Above 100 MeV, large portions of spectra correspond to
noncollective excitations.

The INC model assumes that nuclear reactions can be
described by sequential nucleon-nucleon (NN ) collisions
inside the nucleus and that all nucleons other than the colliding
pair behave as spectators; this means that only noncollective
states are considered in the model. This assumption leads to
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poor predictive power at low beam energies. The inclusion of
collective excitations should therefore be a key to extending
the INC model to low energies. It bears emphasizing that
all existing models (Feshback-Kerman-Koonin (FKK) [15],
Tamura-Udagawa-Lenske (TUL) [16], Semi-Classical Dis-
torted Wave (SCDW) [17,18], etc.) lack explicit treatment of
collective excitations.

To extend the INC model, another key should be the
influence of nuclear potential on particle trajectory. Although
the INC model disregards particle deflection due to refraction
and diffraction, these phenomena are more strongly evident in
angular distributions with decreasing beam energies. Similarly,
particle deflection due to nuclear potential should also be
incorporated into the extended model.

The applicability of INC at energies below 100 MeV
has been investigated elsewhere. Cugnon and Henrotte [9]
proposed the Intranuclear cascade Liège (INCL) model and
investigated its performance. Duarte [10] included nuclear
potential in the BRIC model to account for particle deflection.
In that model, particle trajectories are given by the classical
mechanics of a particle in a potential. This prescription
is insufficient to reproduce large-angle scattering, which is
ascribable to the diffraction of waves. Both Cugnon and Duarte
disregarded the contribution of collective excitations.

In the present study, we expand the INC framework by
including collective excitations and trajectory deflections. The
paper is organized as follows. In Sec. II, we discuss possible
excited states populated by nuclear reactions below 100 MeV.
Although all theoretical models of inclusive reactions consider
only particle-hole excitations, we aim to demonstrate the
importance of collective excitations. Formulations of one-
step double-differential cross sections (DDXs) are deduced
on the basis of the distorted wave Born approximation
(DWBA). Here, we restrict ourselves to (p, p′x) reactions.
In Sec. III, our model is further simplified to fit within the INC
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framework. Optimal parameters are determined for collective
excitations and deflections. In Sec. IV, DDXs of 56Fe(p, p′x)
reactions at 29.9 and 61.5 MeV are calculated and compared
with experimental observations to validate the proposed
model.

II. FORMULATION OF ONE-STEP
DOUBLE-DIFFERENTIAL CROSS SECTIONS

Let us consider nucleon-induced nucleon-emitting reac-
tions where the target nucleus is excited to any state along
a continuum. To examine the reaction processes missed under
the conventional INC model, we deduce the first-order DWBA
form for the possible excitations in inclusive (p, p′x) reactions
at several tens of MeV.

Most previous theoretical models of inclusive reactions
consider only the simplest ground state of the target nucleus,
in which all nucleons follow the independent-particle motion.
These models assume excited states are only particle-hole
states. In actuality, however, there are also collective excitation
states.

Tamura et al. [16] assumed that the excited states |�n〉
include 1p-1h states and other more complicated states. The
states are expressed as

|�n〉 =
∑
B

aB |�B〉 + δ|�n〉. (1)

The one-step process excites the |�B〉 state only, and two
or more steps may excite the δ|�n〉 state. We make the
further assumption that the 1p-1h states are decomposed into
noncollective states |�B1〉 and collective states |�B2〉:∑

B

aB |�B〉 =
∑
B1

aB1|�B1〉 +
∑
B2

aB2|�B2〉. (2)

The noncollective state is expressed as

|�B1〉 = (|φ1p〉|�1h〉)B1, (3)

where

|�1h〉 ≡ c|�0〉.
The collective state is expressed as

|�B2〉 = |�coll,λ〉, (4)

where λ represents the quantum number of the state. In the
case of a vibrational state, it can be written by using the boson
creation operator:

|�coll,λ〉 = b
†
λ|�0〉. (5)

Following Tamura et al., we express the amplitude of
the one-step DWBA transition to the excited state |�B1〉 as
follows:

T
(1)
nB1 = 〈xb|〈�B1|v|�0〉|xa〉 =

∑
B

aB1t
B1
ba , (6)

where

tB1
ba = 〈xb|vB10|xa〉;

vB10 = 〈�B1|v|�0〉.

The DDX for the one-step process is given by

∂2σ
(1)
B1

∂�∂ω
= μ2

(2πh̄2)2

kf

ki

∣∣T (1)
nB1

∣∣2
δ(En − Ex), (7)

where En is the eigenenergy of δ|�n〉 and Ex is the excitation
energy, which satisfies the relation Ex = Ein − Eexit, where
Ein and Eexit are proton kinetic energies of incident and exit
channels, respectively.

In the same way, DDX of the transition to δ|�B2〉 state is

∂2σ
(1)
B2

∂�∂ω
= μ2

(2πh̄2)2

kf

ki

∣∣T (1)
nB2

∣∣2
δ(En − Ex) (8)

with the transition amplitude

T
(1)
nB2 = 〈xb|〈�B2|v|�0〉|xa〉 =

∑
B

aB2t
B2
ba ,

(9)
tB2
ba = 〈xb|vB20|xa〉; vB20 = 〈�B2|v|�0〉.

The DDX of the one-step transition to states of excitation
energy Ex is expressed by

∂2σ (1)

∂�∂ω

∣∣∣∣
Ex

= μ2

(2πh̄2)2

kf

ki

∣∣T (1)
nB

∣∣2
δ(En − Ex)

= ∂2σB1

∂�∂ω

∣∣∣∣
Ex

+ ∂2σB2

∂�∂ω

∣∣∣∣
Ex

. (10)

Here we disregard the interference between the two terms
on the right-hand side of Eq. (10), since we cannot calculate the
cross term. The collective states are mixtures of particle-hole
states. The collective states are populated through small
momentum transfers, and consequently, most of the transitions
are missed in INC because of its insufficient treatment of Pauli
blocking. This point is discussed again in Sec. IV. The INC
model is assumed to include only |�B1〉 as the final state,
but excludes most of |�B2〉. Excitation to |�B1〉 is nearly
equivalent to the one-step INC calculation, and hence we
obtain the following relations:

∂2σ
(1)
B1

∂�∂ω
∼= ∂2σ

(1)
INC

∂�∂ω
. (11)

III. DOUBLE-DIFFERENTIAL CROSS
SECTION CALCULATION

A. Formulation and derivation

To calculate DDX spectra of inclusive reactions, Eq. (10)
must be extended to a nonperturbative form. Also, reasonably
short computation time is essential for practical applications.
Note that we aim to construct a model that has reasonable good
predictive power for energy and angular distributions over a
wide range of energy transfers and mass numbers of target
nuclei, rather than a model that has high predictive power for
a specific transition. Accordingly, we further simplify Eq. (10)
to fit within the INC framework and deduce the reaction rate
of inclusive (p, p′x) reactions in a form that can be calculated
by the Monte Carlo method. The spin and isospin degrees of
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freedom are ignored for the sake of clarity and simplicity in
the following discussion.

Excitations to noncollective states are ascribable to local
NN collisions in a nucleus, because they are accompanied by
large energy transfers and the surrounding nucleons behave
as spectators. The probability of the process in which one of
the colliding particles is scattered to angle θ and energy ε is
given by

Pnc(θ, ε) = Q
ρ(r)�r3

A

1

σNN

(∫
p<pF

∂σNN

∂�
dp

)
θ

× δ(Ein − ε − Exnc), (12)

where σNN is the NN collision cross section, ρ is the local
density of nucleons at the collision point where the NN

collision occurs, and A is the mass number of the target
nucleus. The projection operator Q for Pauli blocking is

Q|ij 〉 =
⎧⎨
⎩

|ij 〉 if both particles i and j

are above the Fermi surface,
0 otherwise.

With this probability, the DDX of noncollective excitation
is written as

∂2σ
(1)
B1

∂�∂ω
= σtotalP

ε′;in
def (θin)Pnc(θnc, ε)P ε;ex

def (θex), (13)

where σtotal is the total cross section of nucleon-nucleus
interactions including elastic scattering and P ε

def(θ ) is the
probability of deflection by angle θ due to the nuclear potential
at the incident and exit channels of a proton with energy of ε.
We assume P ε

def(θ ) is roughly given by the angular distribution
of proton-nucleus elastic scattering:

P ε
def(θ ) = 1

σ ε
el

dσ ε
el

d�
(θ ), (14)

and

σ ε
el =

∫
dσ ε

el(θ )

d�
d�.

The deflection is assumed to occur at the nuclear surface
when the particle enters and leaves the nucleus and is treated
as a proton-nucleus interaction, not an intranuclear NN

interactions. Since nucleon spin is ignored, the azimuth angles
of every scattering are assumed to be isotropic.

The probability of a collective excitation process cannot
be written in the same manner as Eq. (12), because the energy
transfer is smaller than the nucleon binding energy and both the
struck nucleon and all other nucleons are influenced strongly
by the collision. We assume that the process can be regarded
as an interaction between the incident nucleon and the target
nucleus and takes place at the nuclear surface. We also assume
that the deflection during the interaction is negligibly small.
Although the angular distribution is sensitive to momentum
transfer, a highly precise distribution is not necessary for our
purposes. Then we obtain the following relations:

∂2σ
(1)
B2

∂�∂ω
= σtotalP

ε′;in
def (θin)Pco(ε)P ε;ex

def (θex), (15)

and

Pco(ε) = 1

σtotal

dσco

dω
δ(Ein − ε − Exco), (16)

where dσco
dω

is the energy-differential cross sections for collec-
tive excitations.

By using Eqs. (12), (14), and (16), we define the probability
of a one-step (p, p′x) reaction. Let us first define the time
order as

0 < t1 < t2 < t3 < · · · < tm < tM < ∞.

The projectile touches the nuclear surface at time t1, and the
cascade process finishes at tM . Next, we introduce the operator
for space development:

�(r, r ′) : r → r ′ = r + vt,
(17)

∀t > 0, r ′ < Rmax, p > pF ,

where v is the velocity of particles inside the nucleus and
Rmax is the maximum radius of the nucleus. Thus the one-step
reaction probability is given by

P (1)(θ, ε) = P
ε′;in
def (θin, t1)�Pco(ε, t2)�P

ε;ex
def (θex, t4)

+P
ε′;in
def (θin, t

′
1)�Pnc(θnc, ε, t

′
2)�P

ε;ex
def (θex, t

′
4).

(18)

The corresponding expression of the conventional INC is
written in the following form:

P
(1)
INC(θ, ε) = �Pnc(θ, ε, t)�. (19)

The formulation for the two-step process can be easily
obtained from Eq. (19). Note that noncollective excitation
involves a large momentum transfer and can occur more than
twice sequentially. In contrast, collective excitation is critically
sensitive to the nucleus type and occurs once. However,
collective excitation may be accompanied by a subsequent
noncollective excitation process. Two two-step reaction paths
are assumed: One induces noncollective excitations twice; in
the other, collective excitation is followed by noncollective
excitation. These reaction pathways are expressed as

P (2)(θ, ε) =P
ε′;in
def (θin, t1)�Pnc(θnc1, εnc1, t2)�Pnc(θnc2, εnc2, t3)

×�P
ε;ex
def (θex, t4) (20)

and

P (2)(θ, ε) = P
ε′;in
def (θin, t1)�Pco(θco, εco, t2)�Pnc(θnc, εnc, t3)

×�P
ε;ex
def (θex, t4), (21)

respectively.
Note that Eq. (20) is very similar in form to Eq. (3.19)

of Kawai and Weidenmuller [18]. Their intuitive explanation
also applies to our Eq. (20). In particular, they concluded that
the propagator is expressed by the geometrical factor and
the attenuation factor. This is consistent with our classical
treatment.

Finally, we deduce the reaction probability in a nonpertur-
bative form:

P np(θ, ε) = P
ε′;in
def (θin, t1)[1 + Pco(θco, εco, t2)]

×Gcas(θcas, εcas)P
ε;ex
def (θex, tm+1) (22)
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for

Gcas(θ, ε) = � + �Pnc(θm1, εm1, tm1)� + �Pnc(θm2, εm2, tm2)

×�Pnc(θm3, εm3, tm3)� + · · · .
The DDX is given by

∂2σ

∂εf ∂�f

= σtotal
1

2π�E� cos(θ )

∑
k

P k(θ, ε), (23)

where �E and � cos θ are the bin widths of the outgoing
energy ε and emission angle θ , respectively.

We note that Eq. (22) includes the expression for elastic
scattering:

P (θ, ε) = P
ε;in
def (θin, t1)�P

ε;ex
def (θ Ref., t2). (24)

However, this is only the deflection of the particle trajectory.
Two-body kinematics does not hold. The deviation from the
energy conservation law is very small in many cases, so we
may neglect this problem.

B. Outline of INC model

The present study was carried out by extending the INC
model code investigated in Ref. [11], where details of the
model were described. Here the main features are only briefly
presented. For the target nucleus, initial nucleon positions are
randomly distributed inside a sphere, in which nucleon density
follows the Woods-Saxon distribution for a nuclear radius r0

of (0.976 + 0.0206A1/3)1/3A1/3 fm (where A is the nuclear
mass number) and a diffuseness a0 of 0.54 fm. The maximum
nuclear radius is defined as Rmax = r0 + 4a0, and the total
cross section is given by

σtotal = πR2
max.

All the nucleons are inside a binding potential V0 of −45 MeV.
The initial nucleon momenta are uniformly distributed inside
the Fermi sphere. Next, a projectile is sent to the target nucleus
with an impact parameter chosen at random. Intranuclear NN

collisions are described by the cross section σNN . When an
energetic particle approaches another target nucleon to within
a distance of

√
σNN/π , they undergo a collision. The Pauli

blocking operator Q is introduced as

Q = 1 − [1 − �(pj − pF )], (25)

where pi and pj are the momenta of the scattered particles,
pF is the Fermi momentum, and � denotes the Heaviside
function. The parameters of the NN cross sections and
angular distributions are taken from the treatment presented
in Ref. [19].

The high predictive power of this INC model has been
verified in Ref. [11] in terms of (p, p′x) reactions on many
target nuclei at bombarding energies of 300 and 392 MeV.
In Ref. [20], reasonable agreement was also found with
experimental (p, nx) reaction data at 120 and 160 MeV. Since
the physical models and parameter values involved in this INC
are barely sensitive to the bombarding energy, we use the same
models and parameter values in this work.

The static phase of nuclear reactions is computed by the
generalized evaporation model (GEM) code [21]. At the end

of each INC calculation, information about residual nuclei
is transferred to the evaporation stage of GEM. The input
configuration of the residue for GEM is characterized by the
number of protons and neutrons, the nuclear excitation energy,
and the momentum.

C. Parameterization

1. Probability of deflection angle

Since angular distributions of elastic scattering are used
to express the particle deflection in inclusive reactions, their
interference structures are not important. We introduced a
model to describe the probability of angular distributions of
elastic scattering in our previous work [22]. Presently, we
simplify that model by disregarding the Coulomb term:

P ε
def(θ ; A) = exp[−0.001(1.3ε + 6 ln A − 5)θ ]. (26)

Typical examples are shown in Figs. 1 and 2, which present
comparisons between calculations and experimental results
for proton elastic scattering of 56Fe at 39.8 MeV [23] and
65 MeV [24], respectively. Magnitudes of calculated values are
scaled to the level of the experimental values. Although rather
large discrepancies are observed at forward angles, the sharp
rise observed in experiments due to the Coulomb repulsion
force is beyond the scope of this model. General trends in the
angular distributions are reproduced reasonably well by the
present model.

2. Collective excitations

There are two types of collective excitations: One is the
low-energy excitation due to rotational and vibrational modes;
the other is the high-energy excitation of giant resonances. In

0 20 40 60 80 100 120

10−1

100

101

102

103

104

105

θLab[deg]

dσ
/d

Ω
 [m

b/
sr

]

Eq. (26)

Exp.

FIG. 1. Comparison of experiment and systematic calculation
with Eq. (26) for proton elastic scattering on 56Fe at 39.8 MeV.
Experimental data are taken from Ref. [23]. Calculation results are
scaled to experimental values.
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0 20 40 60 80 100 120

10−1

100

101

102

103

104

105

θLab[deg]

d σ
/d

Ω
 [m

b/
sr

]

Eq. (26)

Exp.

FIG. 2. Same as Fig. 1, but for 65 MeV. Experimental data are
taken from Ref. [24].

the case of (p, p′) reactions, the giant quadrupole resonance
(GQR) has the greatest strength. We assume that ∂σco

∂ω
is given

by the incoherent sum of energy-differential cross sections for
these two excitations:

dσco

dω
= dσGQR

dω
+ dσLE

dω
. (27)

By using the Breit-Wigner distribution, the first term is
expressed as

dσGQR

dω
(Ex) = σGQR

1

π

�GQR/2

(EGQR − Ex)2 + (�GQR/2)2
, (28)

where EGQR is the average excitation energy of the resonance
and �GQR is the resonance width. In the present calculation,
we used �GQR = 8 (MeV) and EGQR = 65A−1/3 (MeV).
We determined that σGQR = 0.065σtotal best reproduces the
experimental DDX spectra.

Low-energy collective excitations are well accounted for
by DWBA. In the case of the 56Fe(p, p′) reaction, main
transition strengths were measured experimentally and their

0 1 2 3 4 5
0

10

20

30

Excitation Energy [MeV]

σ
[m

b]

FIG. 3. Strength function of the 56Fe(p, p′x) reaction at 65 MeV.

0 2 4 6
0

10

20

30

Excitation Energy [MeV]

dσ
/d

E
 [m

b/
M

eV
]

FIG. 4. Broken histogram is the strength density distribution of
the 56Fe(p, p′x) reaction at 65 MeV. Solid curve is the distribution
approximated by the Breit-Wigner function.

deformation parameters have been determined and listed in
the Evaluated Nuclear Structure Data File (ENSDF) database
[25]. The strength function, which was calculated with the
CCONE code [26], is shown in Fig. 3 for the 56Fe(p, p′)
reaction at 65 MeV. We express the strength function by
using the density distribution in the same way as for GQR.
First, the strength function was replaced by the strength
density indicated by the broken-line histogram in Fig. 4.
Then the Breit-Wigner curve was determined as shown by the
solid line.

dσLE

dω
(Ex) = σLE

1

π

�LE/2

(ELE − Ex)2 + (�LE/2)2
, (29)

where σLE = 0.28 (mb), �LE = 3 (MeV), and ELE =
0.846 (MeV). The σLE value corresponds to the one-step
reaction given by the first term on the right-hand side of

0 20 40 60

10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102

Proton Energy [MeV]

D
D

X
 [m

b/
sr

 M
eV

]

INC

INC+def

INC+def+coll
Exp.

 20°                

 30°(×10−2)

 60°(×10−4)

 90°(×10−6)

 120°(×10−8)

FIG. 5. Comparison of spectral DDXs of the 56Fe(p, p′x) reac-
tion at 61.5 MeV between experiment and calculations under three
different conditions. Factors in parentheses are multipliers to avoid
pile up.
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INC+def+coll
Exp.

 30°                
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 90°(×10−4)
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FIG. 6. Same as Fig. 5, but for beam energy of 29.9 MeV.

Eq. (19). Taking a multistep process such as Eq. (21) into
account, we arrived at the value of σLE = 0.54 (mb).

IV. CALCULATION RESULTS AND DISCUSSION

To validate the present model, DDX spectra were calculated
for 56Fe(p, p′) reactions at 29.9 and 61.5 MeV and compared
with experimental observations. Spectral DDXs for 61.5 MeV
are shown in Fig. 5 from 20◦ to 120◦. In order to avoid
overlap, factors indicated in the figure are multiplied. Closed
circles indicate experimental data taken from Ref. [27]. The
numerical data were taken from the database EXFOR [28],
which excludes elastic scattering data. Let us first examine the
influence of trajectory deflection. Broken lines and dash-dotted
lines show the results for INC with and without deflection,
respectively. The influence of deflection is especially strong at
90◦ and 120◦; the considerable underestimation is improved
upon, and close agreement between calculation and experi-
ment is obtained. In addition, overestimations between 10 and

0 50 100 150

10−1

100

101

102

103

104

105

106

θLab[deg]

d σ
/d

Ω
 [m

b/
sr

] INC+def+coll
Exp.

FIG. 7. Comparison of angular distribution of proton elastic
scattering on 56Fe at 30.3 MeV between experiment and calculation.

0 50 100 150

10−1

100

101

102

103

104

105

θLab[deg]

d σ
/d

Ω
 [m

b/
sr

]

INC+def+coll
Exp.

FIG. 8. Same as Fig. 7, but for beam energy of 39.8 MeV.

30 MeV at 30◦ are resolved. However, discrepancies remain
in the highest energy part of spectra at 20◦ and 30◦. Next,
we investigate the contribution from collective excitations.
The solid and broken lines respectively indicate the results
of calculations with and without collective excitations. Both
include particle deflection. Compared with experiments, cal-
culations without collective excitations give smaller DDXs
for transitions accompanying small momentum transfers. As
discussed in Sec. II, this underestimation may be attributable
to the crude treatment of Pauli blocking in Eq. (25). However,
the question remains as to whether the present method
would expand the Hilbert space. The inclusion of collective
excitations appears to improve the calculation accuracy and
results in close agreement with experimental observations.

Further validation is done for 29.9 MeV (Fig. 6) in the
same manner as for 61.5 MeV. Experimental DDX data
for the 56Fe(p, p′) reaction are taken from Ref. [29]. From
comparison between dash-dotted lines and broken lines, the
inclusion of particle deflection is found to improve upon the
underestimation found under the existing model. In particular,

0 50 100 150

10−2

10−1

100

101

102

103

104

θLab[deg]

d σ
/d

Ω
 [m

b/
sr

]

INC+ref+vib
Exp.

FIG. 9. Same as Fig. 7, but for beam energy of 65 MeV.
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the influence of deflection is appreciable at 120◦. Nevertheless,
slight underestimation remains at all angles over the entire
energy range. Solid lines show the results of calculations
including both deflection and collective excitation. It is found
that, overall, close agreement is achieved. Although a slight
discrepancy arises from the small structures in experimental
spectra in the low excitation energy regime, which are
attributed to discrete level populations. Here our aim is to
reproduce the general trend of energy distributions, and these
structures are beyond the scope of this paper.

Phenomena like elastic scattering are observed at the high-
est energies of the calculation results in Figs. 5 and 6. These
protons experienced no energy loss, but are deflected twice
at the entrance and exit channels. This process corresponds
to the term given by Eq. (24). Comparisons with experimental
elastic scattering angular distributions were carried out on 56Fe
for 30.3, 39.8, and 65 MeV in Figs. 7 to 9, respectively, since no
data are available at energies 29.9 and 61.5 MeV. Closed circles

indicate experimental data taken from Refs. [30] and [23,24].
Calculation results are indicated by solid lines. All of these
figures show that not only the trend of angular distributions
but also their magnitudes are roughly reproduced in the present
calculation. Large-angle scattering, which cannot be accounted
for by classical particle dynamics, is reproduced.

V. CONCLUSION

To widen the applicable range of the INC model to the
low energy regime below 100 MeV, we introduced collective
excitation and trajectory deflection for both projectiles and
ejectiles. The calculation results for inclusive 56Fe(p, p′x)
reactions at 29.9 and 61.5 MeV indicate that the proposed
model has high predictive power. Close agreement was
obtained for the entire range of experimental observations of
proton-56Fe elastic scattering at 30.3, 39.8, and 65 MeV.
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