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Dynamical cluster-decay model using various formulations of a proximity potential for compact
non-coplanar nuclei: Application to the 64Ni + 100Mo reaction
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The dynamical cluster-decay model (DCM), using the well-known pocket formula of Blocki et al. [Ann. Phys.
(NY) 105, 427 (1977)] for nuclear proximity potential, is extended to the use of various other nuclear proximity
potentials with effects of deformations included up to hexadecapole (β4) and “compact” orientations taken for
both coplanar (� = 0) and non-coplanar (� �= 0) configurations of nuclei for the first time. The other nuclear
proximity potentials used are those derived from the Skyrme-energy-density-formalism-based semiclassical
extended Thomas Fermi method under frozen density approximation for a compound nucleus, using SIII and
GSkI Skyrme forces. This is in addition to extending the Blocki et al. interaction to “compact” and non-coplanar
nuclei. Application of the method is made to the study of the decay of the hot and rotating compound nucleus
164Yb∗, formed in the heavy-ion reaction 64Ni + 100Mo at both below- and above-barrier energies. For the best
fitted measured evaporation residue cross-sections, consisting of x neutrons (x = 1–4), the interesting result of
including the � degree of freedom is to increase the neck-length parameter of the model which results in the
decrease of reaction time as well as the “barrier-lowering” parameter responsible for fusion hindrance effect.
In other words, the fusion hindrance effect, a built-in property of DCM, though different for different nuclear
interactions, reduces for the non-coplanar nuclei, and this reduction is more at higher center-of-mass energies. In
the case of fusion-fission, only the CASCADE cross sections are available, which, when fitted simultaneously to
another neck-length parameter, result in different components of a fusion-fission cross section for different nuclear
interactions, including also the possibility of quasifission at the highest energy and the symmetric fission alone,
that is, no intermediate-mass fragments, etc. The non-coplanar degree of freedom also plays an important role in
changing the constituents of the fusion-fission cross section significantly, say, from intermediate and heavy-mass
fragments plus the symmetric fission to simply the intermediate-mass fragments plus near-symmetric fission.
This situation calls for the data for fusion-fission cross sections.
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I. INTRODUCTION

64Ni + 100Mo → 164Yb∗ is a very well-studied reaction,
both experimentally [1–3] and theoretically [4–7]. This is a
pure compound nucleus (CN) reaction because only the fusion-
evaporation residue (ER) cross section σER, owing to the
emission of light particles (LPs), is measured down to extreme
sub-barrier energies, but no fusion-fission (ff) cross-section σff

could be measured at the near- and/or above-barrier energies
in spite of an estimate from the CASCADE code being available
at the highest two to three energies [1]. The fission channel can
occur owing to any one or all of the CN decay processes of
intermediate-mass fragments (IMFs), heavy-mass fragments
(HMF), and the near-symmetric and symmetric fission (nSF
and SF) fragments, that is, σff = σIMF + σHMF + σnSF + σSF,
where one or all the terms contribute. Then, there could
be the (also not observed for this reaction) non-CN decay
to the quasifission (qf) or deep-inelastic process, where the
incoming channel keeps its identity, such that the total fusion
cross section σfus = σER + σff + σqf. The important point is
that different decay modes are dominant in different nuclear
reactions. The competing qf process for superheavy compound
systems is referred [8] to as the “capture” process; that is,
σqf = σcap.

Jiang et al. [1] have measured the excitation functions
for 64Ni + 100Mo reaction for the incident center-of-mass
(c.m.) energy range Ec.m. = 119.5 to 158.8 MeV, where the
cross-section consists of σER for the below- and above-barrier
energies and the CASCADE estimates of σff at above-barrier
energies (barrier lies around Ec.m. ≈ 140 MeV for 64Ni +
100Mo). At sub-barrier energies, in an earlier experiment,
Halbert et al. [3] obtained the spin distributions for the entry
states of each exit channel. (The entry state of an exit channel
or decay product is the state from which it goes to the ground
state via γ -ray cascade after all LPs emission have taken place.)
The LP-evaporation channels in this work are mainly the 2n,
3n, 4n, and α2n, whose angular momentum � dependencies,
that is, σxn(�), x = 2, 3, . . . , are measured [3]. At and above
barrier energies, in a later experiment, Ackermann et al. [2]
measured the spin distributions (the � dependence of the cross
section) and observed the influence of σff at above-barrier
energies as a long tail in the high-spin region of the measured
spin distribution.

Theoretically, the above-given data for 64Ni + 100Mo →
164Yb∗ have been analyzed on many models, such as the
coupled-channel calculations (ccc) [1,4], the Wong and (�-
summed) extended-Wong model [5,6], and the dynamical
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cluster-decay model (DCM) [7]. In this paper, we extend the
work of Ref. [7] on DCM, which is based on the nuclear
proximity potential of Blocki et al. [9], where the effects of
quadrupole to hexadecapole deformations (β2i , β3i , β4i) and
“optimum” orientations (θopt

i , i = 1, 2) for two nuclei in the
same plane (coplanar nuclei) are included [10]. However, θ

opt
i

are given for quadrupole deformation β2i alone (i.e., β3i = 0,
β4i = 0), and for deformations up to β4i , one must use the
“compact” orientations θci [11], which is done here in this
paper. The difference between the “compact” and “optimum”
configurations can be significantly large (∼20◦) [11]. We
further notice that, for the Blocki et al. potential used in [7], the
total decay or fusion cross section σfus for 164Yb∗ is found to
constitute the fusion-evaporation cross section σER (owing to
LPs consisting of x neutrons, x = 1–4) and the ff cross section
σff consisting of IMF, HMF, nSF, and SF. Because the ff of
64Ni + 100Mo is not yet observed, it will be interesting to see
the predictions of DCM for use of other nuclear potentials, such
as the nuclear proximity potential derived from Skyrme energy
density formalism (SEDF) in semiclassical extended Thomas
Fermi (ETF) approach [12]. This gives a variety of nuclear
proximity potentials for different Skyrme nucleus-nucleus
interactions (more commonly known as Skyrme forces) and
is found [13] to give more realistic barriers in frozen density
approximation of adding the densities for the CN, as compared
to the sudden approximation. We do this here in this paper for
two Skyrme forces SIII and GSkI, and find that the calculated
σff show important differences with the Blocki et al. interaction
used in Ref. [7].

Another point of interest in this study is the inclusion
of non-coplanar degree of freedom, the azimuthal angle �,
in our use of the DCM for non-coplanar nuclei [6]. As
already noted in Ref. [5], this would necessitate refitting of
the only parameter of the model, the neck-length parameter
	R, which could have at least two consequences: First,
the constituents of ff process (components of σff) could be
different for non-coplanar (� �= 0◦) nuclei, as compared to
the case of coplanar nuclei (� = 0◦) in Ref. [7]. Second,
different 	R means different “barrier lowering” parameter
	VB . Because barrier lowering at sub-barrier energies is a
built-in property of DCM [6,7], it would be interesting to
see if non-coplanar degree of freedom � provides a rescue
to the “fusion hindrance” problem in ccc calculations [4]
for 64Ni + 100Mo reaction, or else, how does the magnitude
of 	VB vary for different proximity potentials used here.
Similarly, at above-barrier energies, the non-coplanarity could
influence the contribution of the qf component in fission cross
section [6].

The paper is organized as follows: A brief account of the
DCM for a hot and rotating CN is given in Sec. II. The
nuclei are considered deformed with quadrupole, octupole, and
hexadecapole deformations (β2i , β3i , β4i) taken from Möller
et al. [14] and “compact” orientation (θci , �c) calculated as
per the method described in Ref. [11] for both the coplanar
(�c = 0◦) and non-coplanar (�c �= 0◦) configurations. The
nuclear proximity potential is either from the pocket formula
of Blocki et al. [9] or the one derived from SEDF-based
semiclassical ETF method for different Skyrme forces [12].
Application of DCM to 64Ni + 100Mo → 164Yb∗ reaction is

made in Sec. III, with at least the following three interests
in view: (i) to include the “compact” orientations for both
the coplanar and non-coplanar configurations, (ii) to study
the effect of different nuclear interactions on the ff cross
section, and (iii) to see the effect of Skyrme forces on
“barrier modification” problem at sub-barrier energies, and the
contribution of the qf in fission cross section at above-barrier
energies. The experimental data on fusion-evaporation cross
section σER and CASCADE calculations for ff cross-section σff

are taken from Ref. [1], and the information on evaporation
channels and the channel cross sections are from Refs. [2,3].
Finally, a brief summary and discussion of our results is added
in Sec. IV.

II. THE DYNAMICAL CLUSTER-DECAY MODEL FOR
A HOT AND ROTATING COMPOUND NUCLEUS, USING

DIFFERENT NUCLEAR PROXIMITY POTENTIALS

The DCM of Gupta and collaborators [6,7,15–19] is worked
out in terms of the collective coordinates of mass (and
charge) asymmetries η = A1−A2

A1+A2
(ηZ = Z1−Z2

Z1+Z2
; 1 and 2 stand,

respectively, for heavy and light fragments) and the relative
separation R (� R1 + R2), to which is added the multipole
deformations βλi (λ = 2, 3, 4), orientations θi (i = 1, 2) of two
nuclei or fragments, and the azimuthal angle � between their
principal planes. Note that the deformations βλi are different
for different mass fragments; that is, βλi are different for
different mass asymmetries η, taken to be the same during the
fusion and decay processes. However, the fusion probability
in DCM is taken to be unity (see below), and hence for fusion
only the incoming channel plays the role.

In terms of the above coordinates, for �-partial waves, the
CN decay or the fragment production cross section for each
process is

σ (Ec.m., θi,�) =
�max∑
�=0

σ� = π

k2

�max∑
�=0

(2� + 1)P �
0 P�, (1)

where k =
√

2μEc.m.

h̄2 with μ as the reduced mass. P �
0 is the

fragment preformation probability, referring to η motion, and
P� is the transmission coefficient for each � which describes the
penetration of barrier Vη(R, �), referring to R motion. Both P �

0
and P� depend on Ec.m. (equivalently, temperature T , because
the CN excitation energy E∗

CN = Ec.m. + Qin = 1
10ACNT 2 −

T ; Qin is the entrance channel Q value, and T is in MeV), βλi ,
θi of two nuclei, and �. The deformations of nuclei are kept
fixed in R motion, and independent of temperature T , with
the multipole deformations up to hexadecapole deformations
(β2-β4) and orientations as “hot compact” θci and �c (referring
to highest barrier and smallest interaction radius [11]). For T

dependence of deformations, say, β2(T ), we refer the reader
to Refs. [20,21]. Equation (1) is used for all decay products
(LPs, IMFs, HMFs, nSF, and SF) of a CN, which are all treated
on equal footings as the dynamical collective mass motions of
preformed clusters or fragments through the barrier Vη(R, �).

The CN is considered to be formed with probability equal
to one (an assumption more suitable for higher energies,
but extended here also to lower energies) and, in general,
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FIG. 1. (a) The channel cross section σxn (x = 1–4), and their sum σER, as a function of � for LPs calculated at energies Ec.m. = 141.1
and 129.2 MeV for the Blocki et al. potential (� �= 0 case), plotted on log scale. The �min and �max values are also marked. As for the � = 0
case [7], the contribution of the 1n fragment is shown to be the largest, though contrary to the measurements of Halbert et al. [3]. (b) The total
cross section σER(�) at Ec.m. = 141.1 and 129.2 MeV, plotted on a linear scale. Though the calculated distribution is similar to the measured
one [3], a direct comparison is not possible because the calculated peak value for, say, Ec.m. = 141.1 MeV is about two times higher than
the measured value. Also, contrary to [3], the 4n contribution is four orders of magnitude smaller than the 1n contribution and occurs in a
higher � window. These points are discussed in detail in our earlier work [7] for the � = 0 case, where the � window is nearly the same for
all xn emission and suggest the use of different 	R values for different xn-emission data of Halbert et al. [3]. The same results follow for the
SEDF-based interactions using different Skyrme forces.

independent of the incoming channel. The entrance channel
effects in DCM enter via the maximum angular momentum
�max [22], which is fixed for the vanishing of the LPs cross
section σER → 0 (i.e., σER > 10−9 mb) owing to P0 → 0 at
� = �max, as is illustrated in Fig. 1 for an energy each below
(Ec.m. = 129.2 MeV) and above (Ec.m. = 141.1 MeV) the
barrier. Correspondingly, the minimum contributing � value,
the �min, is also fixed by the same process, owing to P → 0 at
� � �min. (For other details on LP channel cross section, etc.,
see the caption of Fig. 1). �max could also be taken as a variable
parameter [23]. For the qf process, the incoming channel keeps
its identity, and hence in the case of qf, P0 = 1 for all �’s [19].

The preformation probability P �
0 (Ai) [=

|ψ(η(Ai))|2
√

Bηη
2

ACN
] for each � value is the solution

of stationary Schrödinger equation in η, at a fixed R = Ra ,{
− h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
+ VR(η, T )

}
ψ

(ν)
R (η) = E

(ν)
R ψ

(ν)
R (η),

(2)

where Ra = R1(α1, T ) + R2(α2, T ) + 	R(η, T ), with the ra-
dius vectors

Ri(αi, T ) = R0i(T )

[
1 +

∑
λ

βλiY
(0)
λ (αi)

]
. (3)

R0i(T ) are the T -dependent nuclear radii for the equivalent
spherical nuclei [24],

R0i(T ) = [
1.28A

1/3
i − 0.76 + 0.8A

−1/3
i

]
(1 + 0.0007T 2).

(4)

In Eq. (2), ν = 0, 1, 2, 3, ...refer to ground-state (ν = 0)
and excited-state solutions and, for a Boltzmann-like function,
|ψ |2 = ∑∞

ν=0 |ψ (ν)|2exp(−E(ν)/T ). Ra is (are) the first turning
point(s) of the penetration path(s) used for calculating the
penetrability P�, illustrated in Fig. 2 for two � values at a fixed
Ec.m. or T value.

The angle αi in the above equations is that which the nuclear
symmetry axis makes with the radius vector Ri(αi), measured
in the clockwise direction. This is to be distinguished from the
orientation angle θi in Eq. (1) that the nuclear symmetry axis
makes with the collision Z axis, measured in the anticlockwise
direction (see Fig. 3). In the definition of Ra above, 	R is the
relative separation distance between two fragments/clusters
Ai , as is also illustrated in Fig. 2. In the language of the
two-center shell model (TCSM), used to determine shell
effects δU [like in Eq. (6) below], 	R is shown to assimilate
the neck formation effects [25–27], and hence is referred to
as the neck-length parameter. This is more true for fission
fragments and not for neutron clusters as one of the fragments,
but is similar to that used in both the scission-point [28] and
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FIG. 2. The scattering potentials V (R) for 64Ni + 100Mo →
164Yb∗ → 163Yb + n, at two different � values, calculated by using
the Blocki et al. potential for compact orientations (θci , �c). The
decay path, defined by V (Ra, �) for each � is shown to begin at
Ra = R1 + R2 + 	R for each � value. The definition of “barrier
lowering” 	VB = V (Ra) − VB is also shown in this figure for both
the �min and the �max values. Note, 	VB values reduce when going
from (θopt

i , �=0) to (θci , �c) (compare with Fig. 1 of Ref. [7]).

saddle-point [23,29] statistical fission models for calculating
the ER and fission cross sections. The parameter 	R fixes
the first turning point of barrier penetration, referring to the
actually used barrier height V (Ra, �), and consequently to
the concept of “barrier lowering” 	VB(�) (defined below). It
may be worth noting that the use of neck-length parameter,
equivalently, “barrier modification,” helps us to account for
the fusion hindrance effect at sub-barrier energies, because the
effective potential gets significantly modified. The choice of
	R for the best fit to the data (here, ER) allows us to define

ψ2

n 

α1

α2

θ1

θ2

α1-θ1

180+θ2-α2

R1(α1) R2(α2)

R  

s0X1 X2

P1

P2

ψ1

n 
Z 

FIG. 3. Schematic configuration of any two axially symmetric
deformed, oriented nuclei lying in the same plane (� = 0◦).

the effective “barrier lowering” parameter 	VB(�) for each �

as the difference between the actually used barrier V (Ra, �)
and the top of the calculated barrier VB(�), as

	VB(�) = V (Ra, �) − VB(�). (5)

Note, 	VB is defined as a negative quantity, and hence the
actually used barrier is effectively lowered, as shown in Fig. 2
for two � values.

In Eq. (2), the mass parameters Bηη are the smooth
hydrodynamical masses [30], used for reasons of simplicity.
Thus, the microscopic shell effects in masses Bηη are not
included here. A more realistic prescription would be to use
the cranking masses, consistently calculated by using the
underlying asymmetric two-center shell model (ATCSM) with
BCS formalism as its basis (see, e.g., the Bηη calculations in
Refs. [31–33]).

The fragmentation potential VR(η, T ) in Eq. (2) is
defined as

VR(η, T )

= −
2∑

i=1

[VLDM(Ai, Zi, T )] +
2∑

i=1

[δUi] exp

(
−T 2

T 2
0

)

+VP (R,Ai, βλi, θi,�, T ) + VC(R,Zi, βλi, θi,�, T )

+V�(R,Ai, βλi, θi,�, T ), (6)

where VLDM is the T -dependent liquid drop energy of Davidson
et al. [34], based on Seeger’s semiempirical mass formula [35],
and δU are the “empirical” shell corrections from Myers and
Swiatecki [36], taken to go to zero exponentially with T . T0 =
1.5 MeV from the classical work of Jensen and Damgaard [37],
which means that the shell-correction term becomes nearly
zero for T > 4 MeV. Seeger’s constants at T = 0 are refitted
by one of us (R.K.G.) and collaborators [38–40] by defining the
experimental binding energy B of a nucleus as B = VLDM(T =
0) + δU . This procedure takes care of the missing deformation
effects in Ref. [36] to some extent and is applied to all nuclei.
The T dependence in constants of VLDM is then included as per
Fig. 1 in Ref. [34]. A more realistic method for calculating the
shell effects δU is to use, say, the deformed TCSM [41], but
then we have to carry out a large numerical calculation, and
thus lose the analyticity of Myers and Swiatecki’s formula.

The terms VC , V�, and VP in Eq. (6), for coplanar (� = 0◦)
nuclei, are the T - and θi-dependent Coulomb and �-dependent
and nuclear proximity potentials, respectively, as

VC = Z1Z2e
2

R
+ 3Z1Z2e

2
∑

λ,i=1,2

Rλ
i (αi, T )

(2λ + 1)Rλ+1

×Y
(0)
λ (θi)

[
βλi + 4

7
β2

λiY
(0)
λ (θi)

]
, (7)

V� = h̄2�(� + 1)

2IS

, (8)

with IS = μR2 + 2
5A1mR2

1(α1, T ) + 2
5A2mR2

2(α2, T ), the
sticking moment-of-inertia, and

VP = 4πR̄(T )γ b(T )φ(D(T )), (9)
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where the nuclear surface thickness [24],

b(T ) = 0.99(1 + 0.009T 2), (10)

γ = 0.9517[1 − 1.7826(N−Z
A

)2] MeV fm−2 is the surface
energy constant, and φ(D) is the universal function, which is
independent of the shapes of nuclei or the geometry of nuclear
system but depends on the dimensionless variable D = s/b,
where s(T ) is the separation distance with a minimum value
s0(T ) (see Fig. 3). For the proximity potential of Blocki
et al. [9],

φ(D) =
{

− 1
2 (D − 2.54)2 − 0.0852(D − 2.54)3,

−3.437exp
(− D

0.75

)
,

(11)

respectively, for D(T ) � 1.2511 and � 1.2511, with the s0

given as (see Fig. 3)

s0 = R − X1 − X2

= R − R1(α1, T ) cos(θ1 − α1) − R2(α2, T )

× cos(180 + θ2 − α2), (12)

minimized in α’s. The minimization conditions, known as
normal vector conditions, are

tan(θ1 − α1) = −R′
1(α1)

R1(α1)
,

(13)

tan(180 + θ2 − α2) = −R′
2(α2)

R2(α2)
,

with the R′
i(αi) being the first-order derivative of Ri(αi) with

respect to αi .
Similarly, in the semiclassical ETF approach, based on

SEDF, the universal function φ(D) of nuclear proximity
potential in Eq. (9), for the Skyrme Hamiltonian density
H (ρ, τ, �J ), is given as [12]

φ(D) = 1

2γ b

∫
{H (ρ, τ, �J ) − [H1(ρ1, τ1, �J1)

+H2(ρ2, τ2, �J2)]}dz

= φP (D) + φJ (D), (14)

where

φP (D) = 1

2γ b

∫
{H (ρ) − [H1(ρ1) + H2(ρ2)]}dz,

φJ (D) = 1

2γ b

∫
{H ( �J ) − [H1( �J1) + H2( �J2)]}dz,

for the composite system, under frozen density approximation,
ρ = ρ1 + ρ2, τ = τ (ρ) = τ1(ρ1) + τ2(ρ2), and �J = �J (ρ) =
�J1(ρ1) + �J2(ρ2). Note that in the ETF approach, though both

the kinetic-energy density τ and spin-orbit density �J are
functions of the nuclear density ρ, the �J -dependent and
�J -independent functions are written separately because the

two behave differently [φP (D) is mainly attractive and φJ (D)
is mainly repulsive].

Then, following our earlier work [42], using the T -
dependent two-parameter Fermi density (FD) distribution in

slab approximation (required for proximity potential),

ρi(zi) = ρ0i(T )

[
1 + exp

(
zi − R0i(T )

a0i(T )

)]−1

−∞ � z � ∞, (15)

with z2 = R − z1, and central density ρ0i(T ) = 3Ai

4πR3
0i (T )

[1 +
π2a2

0i (T )
R2

0i (T )
]−1; the universal functions φP (D) and φJ (D) for use of

the various Skyrme forces such as SII, SIII, SIV, SkM∗, SLy4,
SKa, MSK1, and SGII, etc., calculated for some 35 cases of
colliding pairs of nuclei with CN mass up to A = 294, are
parametrized [12] as

φP (D) =
{
−φ0

P exp[−a(D − D0)1.67] for D � D0,

−φ0
P + b(D − D0)2 for D � D0,

(16)

and

φJ (D) =
{

φ0
J exp[−cD2] for D � 0,

φ0
J − dD − eD2 − f D3 − gD4 for D � 0,

(17)

with constants φ0
P , D0, a, and b of φP (D) and φ0

J , c, d, e,
f , and g of φJ (D) for different Skyrme forces obtained as
given in Table I of Ref. [12]. The constant φ0

P gives the
maximum attraction of φP (D) at D = D0 and φ0

J as the
maximum repulsion of φJ (D) at D = 0. The half-density radii
R0i(T = 0) and surface-thickness parameters a0i(T = 0) in
Eq. (15) are obtained [12] by fitting the experimental data
to respective polynomials in nuclear mass range A = 4–238,
to give

R0i(T = 0) = 0.9543 + 0.0994Ai − 9.8851 × 10−4A2
i

+ 4.8399 × 10−6A3
i − 8.4366 × 10−9A4

i , (18)

a0i(T = 0) = 0.3719 + 0.0086Ai − 1.1898 × 10−4A2
i

+ 6.1678 × 10−7A3
i − 1.0721 × 10−9A4

i . (19)

The temperature dependence in the above formulas are then
introduced as in Ref. [43],

R0i(T ) = R0i(T = 0)[1 + 0.0005T 2], (20)

a0i(T ) = a0i(T = 0)[1 + 0.01T 2]. (21)

Note that the surface width b is also T dependent [Eq. (10)].
Apparently, φ(D) in Eq. (14) can be calculated “exactly” by
solving the actual integrals or in terms of the parametrized
polynomial functions of Eqs. (16) and (17). In the following,
we solve the actual integrals in Eq. (14) for the Skyme forces
SIII and GSkI. Note that SIII is an old force [44,45], and GSkI
was given recently [46,47], made more appropriate for the
isospin-rich nuclei, as is the case for the reaction studied here.

Next, R̄(T ) in Eq. (9), the mean curvature radius, charac-
terizing the points of closest approach s0, for nuclei lying in
the same plane (� = 0◦), is

1

R̄2
= 1

R11R12
+ 1

R21R22
+ 1

R11R22
+ 1

R21R12
, (22)

where Ri1 and Ri2 are the principal radii of curvatures at the
points P1 and P2 in Fig. 3. For explicit expressions of Ri1 and
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TABLE I. Calculated fusion-evaporation cross sections σ Cal.
ER compared with the experimental σ

Expt.
ER data of Ref. [1]. Also tabulated is the

ff cross section σ Cal.
ff , compared with the CASCADE data σCASCADE

ff of Ref. [1]. The zeros in the last column are as quoted in Ref. [1]. In DCM
calculations, the SF window for SIII and GSk1 (� = 0) refers to (A/2) ± 17. For Blocki et al. (� �= 0) ff consists of IMF and nSF, where
IMF refers to A2 = 5–14 and nSF to A2 = 61–68 and its complimentary fragments. This is to be compared with Blocki et al. (� = 0) where
ff consists of IMF, HMF, and SF [7].

Ec.m. DCM Experimental DCM Calculated
(MeV) σ Cal.

ER σ
Expt.
ER σ Cal.

ff σCASCADE
ff

(mb) (mb) (mb) (mb)
LPs Ref. [1] Ref. [1]

(1n-4n) SF IMF + nSF
SIII GSkI Blocki SIII GSkI Blocki

(� = 0) (� �= 0) (� = 0) (� �= 0)

158.8 272.83 266.34 277.0154 264 ± 35 275.2 270.65 260.6 275
149.9 216.21 206.12 188.2143 210 ± 25 82.08 82.344 83.0 80
141.1 83.60 76.05 81.4355 80.0 ± 8.8 2.1508 2.2887 8.72 2
136.1 31.423 29.02 29.217 29.2 ± 3.0 0.193 11 0.0997 2.03 0
131.2 6.41 6.81 6.665 6.80 ± 0.71 5.46 × 10−3 4.15 × 10−3 0.4067 0
129.2 2.86 2.73 2.87 2.87 ± 0.30 3.24 × 10−4 4.39 × 10−4 0.1837 0
127.5 0.93 1.08 1.06 0.92 ± 0.10 2.11 × 10−5 2.13 × 10−5 0.0707 0
126.2 0.36 0.36 0.256 0.35 ± 0.04 2.21 × 10−6 3.98 × 10−6 0.011 56 0
125.0 0.107 0.103 0.1175 0.109 ± 0.012 5.18 × 10−7 8.29 × 10−8 3.106 × 10−3 0
123.9 0.0274 0.0272 0.0278 0.0253 ± 0.0029 7.09 × 10−8 7.22 × 10−9 6.88 × 10−4 0
123.3 0.0128 0.0145 0.0101 0.0132 ± 0.0014 2.29 × 10−8 2.20 × 10−9 1.84 × 10−4 0
122.9 7.54 × 10−3 7.46 × 10−3 0.0058 7.4 ± 0.87 × 10−3 1.31 × 10−8 8.52 × 10−10 5.63 × 10−5 0
121.7 1.10 × 10−3 1.31 × 10−3 0.0018 1.10 ± 0.16 × 10−3 5.34 × 10−10 8.18 × 10−12 1.41 × 10−5 0
121.2 2.63 × 10−4 2.62 × 10−4 3.8 × 10−4 2.42 ± 0.41 × 10−4 2.50 × 10−11 9.97 × 10−13 3.05 × 10−6 0
120.2 2.09 × 10−5 1.75 × 10−5 1.05 × 10−4 <2.0 × 10−5 3.45 × 10−13 1.76 × 10−14 4.96 × 10−7 0
119.5 4.78 × 10−6 2.48 × 10−6 1.83 × 10−5 <4.6 × 10−6 6.56 × 10−14 1.61 × 10−15 8.54 × 10−8 0

Ri2 and other details on generalized proximity potential for
coplanar nuclei, see Ref. [48].

Finally, for non-coplanar nuclei (� �= 0◦), we use the
same formalism as for � = 0◦ above, but by replacing the
out-of-plane nucleus (i = 1 or 2) with the corresponding
radius parameter Ri(αi) with its projected radius parameter
RP

i (αi) in both the Coulomb and the proximity potentials.
For Coulomb potential, it enters via Ri(αi) itself, and for the
proximity potential it enters via the definitions of both the
mean curvature radius R̄ and the shortest distance s0 [49]. The
RP

i (αi) is determined by defining, for the out-of-plane nucleus,
two principal planes X′Z′ and Y ′Z′, respectively, with radius
parameters Ri(αi) and Rj (δj ), such that their projections into
the plane (XZ) of the other nucleus are (see Fig. 1 in Ref. [49])

RP
i (αi) = Ri(αi) cos � i = 1 or 2, (23)

and

RP
j (δj ) = Rj (δj ) cos(� − δj ) j = i = 1 or 2. (24)

Then, maximizing Rj (δj ) in angle δj , we get

RP
i (αi) = RP

i (αi = 0◦) + RP
i (αi �= 0◦)

= RP
j

(
δmax
j

) + Ri(αi �= 0◦) cos �, (25)

with δmax
j given by the condition (for fixed �),

tan(� − δj ) = −R′
j (δj )

Rj (δj )
. (26)

Thus, the � dependence of projected radius vector RP
i (αi) is

also contained in maximized RP
j (δmax

j ). For further details, see
Ref. [49]. Then, for nuclear proximity potential, denoting by
V 12

P the potential for the nucleus 1 to be out of plane and by
V 21

P for the nucleus 2 to be out of plane, the effective nuclear
proximity potential

VP = 1
2

[
V 12

P + V 21
P

]
. (27)

Note that it is the first time that the semiclassical ETF approach
based on SEDF is used in DCM for calculating the nuclear
proximity potential.

The penetrability P� in Eq. (1) is the WKB integral between
Ra and Rb, with Rb as the second turning point,

P� = exp

[
−2

h̄

∫ Rb

Ra

{2μ[V�(R, T ) − Qeff]}1/2dR

]
, (28)

solved analytically, satisfying

V (Ra, �) = V (Rb, �) = Qeff(T , � = �min) = T KE(T ). (29)

This means that V (Ra, �) acts like an effective Q value,
Qeff(T , �), given by the total kinetic energy TKE(T ). As �

value increases, the Qeff(T ) [=TKE(T )] increases, and hence
V (Ra, �) increases. Thus, Ra acts like a parameter through
	R(η, T ), and we define that Ra is the same for all � values,
that is, V (Ra) = Qeff(T , � = 0). This is required because we
do not know how to add the � effects in binding energies. It is
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FIG. 4. The fragmentation potential V (Ai) for the charge-favored
fragments of the compound system 164Yb∗ formed in the 64Ni +
100Mo reaction at a fixed temperature T = 2.0 MeV (equivalently,
Ec.m. = 158.8 MeV) and 	R = 2.2 fm for A2 = 1–4 (and compli-
mentary fragments) and 1.5 fm for all other heavier fragments, using
compact orientations (θci , �c), for the Blocki et al. [9] interaction
potential. Mass-1, -2, -3, and -4 fragments are taken to be 1n to 4n.

relevant to remind the reader here also that the reduced mass μ

in Eq. (28) is a rough approximation to the cranking mass BRR

in the R coordinate, whose average over η (i.e., B̄RR) goes to
μ asymptotically (see, e.g., Fig. 2(a) in [50]). However, in this
paper, we do not carry out the microscopic shell-model-based
calculations.

III. CALCULATIONS AND RESULTS

A. Fusion-evaporation cross sections: Role of non-coplanarity
and different nuclear interactions on fusion hindrance

phenomenon

In this section, we look for the effects of adding a non-
coplanar degree of freedom (� �= 0) and of using various
nuclear interactions on the fusion hindrance phenomenon in
the chosen 64Ni + 100Mo reaction.

Figure 4 illustrates the mass fragmentation potential V (Ai),
minimized in charge coordinate ηZ , for 164Yb∗ using the Blocki
et al. interaction potential at two � values (� = 0 and �max),
calculated for a fixed T = 2.0 MeV and 	R = 2.2 fm for
LPs (A2 = 1–4) and 1.5 fm for the remaining ff fragments
(A2 = 5 − A/2; discussed in next section). Here, T = 2.0
MeV corresponds to the highest center-of-mass energy Ec.m. =
158.8 MeV and 	R to the best fit of evaporation-residue
(LPs) and CASCADE ff data in the 64Ni + 100Mo reaction
[1]. Similar calculations are made for SEDF-based ETF

FIG. 5. Calculated fusion-evaporation excitation functions for
64Ni + 100Mo → 164Yb∗ reaction using different nuclear interactions,
compared with experimental data [1]. � is included for the case of
Blocki et al.

method using Skyrme forces SIII and GSkI under frozen
density approximation, resulting in similar V (Ai) but with
different 	R values for an equally good fit to both ER and
CASCADE fission data. In all cases, the energetically favored
fragments for LPs were taken to be 1n, 2n, 3n, and 4n,
even though 1n is not observed in experiments [3] but is
known [7] to contribute maximum to ER cross section in
DCM. Other minima of interest in Fig. 4 are the 6Li and
8Be minima because, in experiments at another above-barrier
energy (Ec.m. = 141.7 MeV) [3], one of the residues indicated
is α2n, which may, in fact, be an IMF 6Li, instead.

Table I and Fig. 5 show our calculated fusion-evaporation
cross section σER as a function of Ec.m. for the compound
system 164Yb∗, using the Blocki et al. and Skyrme forces SIII
and GSkI, compared with the experimental data [1]. Here, LPs
consist of 1n, 2n, 3n, and 4n and effects of deformations (β2,
β3, β4) and compact orientations of hot fusion (θci , �c) are
included. �c �= 0 for the Blocki et al. interaction but equal
to zero for both the Skyrme forces, and the same (�c = 0)
for the case of Blocki et al. interaction was studied earlier in
Ref. [7], where the role of deformations was also shown to
be important, and the contribution of mass-1 fragment (1n) to
σER was largest [this is also true for the present calculations of
�c �= 0, as is evident from Fig. 1(a)]. The only parameter of the
model, used to fit the data, is the neck-length 	R(T ), obtained
as shown in Fig. 6(a). The fitting of the data in Fig. 5 is rather
very good in each case, with the 	R(T ) varying smoothly
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FIG. 6. (a) Variation of the neck-
length parameter 	R with Ec.m., obtained
for the best fit to fusion-ER data in
Fig. 5, using Blocki et al. interaction
and Skyrme forces SIII and GSkI. For
Blocki et al., both the cases of coplanar
(� = 0) and non-coplanar (� �= 0) nuclei
are considered. The ER is taken to consist
of LPs = xn, x = 1–4. (b) Same as for (a)
but the variation of the “barrier-lowering”
parameter 	VB for � = �max, with Ec.m.

for the case of 1n decay, defined by Eq. (5)
and in Fig. 2.

from above-barrier to below-barrier energies. The interesting
results are as follows. (i) Different nuclear interactions result
in different functional dependencies for 	R(T ), but happen
to be nearly identical for some forces [compare Blocki et al.
(�c = 0 case) with GSkI, though the one for Blocki et al. is
for θ

opt
i [7] and GSkI for θci]. This has important consequences

for the choice of a proper nuclear interaction, which is shown
more explicitly in Ref. [47] for the use of the extended-Wong
model. (ii) In going from �c = 0 to �c �= 0 for the Blocki et al.
interaction, 	R increases significantly, more so at higher Ec.m.

(equivalently, T ) values. The increase in 	R means that the
reaction time decreases, that is, the reaction becomes relatively
more prompt, and that, by definition, the barrier-lowering
parameter 	VB decreases. This is illustrated in Fig. 6(b) for 1n

emission from 164Yb∗ (the same result holds good for 2n, 3n,
and 4n decays). Only the case of � = �max is shown here, and
exactly the same result is evident from Fig. 2 at other � values.
We notice in Fig. 6(b) that the variation of 	VB with Ec.m. is
of similar order for all the three interactions for � = 0 case
(coplanar nuclei). For the non-coplanar (� �= 0) case, however,
	VB decreases considerably, more so at higher energies, which
signifies a decrease in “fusion hindrance effect” owing to the
addition of non-coplanar degree of freedom �. The hindrance
effect is apparently more at sub-barrier energies, a built-in
property of DCM [7].

Finally, it may be noted from Fig. 2 that in DCM, the
	R and �max are related quantities, and our choice of 	R is
good within �max ± 1, fixed for LPs cross section σER → 0 at
� = �max value. Figure 7 shows the variation of �max(Ec.m.) for
both coplanar and non-coplanar considerations. We notice that
it is a smooth function both at below and above barrier energies
for the Skyrme forces as well as Blocki et al. interaction.
Evidently, in DCM, the physics of the problem is shown to be
contained in 	R or, equivalently, in �max or 	VB as a function
of Ec.m., introduced first in Ref. [7] for coplanar nuclei (� = 0)
and extended here to non-coplanar nuclei (� �= 0), including
also the role of using different nuclear proximity potentials.

B. Fusion-fission cross sections: Role of non-coplanarity and
different nuclear interactions on quasifission component and

constituents of fusion-fission process

The calculated ff excitation function σ Cal.
ff (Ec.m.) is also

given in Table I, and plotted in Fig. 8(a), for the 	R(Ec.m.)
fitted to CASCADE data [1], as shown in Fig. 8(b) for the Blocki

FIG. 7. Same as for Fig. 6(a), but for �max as a function of Ec.m..
For Blocki et al., only the case of non-coplanar (� �= 0) nuclei is
shown.
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FIG. 8. (a) Same as for Fig. 5, but for
the ff cross section σff. The DCM calcu-
lated σ Cal.

ff for different nuclear proximity
interactions, for coplanar (� = 0) and
non-coplanar (� �= 0) cases is compared
with CASCADE data from Ref. [1]. (b) The
neck-length parameter 	R as a function
of Ec.m. for the simultaneously fitted ff
cross section σCASCADE

ff .

et al. (� = 0 and � �= 0) interaction and the two Skyrme
forces (� = 0). The � = 0 case of Blocki et al. interaction is
from Ref. [7]. For comparison, the CASCADE data are also
given in Table I as well as in Fig. 8(a). We notice from
Table I and Ref. [7] that the components of σ Cal.

ff are different
for different cases of interaction and angle � (further shown in
Fig. 9, and discussed below). We notice in Table I and Fig. 8(a)
that the fits are nearly exact for both the Skyrme forces, but
show some disagreement for at least the highest energy and
hence the possible presence of some qf component in both the

cases (� = 0 or � �= 0) of Blocki et al. interaction. Note that,
at near- and below-barrier energies, all calculations predict the
σff to be small or nearly zero, in agreement with CASCADE

data. The 	Rff in Fig. 8(b) show that they are different from
	RER obtained in Fig. 6(a) for σER, but are nearly the same for
all cases except for the GSkI (� = 0) force. For GSkI, 	Rff

is rather large, which happens because the barrier in this case
lies at a much larger R value (see, e.g., Fig. 3 in Ref. [13] or
Fig. 6 in Ref. [47]), and hence, compared to SIII force, the Ra

is larger for GSkI force.

FIG. 9. The �-summed fragment preformation probability P0, penetrability P , and the decay cross section σ (in mb), as a function of the
light fragment mass number A2, for compound system 164Yb∗ at Ec.m. = 158.8 MeV for different interactions and both the � = 0 and the
� �= 0 cases.
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Figure 9 depicts the �-summed P0, P , and σ as the function
of the light-mass fragment A2 for the highest-energy Ec.m. =
158.8 MeV in 64Ni + 100Mo → 164Yb∗ reaction, using the
three nuclear interaction potentials for both the coplanar and
the non-coplanar cases. Measurements of such decay cross
sections as a function of CN excitation energy E∗

CN, for
some light fragments of the CN 164Yb∗, are available [51],
but all at higher incident c.m. energies (Ec.m. > 195 MeV).
Hence, a direct comparison between the calculations and
data is not possible. However, we first compare the case
of � �= 0 for Blocki et al. interaction in Fig. 9(a) with
its � = 0 case in Fig. 10 of Ref. [7]). Interestingly, in
going from � = 0 to � �= 0, the components of σ Cal.

ff reduce
from IMF + HMF + SF to only IMF + nSF. In particular,
the peak around 45Ca or 48Ti, referring to the HMF region
A2 = 40–50 in the � = 0 case, is now lowered, and the
other peaks around 70Zn and 75Ge, referring to the SF region
A/2 ± 20 (for � = 0 case), disappear, such that for the
� �= 0 case, only IMF (A2 = 5–14) and nSF (A2 = 61–68)
contribute to σff. However, in changing the interaction from
Blocki et al. (� = 0) to Skyrme forces (� = 0), only the
SF component A/2 ± 17 or ±20 contributes. In other words,
both the non-coplanarity and choice of nuclear interactions are
important for the predictions of various components of σff. In
addition, the qf component is also possible, as noted in the last
paragraph above. Thus, experimental measurements of σff are
called for.

IV. SUMMARY

Application of the DCM, made to 64Ni + 100Mo → 164Yb∗
reaction with measured ER cross sections at both below- and
above-barrier energies, for use of the Blocki et al. nuclear
proximity potential to “optimally” oriented coplanar (� = 0)
nuclei, is extended here to include the deformations up to
hexadecapole (β4) and “compact” orientations of non-coplanar
(� �= 0) nuclei, as well as to the use of various other nuclear
proximity potentials derived from the semiclassical ETF
approach in SEDF. The Skyrme forces SIII and GSkI are
used, and the densities for CN are added in frozen-density
approximation.

The fusion-evaporation cross section, consisting of x

neutrons (x = 1–4), is fitted to the only parameter of the model,

the neck-length parameter 	R. For a best fit to the data, 	R

as a function of Ec.m. increases considerably in going from
� = 0 to � �= 0 case, and more so at higher c.m. energies.
For the � = 0 case, 	R(Ec.m.) is different for the two Skyrme
forces, and the GSkI (for compact orientations θci) behaves
similar to that of Blocki et al. (for optimum orientations
θ

opt
i ). Different values of 	R for different interactions and

� values have important consequences for the reaction times,
as well as the “barrier-lowering” parameter responsible for
fusion hindrance phenomenon. Apparently, as 	R increases,
both the reaction time and the barrier-lowering parameter 	VB

decrease. Thus, fusion hindrance effect is different for different
nuclear interactions, and with the inclusion of non-coplanar
degree of freedom it decreases considerably, particularly at
higher center-of-mass energies.

For the ff process, only the CASCADE data is available
at the three highest above-barrier energies. At near- and
below-barrier energies, the CASCADE analysis predicts zero
ff cross section. For the simultaneous fitting of the neck-
length parameter, we find that the components of fission
cross section are different for different interaction potentials
and for coplanar (� = 0) and non-coplanar (� �= 0) nuclei.
For � = 0 case, the fit to data is almost exact for the two
Skyrme forces, but show the necessity of qf component
in the case of Blocki et al. interaction, which does not
get reduced, even when including the case of non-coplanar
(� �= 0) nuclei. The two Skyrme forces predict the SF with
A/2 ± 17 alone for the � = 0 case, whereas in going from
� = 0 to � �= 0 configurations, the constituents of fission
cross section for Blocki et al. interaction change from a
sum of IMFs (A2 = 5–20), HMFs (A2 = 40–50), and the SF
(A/2 ± 20) to IMFs (A2 = 5–14) and nSF (A2 = 61–68) plus
the complimentary heavier fragments. Only the availability of
experimentally measured ff cross section would decide the role
of non-coplanarity and the best operative nuclear interaction.
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[14] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data
Nucl. Data Tables 59, 185 (1995).

[15] M. K. Sharma, G. Sawhney, R. K. Gupta, and W. Greiner, J
Phys. G: Nucl. Part. Phys. 38, 105101 (2011).

[16] R. K. Gupta, in Clusters in Nuclei, Lecture Notes in Physics 818,
edited by C. Beck (Springer-Verlag, Berlin, Heidelberg, 2010),
Vol. I, p. 223.

[17] R. Kumar and R. K. Gupta, Phys. Rev. C 79, 034602 (2009).
[18] R. K. Gupta, S. K. Arun, R. Kumar and Niyti, Int. Rev. Phys.

(I. RE. PHY.) 2, 369 (2008).
[19] B. B. Singh, M. K. Sharma, and R. K. Gupta, Phys. Rev. C 77,

054613 (2008).
[20] M. Muenchow and W. Scheid, Nucl. Phys. A 468, 59

(1987).
[21] M. Rashdan, A. Faessler, and W. Waida, J. Phys. G: Nucl. Part.

Phys. 17, 1401 (1991).
[22] B. B. Singh, M. K. Sharma, R. K. Gupta, and W. Greiner, Int. J.

Mod. Phys. E 15, 699 (2006).
[23] S. J. Sanders, D. G. Kovar, B. B. Back, C. Beck, D. J. Henderson,

R. V. F. Janssens, T. F. Wang, and B. D. Wilkins, Phys. Rev. C
40, 2091 (1989).

[24] G. Royer and J. Mignen, J. Phys. G: Nucl. Part. Phys. 18, 1781
(1992).

[25] S. Kumar and R. K. Gupta, Phys. Rev. C 55, 218 (1997).
[26] H. S. Khosla, S. S. Malik, and R. K. Gupta, Nucl. Phys. A 513,

115 (1990).
[27] R. K. Gupta, S. Kumar, and W. Scheid, Int. J. Mod. Phys. E 6,

259 (1997).
[28] T. Matsuse, C. Beck, R. Nouicer, and D. Mahboub, Phys. Rev.

C 55, 1380 (1997).

[29] S. J. Sanders, Phys. Rev. C 44, 2676 (1991).
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