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Background: The nucleon-nucleus dispersive optical model (DOM) has been successful in providing good fits
to scattering data and in making valuable predictions for bound-state properties in single- and double-closed shell
nuclei. However, the generalizability of the DOM remains an ongoing issue.
Purpose: We investigate the DOM in the continuum and bound-state regions of the open-shell, self-conjugate
nuclei 28Si and 32S. We collect new differential cross section and analyzing power data for elastic scattering at
incident neutron energies between 8.0 and 18.9 MeV.
Methods: The measurements were conducted using a pulsed deuteron beam, the 2He(d ,n)3He source reaction,
and time-of-flight techniques. All data were corrected for finite-geometry effects. Phenomenological DOM
potentials were tailored to fit the differential and total cross section data, and then extrapolated to the bound-state
regions. The DOM bound-state predictions were then compared to experimental data available for single-particle
energies, occupation probabilities, root-mean-square radii, and spectroscopic factors.
Results: The DOM bound-state predictions are in only fair agreement with experimental data and with USD
shell-model predictions. Similar results are found after converting our neutron DOMs into proton DOMs.
We investigate the separate effects of the dispersive surface and volume potential components on occupation
probability and find that the volume component leads to a uniform depletion of the hole states, while the
surface component acts mainly to deplete the valence orbitals. We compare these results to those of a variational
multiparticle multihole configuration mixing (mp-mh CM) calculation using the Gogny D1S effective force.
Conclusions: We find that the phenomenological DOM, which was originally designed for spherical nuclei,
show certain deficiencies when applied to open-shell nuclei and suggest possible avenues of improvement. We
also find that the predictions of occupation probability by the DOM using the dispersive surface component are
similar to those by the mp-mh CM. This lends support to the interpretation that the surface absorption in the
optical model originates from particle-vibration couplings, that is, long-range correlations.
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I. INTRODUCTION

For over 60 years, the nuclear optical model (OM) has
provided a means of analyzing nuclear scattering data, both to
characterize the nucleon-nucleus interaction and to represent
nuclear data for applications in other research and in engineer-
ing [1]. Some of the most challenging nuclei to model have
been those, such as 28Si and 32S, with relatively low atomic
number and nonspherical properties. The Triangle Universities
Nuclear Laboratory (TUNL) has made a dedicated study of
neutron scattering from light nuclei to determine the limits of
the OM approach. The present high-precision measurements of
differential cross section, σ (θ ), and analyzing power, Ay(θ ),
for elastic scattering complement data previously taken by
TUNL. For 28Si(n,n), we report on σ (θ ) at En = 15.4 and
18.9 MeV and Ay(θ ) at 15.4 and 18.6 MeV. For 32S(n,n), we
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report on σ (θ ) at seven energies from 8.0 to 18.9 MeV and
Ay(θ ) at four energies from 9.9 to 16.9 MeV.

Our study investigates the limits of a specific type of OM,
the dispersive optical model (DOM) of Mahaux and Sartor [2].
One benefit of the DOM is that it uses a dispersion relation
linking the imaginary and real parts of the OM potential, which
introduces a nonlinear energy dependence to the real strengths
that is more detailed and physical than those of traditional
OMs. Another is that the DOM simultaneously describes
the positive-energy scattering regime and the negative-energy
bound-state regime with a single, unified potential.

In recent years DOM studies have experienced a new
impetus, with a focus placed on the asymmetry dependence
of nucleon correlations in stable single- and double-closed
shell nuclei spanning the 40 < A < 208 mass region [3–5].
By using many-body Green’s function methods, these recent
DOM studies conclude that the surface-imaginary potential
is associated with long-range correlations (LRCs), while the
volume-imaginary potential is associated with short-range
correlations (SRCs). Correlations have specific effects on
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the bound-state quantities, particularly on the occupation
probabilities, Nnlj , and spectroscopic factors, Snlj , of the
nucleon orbitals. LRCs originate from coupling between
the nucleons of the independent particle model and the
collective excitations of a nucleus [6,7], namely vibrations in
spherical nuclei and collective excitations in open-shell nuclei
(rotational and vibrational). Theory and DOM calculations for
spherical nuclei indicate that LRCs smear out the Fermi sea and
lead to significant quenching of the Snlj for valence orbitals [6].
SRCs stem from the short-range nature and tensor component
of the bare nucleon-nucleon force and manifest through the
presence of strongly correlated pairs in nuclei [8]. Evidence
for SRC effects in DOM calculations is rooted in the 1s1/2

proton occupation probabilities of Ca isotopes, which take on
values close to Nnlj = 0.90 [5]. The fact that similar Nnlj

values have been calculated for 1s1/2 neutron orbitals through
the same isotopic chain, and also for the 1s1/2 proton level
in 208Pb, suggests that SRC effects on the Nnlj of the deepest
nucleon orbitals of spherical nuclei do not significantly depend
upon nuclear mass.

The present study explores the predictive power of the DOM
in the continuum and bound-state regions for the open-shell
nuclei 28Si and 32S. Of course, we do not expect perfect
agreement between the DOM predictions and data. Both nuclei
are deformed in their ground states (displaying oblate and
prolate shapes, respectively, in the intrinsic reference frame)
and feature rotational states in their excitation spectra. Our
DOM analyses neglect the coupling between the ground states
and the collective states. From previous scattering studies, it
is known that the phenomenological OM does not account
for certain effects of channel coupling onto the modulus
of the matrix elements, especially for low partial waves
[9].

After establishing our two DOMs by fitting separately the
28Si and 32S scattering databases (including our new data), we
extrapolate the DOM predictions to the bound-state region,
following the standard method exemplified by Ref. [10].
Because the reliability of DOM predictions for the bound-
state properties of open-shell nuclei is terra incognita, we
perform comparisons with measured bound-state quantities
and with the predictions of the universal s-d (USD) shell
model [11], obtained using the ANTOINE computer code [12].
It is well known that the USD shell model is successful in
the interpretation of Nnlj and Snlj measured for a number
of s-d shell nuclei [13,14]. We also extend our DOMs to
make similar comparisons for proton bound states, by using
an approximation useful for self-conjugate nuclei [15].

To help disentangle the interplay between LRC and SRC
effects in the DOM, we complement our study with two
specific tests of the prediction of Nnlj . For the first, we
generate a series of DOM variants in which different parts
of the potential are turned off. For the second, we use the
multiparticle, multihole configuration mixing (mp-mh CM)
calculations of Pillet and co-workers [16,17], a microscopic
model that is implemented with the finite-range, density-
dependent Gogny D1S effective force [18]. The model is
used to calculate the Nnlj for nucleons in 28Si and 32S to
estimate the hole-orbital depletions originating from LRC
effects.

The present paper is organized as follows. Section II reviews
our experimental setup and data analysis for the σ (θ ) and
Ay(θ ) data. Section III presents our database and standard
OM analyses, elements of the DOM formalism, and DOM
scattering predictions. Section IV presents our study of the
bound-state region, including discussions of the DOM and
mp-mh CM calculations and results, and the roles played by
SRCs and LRCs. Finally, Sec. V provides a summary of the
present work and makes several suggestions for extending
DOM formalism to deformed, open-shell nuclei.

II. EXPERIMENTAL TECHNIQUES

A. Differential cross section

Our measurement of σ (θ ) was performed for En = 15.4
and 18.9 MeV using the 28Si target and En = 8.0, 9.9, 11.9,
13.9, 15.4, 16.9, and 18.9 MeV using the 32S target. TUNL’s
beam handling, placement of detectors, and TOF target room
have been described in earlier publications [19] and only
a brief review will be given here. A deuteron beam was
produced by TUNL’s Direct-Extraction Negative Ion Source
and then pulsed at 2.5 MHz. After exiting a FN Tandem Van
de Graaff accelerator, the beam was bent by an analyzing
magnet through 38◦ and transported to the time-of-flight (TOF)
experimental area, where it entered a gas cell containing
deuterium to produce neutrons via the 2H(d, n)3He reaction
at 0◦. The gas cell is a cylindrical tube of stainless steel
(0.80 cm in diameter and 3.16 cm long) and lined with
tantalum. On the beam-entrance side, the gas was contained
with a 6.35-μm-thick Havar foil. The gas pressures depended
on the incident neutron energy. As a typical example, for
En = 15.4 MeV, we used a pressure of 4.0 atm, resulting in a
beam energy spread of 160 keV.

Four cylindrical scattering samples were used. The 28Si
sample (92.55% natural abundance) had a radius of 1.176 cm,
and a height of 2.528 cm, while the 32S sample (95.28%) had
a radius of 1.230 cm, and a height of 2.540 cm. In addition,
a polyethylene (CH2) and a 12C scatterer were used for the
purpose of absolute normalization. All four samples were
mounted on a vertical steel wire, at a center-to-center distance
from the gas cell of typically 12 cm.

The scattered neutrons were detected using the TUNL TOF
spectrometer, which includes four cylindrical detectors (either
NE-213 or NE-218 liquid organic scintillators coupled to
photomultiplier tubes). Two side detectors were located in the
horizontal plane to the right and left of the incident beam axis.
The right detector has a diameter of 8.88 cm, and a thickness of
5.08 cm and was set at distances from the target ranging from
2.5 to 3.9 m. The left detector has a diameter of 12.7 cm and a
thickness of 5.08 cm and was set at distances ranging from 3.8
to 5.7 m. Both are heavily shielded with paraffin and lithium
carbonate and use tungsten shadow bars to shield against the
direct neutron flux. The third detector, the ceiling monitor,
monitored the neutron flux from the gas cell. It was 5.1 cm
in diameter and 5.1 cm in thickness and was mounted at a
distance of 1.8 m above the reaction plane at an angle of about
50◦ and housed in a 50-kg copper cylinder. The location and
collimation of this detector serve to reduce its illumination
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by neutrons scattered from the scattering samples and the
shielding in the reaction plane. We drew a linear background in
the ceiling monitor’s TOF spectrum, by fitting regions on either
side of the mono-energetic neutron peak. A fourth detector, the
zero-degree monitor, located about 4 m downstream of the gas
cell, was used to monitor the beam’s time characteristics; full
width at half maximum of the beam bursts was kept under
2 ns.

For the right, left, and ceiling detectors, a threshold was set
on the recoil pulse height (at a level of 1 × 137Cs) to reject
low-energy events. In addition, pulse-shape discrimination
was used to differentiate between γ and neutron pulses. The
neutron TOF was based on two signals, a start signal from the
neutron detector and a delayed stop signal from the capacitive
pickoff, located just upstream from the gas cell. Using this
method, the dead-time corrections were negligible.

Data were accumulated with the left and right detectors at
angles from 18◦ to 160◦ in steps of about 4◦. At each angle,
two TOF spectra were collected: the “sample-in” condition,
in which either the 28Si or 32S samples were placed in the
neutron beam, and the “sample-out” condition, in which the
sample was removed and replaced by a bare wire. To normalize
the sample-out spectra, we set a window on the neutron peak of
the ceiling monitor’s TOF spectrum and then found its yields
for sample-in (Y in

mon) and sample-out (Y out
mon). The sample-out

spectra of the right and left detectors were then normalized by
multiplying them by the ratio Y in

mon/Y
out
mon.

To extract the neutron yields at each angle, “difference
spectra” were generated by subtracting the sample-out spectra
from the associated sample-in spectra. The difference spec-
tra exhibited small residual backgrounds, which were well
described by a linear fit. The “neutron yields per monitor,”
YS(θ ), was found by subtracting the linear background from
the difference spectrum and then dividing by the sample-in
monitor yield, Y in

mon. Periodically, normalization measurements
were taken with the CH2 and 12C scatterers at scattering angle
θH . The θH depended on the incident neutron energy; for the
15.4 MeV measurement, we used θH = 27◦. The yield per
monitor for n-p scattering, YH (θH ), was found by subtracting
the 12C spectrum from the CH2 spectrum.

The measured differential cross sections, σ (θ, En), for the
28Si and 32S samples at the laboratory angle θ and neutron
energy En were found using the equation

σ (θ, En) = YS(θ )
σ (θH ,En)

YH (θH )

NH

NS

1

F (θH ,En)
, (1)

where σ (θH ,En) is the n-p cross section and NH/NS is the
number of hydrogen nuclei in the CH2 sample divided by the
number of nuclei in the scattering sample. The F (θH ,En), a
correction factor accounting for detector-efficiency and finite-
geometry effects associated with n-p scattering, was found
with a Monte Carlo simulation; at En = 15.4 MeV, it was
1.205.

Our data contained three finite-geometry effects: attenua-
tion of the neutron flux in the target, multiple scattering in the
target (double and triple), and variation of σ (θ ) for the source
reaction and for neutron-nucleus elastic scattering across the
face of the scattering elements. All three effects were removed
from the σ (θ ) data using a standard iterative procedure and the

Monte Carlo code EFFIGY [20]. This procedure entailed angle
shifts of less than 1◦, except on the steep slopes of the angular
distribution were it reached up to 2.3◦. The simulation also
calculated the mean neutron energies.

The uncertainties for the σ (θ ) data include seven sources.
Three are relative uncertainties, added in quadrature, owing to
the counting statistics and background determination (ranging
from 1.5% to 6.0%), the relative detector efficiency (2.5%), and
the finite-geometry corrections (from 0.8 to 1%). Four more
are scale uncertainties, owing to the n-p yield (0.5 to 1.0%),
the n-p cross section (2.0%), the NH /NS factor (0.8 to 1%),
and the F (θH ,En) factor (2.2%). Figures 1 and 2 display our
final σ (θ ) data as the red solid squares. The final uncertainties
are typically 2% or lower, except in the minimum of the cross
section, where they are as high as 6%.

B. Analyzing power

The Ay(θ ) measurements proceeded similarly to those for
σ (θ ) but used a polarized ion source to produce a beam of
polarized deuterons. Four of the measurements, 28Si at En =
18.6 MeV and 32S at 9.9, 13.9, and 16.9 MeV, used TUNL’s
Lamb-shift source, which monitored the beam polarization
with a quench-ratio method. The other two Ay(θ ) distributions
at En = 15.4 MeV used TUNL’s Atomic Beam Polarized Ion
Source (ABPIS).

After the deuteron beam was pulsed and accelerated, it was
bent through 38◦ and transported to the NTOF target area,
where polarized neutrons were produced via the 2H( �d, �n)3He
reaction, using the same gas cell as that for the σ (θ ) measure-
ments. Because the polarized ion sources produce relatively
low deuteron currents (about 450 nA with the ABPIS), we
ran the gas cell at higher pressures to improve the counting
rate. As a result, the energy spreads were higher, varying
from 200 to 460 keV, depending on the measurement. The
neutrons were detected by the right and left detectors, which
were now positioned symmetrically about the beam axis. To
cancel instrumental asymmetries (owing to the detectors and
their associated electronics) the data were accumulated using
the spin-flip method, in which the polarization of the incident
neutron beam was periodically flipped up and down. For each
angle, eight TOF spectra were accumulated, for right and left,
for sample-in and sample-out, and for spin up and spin down.
The neutron flux was no longer monitored with the ceiling
monitor but with a beam-current integrator.

As with the σ (θ ) measurements, difference spectra were
generated by subtracting the sample-out spectra from the
sample-in spectra. Again, a small residual background re-
mained. Within statistical uncertainties, this background had
the same level for both the spin-up and spin-down spectra and
was well represented by a linear function; no evidence of a
polarized background was found.

After the determination of the background, three windows
were set on the elastic neutron peaks at 10%, 20%, and 50%
of the peak height. For each case, yields were generated for
RU , RD , LU , and LD , where R and L designate the right
and left detectors, respectively, and U and D designate spin
up and spin down, respectively. After defining the quantity
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FIG. 1. (Color online) Differential cross sections, σ (θ ), for silicon. The data of the present work are shown in panels (a), (b), and (c) as the
red solid squares. The predictions are the Koning-Delaroche local OMs (blue dashed curves) and the current DOM (red curves). In each panel,
the curves and data points at the bottom represent the true values, while the others are offset by factors of 10, 100, and so on.

α =
√

LU RD

RU LD
, the analyzing power is

Ay(θ ) = 1

Pn

α − 1

α + 1
. (2)

For the 15.4-MeV measurements, the neutron beam polar-
ization, Pn, was monitored by using the 12C(n,n) reaction.
Approximately every 8 h during the experiment, the right
and left detectors were positioned at θlab = 50◦, with the 12C
scatterer used for the sample-in position. Using the known
12C(n,n) Ay(θ ) value from Ref. [21], Eq. (2) was inverted to
find Pn (typically 55%).
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FIG. 2. (Color online) Differential cross sections, σ (θ ), for sulfur. For details, see the caption of Fig. 1.
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FIG. 3. (Color online) Analyzing powers, Ay(θ ), for silicon
[panel (a)] and sulfur [panel (b)]. The data of the present work are
shown as the red solid squares. The predictions are the Koning-
Delaroche local OMs (blue dashed curves) and the current DOMs
(red curves). In both panels, the curves and data points at the bottom
represent the true values, while the others are offset by factors of 2,
4, and so on.

We found that the Ay(θ ) results were consistent within
uncertainties for all three choices of gates (10%, 20%, and
50%), indicating that the background was defined reliably.
The 20% gates were used for the final data, because they
represented a good tradeoff between maximizing the neutron
yields and eliminating unwanted counts. We corrected the
Ay(θ ) data for effects of finite geometry, flux attenuation, and
multiple scattering using the Monte Carlo code JANE [22],
which also calculated the mean neutron energies.

The 28Si and 32S Ay(θ ) data have relative uncertainties
ranging between 2% (at the forward angles) and 7% (near the
minima). These relative uncertainties include the statistical
uncertainties, the uncertainties associated with background
subtraction, and those owing to the finite-geometry correc-
tions, all added in quadrature. In addition, we folded in two
scale uncertainties: a 2% uncertainty in the determination of
the deuteron beam polarization and a 5% uncertainty assigned
to the analyzing power of 12C(n,n). Figure 3 displays our final
Ay(θ ) data as the red solid squares.

III. SCATTERING MODEL ANALYSES

A. Database and standard OM analysis

The 28Si database, listed in Table I, included 40 data points
for total cross section based on Refs. [23,24]. We used 17
σ (θ ) angular distributions from Refs. [25–31] along with the
present data at 15.4 and 18.9 MeV. We also used three Ay(θ )
distributions from Ref. [27] and the present data at 15.4 and
18.6 MeV. The 32S(n,n) database, listed in Table II, included
40 data points of total cross section based on Refs. [23,32].

TABLE I. The silicon database used to develop the DOM.

Parameter Energy (MeV) Reference

σ (θ ) 2.45, 4.0 [25]
5.4, 6.4 [26]

8.0, 9.9, 11.9, 14.0, 16.9 [27]
11.0, 20.0, 21.7, 26.0 [28]

14.8 [29]
15.4, 18.9 Present work
30.3, 40.0 [30]

65.0 [31]

Ay(θ ) 9.9, 13.9, 16.9 [27]
15.4, 18.6 Present work

σT 0.5–5 [23]
5–160 [24]

It also used 13 σ (θ ) angular distributions from Refs. [28,29,
33–37] and the present σ (θ ) data at 8.0, 9.9, 11.9, 13.9, 15.4,
16.9, and 18.9 MeV. Finally, it included the present Ay(θ ) data
at 9.9, 13.9, 15.4, and 16.9 MeV. Traditionally, TUNL OM
studies went up to 80 MeV. However, owing to improvements
in the nuclear database, particularly for total cross section, the
present study goes up to 160 MeV.

As a preliminary step, we compared our data to the
predictions of the Koning-Delaroche (KD) global OM [38],
which covers many target nuclides in the mass range from
A = 24 to 209 for incident neutrons and protons up to
200 MeV. The KD OM uses a standard form for the potential

U (r, E) = −[VV (E) + iWV (E)]f (r, RV , aV )

− 4aD [VD(E) + iWD(E)]
d

dr
f (r, RD, aD)

− λ̄2
π [VSO(E) + iWSO(E)]

1

r

d

dr
f (r, RSO, aSO)

× (l · σ ), (3)

where the successive complex-valued terms are the volume-
central, surface-central, and spin-orbit potentials. The
f (r, Ri, ai) is the Woods-Saxon form factor. The predictions
of this global OM are confirmed nicely by our data, as shown
by the blue dashed curves in Figs. 1 to 4.

TABLE II. The sulfur database used to develop the DOM.

Parameter Energy (MeV) Reference
σ (θ ) 3.0, 4.0 [33]

5.5, 6.4, 7.6 [34]
8.0, 9.9, 11.9, 13.9, 15.4, 16.9, 18.9 Present work

11.0 [35]
14.8 [29]

20.0, 21.7, 26.0 [28]
21.5 [36]

30.3, 40.0 [37]

Ay(θ ) 9.9, 13.9, 15.4, 16.9 Present work

σT 0.5–5 [23]
5–160 [32]
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FIG. 4. (Color online) Neutron total cross sections, σT , for silicon
[panel (a)] and sulfur [panel (b)]. Experimental data are shown as
black dots. The predictions are the Koning-Delaroche local OMs
(blue dashed curves) and the current DOMs (red curves).

The silicon database includes σ (θ ) data at 65 MeV [31].
These measurements were performed with an energy resolu-
tion of �E = 2.7 MeV [39], making it impossible to separate
scattering from the ground state and from the first 2+ excited
state at Ex = 1.779 MeV. Therefore, we made an estimate of the
inelastic scattering angular distribution at this incident energy,
performing a DWBA calculation (using the KD potential) and
a quadrupole deformation parameter inferred from a neutron
inelastic scattering analysis for 28Si [40]. The same method,
using ECIS94 [41], was used with success in Ref. [42]. The
DWBA results were summed with those for elastic scattering
using the KD and DOM potentials. The two curves for 65 MeV
in panel (c) of Fig. 1 are for this sum. At the forward angles,
the inelastic contribution is smaller than the uncertainties on
the data. In the 30◦–50◦ range it raises the predictions slightly
closer to the measurements.

B. Dispersive optical model formalism

The DOM potential strengths include a real-valued Hartree-
Fock mean field (VHF), an imaginary potential with both vol-
ume and surface terms (WV and WD , respectively), volume and
surface dispersive corrections to the real potential (�VV and
�VD , respectively), and a real spin-orbit term (VSO). With the

radial dependencies, the general form of the DOM potential is

U (r, E) = − [VHF(E) + iWV (E) + �VV (E)] f (r, RV , aV )

− 4aD [iWD(E) + �VD(E)]
d

dr
f (r, RD, aD)

− λ̄2
πVSO(E)

1

r

d

dr
f (r, RSO, aSO)(l · σ ). (4)

The volume and surface dispersive terms are computed with
the integral

�Vi(r, E) = 1

π
P

∫ +∞

−∞

Wi(r, E′)
E′ − E

dE′, (5)

where P stands for the principal value, W stands for the
absorptive parts of Eq. (4), and the subscript “i” is for either
volume (V ) or surface (D) components. We did not use an
imaginary spin-orbit term for our DOM analyses, because a
number of earlier TUNL studies did not show a need for a
WSO, especially at low energies [43].

The energy dependence of the volume imaginary potential
depth is assumed to be of the form

WV (E) = w1(E − EF )2

(E − EF )2 + (w2)2
, (6)

while that for the surface imaginary potential is

WD(E) = d1(E − EF )2

(E − EF )2 + (d3)2
exp [−d2(E − EF )] . (7)

The WV and WD terms are assumed to be symmetric around
the Fermi energy, EF , which is evaluated in terms of neutron
separation energies, Sn, as EF = 1

2 [Sn(N ) + Sn(N + 1)]. For
28Si, EF = −12.83 MeV and for 32S, EF = −11.84 MeV.
We did not follow Refs. [4,5] in using a form of WV that is
asymmetric about EF .

We considered two forms for the energy dependence of
the Hartree-Fock potential, VHF. The first is the traditional
single-exponential energy dependence,

VHF(E) = vhf 1 exp[−vhf 2(E − EF )]. (8)

The second is used by Ref. [4] and employs two exponential
terms

VHF(E) = vhf 1 exp[−vhf 2(E − EF )]

+ vhf 3 exp[−vhf 4(E − EF )]. (9)

Both forms comply with the usual assumption introduced by
Mahaux and Sartor [2], according to which the HF potential
uses an energy dependence that is smooth and monotonic
and an energy-independent radial form factor. Equation (8)
provides a simple on-shell representation of the Perey-Buck
nonlocal potential, where the nonlocality profile is of the
Gaussian type [2,44,45].

C. DOM scattering results

The strength and geometry parameters for the present
28Si(n,n) and 32S(n,n) DOMs are displayed in Table III.
In building our DOMs we started with the volume- and
surface-imaginary potentials (WV and WD , respectively)
of the “best” models of Ref. [38] and then calculated the
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TABLE III. DOM potential parameters for the two scattering
systems. Energies and potential depths are in MeV. Geometries are
in fm.

n + 28Si

vhf 1 = 56.0; vhf 2 = 0.009 10; EF = −12.83
w1 = 14.0; w2 = 70.0; rV = 1.23; aV = 0.690
d1 = 13.6; d2 = 0.0216

d3 = 11.1; rD = 1.29; aD = 0.530
vso1 = 6.00; vso2 = 0.0040; rSO = 1.00; aSO = 0.580

n + 32S

vhf 1 = 54.0; vhf 2 = 0.009 50; EF = −11.84
w1 = 14.0; w2 = 70.0; rV = 1.26; aV = 0.690
d1 = 15.2; d2 = 0.0216

d3 = 11.1; rD = 1.34; aD = 0.530
vso1 = 6.00; vso2 = 0.0040; rSO = 1.00; aSO = 0.580

volume and surface dispersive corrections, �VV and �VD ,
respectively, using Eq. (5). We made small adjustments to the
WV and WD parameters, but found that large changes spoiled
the fits to the differential data. For the real spin-orbit potential,
we used the form of Ref. [38],

VSO(E) = vSO1 exp [−vSO2(E − EF )] . (10)

We then determined the Hartree-Fock term, VHF(E). After
first finding VHF values that reproduced σT at each En, we fit
these values using the single-exponential form Eq. (8). Local
stepping of the strength, slope, and geometry resulted in a fairly
good representation of σT , as shown by the red curves in Fig. 4.

The DOM faced a tradeoff between the low- and high-
energy regimes of σT . Because our database included high-
precision data between 25 and 160 MeV from Refs. [24,32],
we gave special attention to this region, achieving as good or
better fits (red curves) than those of Ref. [38] (blue dashed).
As a result, our DOM fits are not as good in the low-energy
regime (from En = 0 to 25 MeV), where they are somewhat
higher than the data. Use of the double-exponential form
of Eq. (9) did not cure this weakness but, on the contrary,
exacerbated the problem because it features higher VHF(E)
slopes at low energies, whereas the σT data call for lower
slopes. In separate tests, we found that the low-energy fits could
be greatly improved by using an energy-dependent rV . For the
28Si DOM, rV changed value linearly from 1.18 to 1.23 fm
between 0 to 25 MeV, after which it was constant at 1.23 fm.
Similarly, for the 32S DOM, rV rose from 1.21 to 1.26 fm be-
tween 0 and 25 MeV and then was constant at 1.26 fm.
Although this exercise confirmed that the DOM potentials
were too strong at low energy, we rejected the modification
because it introduced two new parameters.

Comparisons are shown between the predictions of the
DOMs (red curves) and data for σ (θ ) in Figs. 1 and 2 and for
Ay(θ ) in Fig. 3. All of our scattering calculations included the
Mott-Schwinger interaction and relativistic kinematics. We ac-
counted for compound nucleus (CN) processes below 12 MeV
for both targets, using the TALYS computer code [46]. All open
channels (n, p, d, t , α) were treated and width fluctuation
factors were calculated according to Ref. [47]. In displaying

the OM predictions of differential observables, we added the
CN contributions to each σ (θ ) prediction below 12 MeV and
applied the appropriate ratio to the 9.9 MeV Ay(θ ) predictions.

In the higher-energy regime where our models give good
predictions for σT , they also give good predictions for differen-
tial scattering quantities. In the low-energy regime, the present
fits to σ (θ ) are too high (especially at forward scattering
angles), reflecting the fact that the predictions for σT are too
high. The predictions of the traditional global OM of Ref. [38]
(blue dashed curves) do not have this deficiency. It appears
that the additional potential strength introduced by the DOM
formalism at low energies has made it difficult to find a VHF(E)
representation that satisfies both the low- and high-energy
regimes. Note that our fit to the 28Si Ay(θ ) data at 13.9 MeV
misses for angles less than 90◦ and does not do as well as the
predictions of Ref. [38]. This does not indicate a problem with
the spin-orbit interaction but rather is related to the difficulty
we had in fitting the σT minimum in the 0- to 25-MeV regime.

The tradeoff between the low- and high-energy regimes
affected the low-energy predictions of σT and σ (θ ) and other
low-energy parameters as well. The s- and p-wave strength
functions, S0 and S1, respectively, are determined in Ref. [48]
by averaging resonance parameters over a few hundred
keV. For n+ 32S, Ref. [48] gives S0 = (0.73 ± 0.23) × 10−4

and S1 = (0.57 ± 0.14) × 10−4, while our DOM yields S0 =
1.14 × 10−4 and S1 = 1.85 × 10−4. Also, Ref. [48] gives the
potential scattering radius as R′ = 3.92 ± 0.02 fm, while our
DOM yields 3.41 fm.

Our scattering fits show deficiencies in certain energy and
angle regimes, as do our prediction of the s and p wave
strengths. In these regards, the DOM shares many deficiencies
(and possible ways of rectifying them) with the standard
OM. A number of earlier studies have indicated that the
predictions of phenomenological OMs can be improved by
using l- and parity-dependent potential terms [49]. Another
possibility is that similar effects can be accounted for with
coupled-channel calculations. For example, OM studies of
neutron scattering from 32S and related targets by MacKellar
and co-workers found that deficiencies in the s- and p-wave
strength function calculations based on a spherical OM could
be cured dynamically when deformations of the target nuclei
are introduced [50].

IV. BOUND-STATE MODEL ANALYSES

A. DOM at negative energies

After establishing best fits to the continuum database, a
crucial test of the DOM is to see how well it predicts the bound-
state centroid energy, Enlj , occupation probability, Nnlj , root-
mean-square radius, Rrms

nlj , and spectroscopic factor, Snlj . The
Enlj are the eigenvalues of the wave equation[

− h̄2

2m
∇2 + V(r; Enlj )

]
	nlj = Enlj	nlj , (11)

with quantum numbers n, l, and j . For neutron bound
states, the nuclear potential, V(r; Enlj ), includes contributions
from the Hartree-Fock potential (VHF), the two dispersive
corrections (�VV and �VD), and the spin-orbit interaction
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(VSO). Following the prescription of Ref. [44], for E < EF ,
the VHF, was extrapolated linearly, using the slope of Eq. (8) at
E = EF . Using this potential, we calculated the bound-state
quantities with software originally written by Johnson [51].

It is convenient to define two effective masses, the first
being the momentum-dependent effective mass (or k mass),

m∗
HF(r, E)

m
= 1 − dVHF(r, E)

dE
, (12)

and the second the energy-dependent effective mass (or E

mass),

m(r, E)

m
= 1 − m

m∗
HF(r, E)

d�V(r, E)

dE
. (13)

The Rrms
nlj were computed using the equation

Rrms
nlj =

√∫ +∞

0
u2

nlj (r)r2dr. (14)

The unlj (r) are the radial parts of the 	nlj wave functions,
which have been corrected for nonlocality according to

unlj =
√

m∗
HF(r, E)

m
unlj (15)

and which have been normalized. The Nnlj were computed for
hole states using

Nnlj =
∫ +∞

0
u2

nlj (r)

[
1 + m

m∗
HF(r, Enlj )

× 1

π

∫ +∞

EF

Wi(r, E′)
(E′ − Enlj )2

dE′
]

dr (16)

and for particle states using

Nnlj = −
∫ +∞

0
u2

nlj (r)

×
[

m

m∗
HF(r, Enlj )

1

π

∫ EF

−∞

Wi(r, E′)
(E′ − Enlj )2

dE′
]

dr. (17)

Finally, the Snlj , relative to the independent-particle values,
were computed using

Snlj =
∫ +∞

0
u2

nlj (r)
m

m(r, Enlj )
dr. (18)

Equations (16)–(18) rely upon approximations introduced
in Ref. [2] and discussed in Ref. [5]. The results of our
bound-state calculations are listed in Tables IV and V, and
are discussed in Sec. IV C.

B. Multiparticle, multihole configuration mixing calculations

We use a beyond-mean-field method based on mp-mh
CM to estimate the orbital depletions arising from LRCs.
This microscopic approach aims to unify nuclear LRCs in
a symmetry-preserving framework [16,17]. The trial wave
function, |
〉, is built as a superposition of Slater determinants,

|
〉 =
∑
αν,απ

Aαν,απ

[∣∣	αν

〉 ⊗ ∣∣	απ

〉]
, (19)

TABLE IV. Neutron bound-state properties. The middle columns
show DOM predictions of binding energy, Enlj , compared to
experimental data [52]. Values for pairs of nonresolved states are
shown with a double arrow linking them. The right columns show
DOM predictions of occupation probabilities, Nnlj , compared to
experimental data [53,54] and predictions of the USD shell model
and the mp-mh CM calculations.

State −Enlj (MeV) Nnlj

DOM Exp. DOM Exp. USD CM

28Si 1f7/2 2.29 — 0.116 0.010 — 0.055
1d3/2 9.67 — 0.228 0.255 0.168 0.074
2s1/2 11.8 0.283 0.400 0.352 0.166

 17(3)

1d5/2 14.6 0.713 0.717 0.770 0.885
1p1/2 25.6 0.868 — — 0.932


 32(6)
1p3/2 32.2 0.893 — — 0.954
1s1/2 51.9 52(15) 0.923 — — 0.970

32S 1f7/2 6.09 — 0.186 — — 0.059
1d3/2 11.4 — 0.378 0.175 0.290 0.109
2s1/2 13.1 — 0.699 0.650 0.709 0.922
1d5/2 16.7 — 0.790 1.000 0.903 0.921
1p1/2 28.8 — 0.883 — — 0.939
1p3/2 35.2 — 0.901 — — 0.968
1s1/2 53.2 — 0.924 — — 0.986

where the Aαν,απ
represent a set of mixing coefficients and the

|	απ
〉 and |	αν

〉 the proton and neutron Slater determinants,
respectively. As seen from Eq. (19), the proton-proton, proton-
neutron, and neutron-neutron correlations are treated on the
same ground.

Both mixing coefficients and single-particle orbitals |ϕi〉
are unknown quantities. They are determined by applying a
variational principle to the energy functional F(ρ) defined as

F(ρ) = 〈
|Ĥ (ρ)|
〉 − λ〈
|
〉, (20)

where ρ is the one-body density matrix. The Hamilto-
nian Ĥ (ρ) = T̂ + V̂ (ρ), where V̂ (ρ) represents the two-
body density-dependent Gogny D1S effective force plus
the Coulomb term. Moreover, T̂ and V̂ (ρ) contain one-
and two-body center-of-mass corrections, respectively. The
minimization of the energy functional, namely δ[F(ρ)] = 0,
leads to

∂F(ρ)

∂A∗
αναπ

= 0 and
∂F(ρ)

∂ϕ∗
i

= 0. (21)

The set of equations Eq. (21) may be re-expressed as a set of
nonlinear equations,∑

α′
π α′

ν

Hαπ αν,α′
π α′

ν
Aα′

π α′
ν
= λAαπ αν

, (22)

and inhomogeneous Hartree-Fock (HF) equations

[h(ρ, σ ), ρ] = G(σ ). (23)

In Eq. (22), H contains contributions from Ĥ (ρ) and
rearrangement terms coming from the density-dependent part
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TABLE V. Proton bound-state properties. The middle columns show DOM predictions of Enlj compared to experimental data. The data
listed in columns Exp. A and Exp. B are, for 28Si, from Refs. [56] and [57,58], respectively, and, for 32S, from Refs. [59] and [60], respectively.
Values for pairs of nonresolved states are shown with a double arrow linking them and those marked with square brackets are considered
tentative. The right columns show DOM predictions of Nnlj compared to experimental data [53,56,62] and predictions of the USD shell model
and the mp-mh CM calculations. The notation “ub” stands for “unbound.”

State −Enlj (MeV) Nnlj

DOM Exp. A Exp. B DOM Exp. USD CM

28Si 1f7/2 ub — — ub — — 0.054
1d3/2 4.04 — 1.36 0.222 0.247 0.168 0.072
2s1/2 6.12 — 2.75 0.270 0.395 0.352 0.163
1d5/2 8.72 16.1(8) 11.8(1) 0.707 0.703 0.770 0.888
1p1/2 18.9 0.863 — — 0.933


 [32] 27(2)
1p3/2 25.5 0.890 — — 0.955
1s1/2 44.4 [51] 47(4) 0.921 0.900 — 0.970

32S 1f7/2 0.22 — — 0.186 0.014 — 0.057
1d3/2 5.12 — — 0.373 0.150 0.290 0.106
2s1/2 6.76 9(3) 0.704 0.750 0.709 0.924

 15(2)

1d5/2 10.1 16(3) 0.785 0.983 0.903 0.923
1p1/2 21.4 [26.6] 0.879 — — 0.940


 44(7)
1p3/2 27.8 [32.2] 0.898 — — 0.969
1s1/2 44.9 — 72(9) 0.923 — — 0.986

of the Gogny D1S effective force. In Eq. (23), h represents the
one-body Hamiltonian deduced from Ĥ (ρ) and σ the two-body
density matrix. Only Eqs. (22) are solved, in keeping with
methodology adopted in a recent study of excited states in
nuclei of the sd-mass region [17].

In the present work, the numerical procedure is as follows.
The proton and neutron single-particle orbitals are obtained in
HF calculations performed at sphericity. The HF equations are
solved by expanding the solutions onto a harmonic oscillator
basis including 11 major shells, which is large enough to
ensure convergence of the results. The mp-mh configuration
space is built by considering up to eight-particle–eight-hole
excitations. The secular equation [Eq. (22)] is solved including
neutron and proton levels 1s1/2, 1p3/2, 1p1/2, 1d5/2, 2s1/2,
1d3/2, and 1f7/2 as active orbitals. The ground-state solution,
with angular and parity Jπ = 0+, that is, |
0+〉, is obtained us-
ing the Lanczos algorithm to diagonalize the matrices, which,
in this case, included about 8 × 108 elements. Occupation
probabilities are determined as Ni = 〈
0+|a+

i ai |
0+〉, where
a+

i is a single-particle creation operator for orbital i with
quantum numbers n, l, and j . The Nnlj values resulting from
the mp-mh CM calculations for 28Si and 32S are displayed in
Tables IV and V as well as Fig. 5. The results are discussed in
Secs. IV C and IV D.

C. Bound-state results

To evaluate the DOM’s ability to describe the neutron
bound-state region of the deformed nuclei 28Si and 32S,
we compare predictions of Enlj , Nnlj , Rrms

nlj , and Snlj to
available data. As a means of confirming and strengthening

our conclusions, we translate our neutron DOMs into proton
DOMs, to take advantage of the substantial proton data that is
available.

Results of our neutron DOM bound-state calculations for
Enlj and Nnlj are listed in Table IV, alongside experimental
data. Our 28Si DOM predicts Enlj = −51.9 MeV for the
1s1/2 hole state, in agreement with the experimental value
of −52 ± 15 MeV. We tuned our DOMs slightly to ensure
that the 1s1/2 prediction for 32S was somewhat deeper, at
−53.2 MeV. Because the other neutron states in 28Si are not
resolved experimentally in Ref. [52], Table IV displays the
energies for the combined 1p3/2 and 1p1/2 states and for the
combined 1d5/2 and 2s1/2 states. The agreement between these
experimental data and the DOM predictions is only fair. The
DOM prediction for the energy separation between the 1s1/2

and 1p levels, of 21.4 MeV, easily agrees with the experimental
value of 20 ± 16 MeV. However, the DOM prediction for the
combined 1d5/2 and 2s1/2 levels, of 13.2 MeV, is too shallow
compared to the experimental result of 17 ± 3 MeV.

The DOM predictions of Nnlj agree reasonably with
the experimental data of Refs. [53,54], which have large
uncertainties (about 30%). The predictions also agree well
with the USD shell model calculations for the 1d5/2, 2s1/2,
and 1d3/2 bound states. Experimental information for the 1f7/2

orbitals is scanty and, in addition, the measured Nnlj values are
plagued with large uncertainties owing to weak excitation and
strong fragmentation in one-nucleon transfer reactions [53].
Note that the DOM predictions of Nnlj for the 1f7/2 are half
of those for the 1d3/2 orbitals.

Our predictions of Nnlj do not compare as well to the mp-mh
CM calculations for the s-d orbitals, because the mp-mh CM
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FIG. 5. (Color online) Calculations of occupation probability for (a) neutron orbitals in 28Si, (b) proton orbitals in 28Si, (c) neutron orbitals in
32S, and (d) proton orbitals in 32S. In each panel, we compare the predictions of the VHF + �VD DOM (blue downward triangles), the VHF + �VV

DOM (green upward triangles), the full DOM (red squares), and the mp-mh CM calculations (black circles). The mp-mh CM results are plotted
at single-particle energies that are obtained using mean-field calculations performed with the Gogny D1S effective force (see text for details).

calculations do not smear out as much around EF . One reason
for this is that the secular equation [Eq. (22)] conveys only part
of the LRCs. A full account for LRCs would result from solv-
ing Eqs. (22) and (23) self-consistently. As a result of particle-
vibration coupling, dressed single-particle orbitals would be
defined and the orbital depletion would increase in the vicinity
of EF . However, the LRC depletion of about 2% presently cal-
culated for the 1s1/2 deep-hole states is not expected to change
significantly when the full LRCs are treated. Indeed, the
finite-range character of the Gogny D1S effective force brings
a natural cut to the high-energy particle-hole excitations [17].

Our DOM predictions of Rrms
nlj and Snlj for the first particle

and hole states are listed in Table VI (for both neutrons and
protons). In evaluating these predictions, one must take special
care in selecting experimental data. This is especially true
for Snlj data, which often are affected by normalization and
measurement ambiguities that render them incomparable to
DOM predictions (because the DOM predictions are computed
relative to the independent particle value). To test our neutron
predictions, we chose the recent consistent analysis of (p,d)
and (d,p) transfer reactions of Ref. [55].

Our DOM predictions of Rrms
nlj for neutron orbitals in 28Si

and 32S range from about 2.3 fm for 1s1/2 to about 4.2 fm for
1f7/2. For the 2s1/2 neutron particle state in 28Si, our prediction

of 3.83 fm compares well to the experimental value of
3.73 ± 0.10 fm. For the 1d3/2 neutron particle state in 32S, our
prediction of 3.74 fm also compares well to the experimental
value of 3.63 ± 0.10 fm. (We assigned uncertainties to the
Rrms

nlj data of Ref. [55].)
Our prediction of Snlj for the 2s1/2 neutron particle state in

28Si is 0.603, which is higher than the experimental value of
0.42 ± 0.13 and the USD shell-model prediction of 0.45. For
the 1d3/2 neutron particle state in 32S, our prediction is 0.550,
which is within uncertainties of the experimental result, of
0.70 ± 0.20, and compares reasonably to the USD prediction,
of 0.61.

TABLE VI. Neutron and proton DOM predictions of rms radii,
Rrms

nlj (fm), and spectroscopic factors, Snlj , for the first particle and
hole states.

State Rrms
nlj (fm) Snlj

Neutron Proton Neutron Proton

28Si 2s1/2 3.83 4.01 0.603 0.619
1d5/2 3.43 3.52 0.572 0.571

32S 1d3/2 3.74 3.90 0.550 0.554
2s1/2 3.81 4.01 0.581 0.590
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We next transformed our neutron DOMs into proton DOMs,
to estimate the proton single-particle bound-state properties.
We used the prescription of Ref. [15] for self-conjugate nuclei,
in which the Coulomb correction is approximated as the differ-
ence between the proton and neutron Fermi energies, EF . For
the proton DOMs, all of the strength and geometry parameters
in Table III were employed. Only two elements of the models
were changed. First, we adopted new EF values, which were
recomputed using proton separation energies, yielding EF =
−7.17 MeV for 28Si and −5.57 MeV for 32S. Second, the
Coulomb radii specified by Ref. [38] were used, the reduced
values being 1.32 fm for 28Si and 1.31 fm for 32S. We checked
our p + 28Si DOM against the predictions of the “best”
p + 28Si OM of Ref. [38] and found reasonable agreement
up to 60 MeV for σ (θ ), Ay(θ ), and the reaction cross section.

Results of our proton DOM calculations for Enlj and Nnlj

are displayed in Table V. Note that we organized the Enlj

data, culled from Refs. [56–60], into two columns labeled
Exp. A and Exp. B. Comparison of our DOM predictions of
Enlj to experimental data shows mixed results. For 28Si, the
DOM prediction for the 1s1/2 state, of −44.4 MeV, overlaps
with the measured value of −47.0 ± 4.0 MeV, but is too
shallow compared to the other datum of −51 MeV. The DOM
prediction of the energy separation between the 1s1/2 and
1p levels, 21.1 MeV, agrees reasonably with both sets of
experimental data and also with the data displayed in Fig. 11
of Ref. [61]. The prediction for 1d5/2 is too shallow compared
to data, while the predictions of 2s1/2 and 1d3/2 are too deep.
For 32S, the DOM predictions of Enlj show a greater tendency
to be shallow, although the result for the 2s1/2 orbital, −6.76
MeV, overlaps with the experimental value of −9 ± 3 MeV.

In comparing the Nnlj predictions in Tables IV and V,
note that, because Coulomb effects play a minor role in
the DOM and the mp-mh CM calculations, the predictions
change only slightly for these models. The USD predictions
are identical. As in the neutron case, the proton DOM results
agree reasonably with the experimental data and with the
USD predictions. Also, the mp-mh CM calculations yield Nnlj

values near EF that are too low for the particle states and too
high for the holes.

We again made a careful review of the available exper-
imental data for Rrms

nlj and Snlj and chose the 32S(e,e′p)31P
measurement of Ref. [62]. Overall, the proton DOM predic-
tions for Rrms

nlj are slightly higher than the neutron predictions.
However, for the 2s1/2 proton-hole state in 32S, our DOM
prediction of 4.01 fm is much higher than the experimental
result of 3.59 ± 0.10 fm from Ref. [62]. This discrepancy
raises the possibility that the proton DOMs should have
different geometries than those for the neutron DOMs. We
confirmed that the DOM predictions are sensitive to the
geometrical parameters, but found that a complete account
of the discrepancy would require a full proton DOM analysis
(starting with fits to a proton-continuum database), which is
out of the scope of the present work.

Our DOM predictions of Snlj for the proton-hole valence
orbitals, 1d5/2 in 28Si and 2s1/2 in 32S, are 0.571 and 0.590,
respectively. The prediction for 2s1/2 in 32S is lower than
both the experimental value of 0.79 ± 0.07 from Ref. [62],
and the USD prediction of 0.77. Our DOM predictions of

Snlj for the valence orbitals are slightly below the 60%–70%
quenching of the independent-particle model value found
from quasielastic electron scattering [63] and joint analyses
of (e, e′p) and (d,3He) measurements for stable nuclei over
the periodic table [64].

D. Long-range versus short-range correlations

Because LRCs and SRCs are cast in the OM potential
components, both of these impact DOM predictions in the
bound-state region. To help disentangle the interplay between
LRC and SRC effects on Nnlj , we conducted two tests. Charity
and co-workers [4] note that the surface-imaginary potential is
associated with LRCs, while the volume-imaginary potential
is associated with SRCs. Therefore, in the first test, we created
variations of our DOMs in which one or the other of the
dispersive corrections was turned off. The resulting predictions
of Nnlj are shown in Fig. 5, for both 28Si and 32S (and for both
neutron and proton orbitals). The colored symbols depend
on whether the Nnlj are calculated using only VHF + �VD

(blue downward triangles), only VHF +�VV (green upward
triangles), or the full real potential VHF + �VV + �VD (red
squares). The predictions of the full DOMs are also listed in
Tables IV and V.

Each set of symbols (connected by lines to guide the
eye) displays similar patterns on the four panels of Fig. 5,
reflecting the weak impact of the Coulomb field on predictions
for both self-conjugate nuclei. The LRC-variant DOM (blue
downward triangles) shows weak depletion for the deep hole
states, of about 1%. For the higher states, the LRC depletion
grows, reaching approximately 20% for the valence orbitals.
In contrast, the SRC-variant DOM (green upward triangles)
gives a depletion for the deep-hole states of about 10%. This
compares well with the 13% SRC-dominant depletion amount
found for the 1s1/2 and 1p3/2 proton orbitals in another light
nucleus, 12C, from (e, e′p) measurements at high missing
energies and momenta [65]. SRC depletion is approximately
uniform over all of the hole states, in good agreement with
microscopic model predictions [6,66]. For the valence orbitals,
a combination of LRC and SRC effects in the full DOM (red
squares) produces an overall orbital depletion (and quenching
of spectroscopic factors) of about 30%, in good agreement with
experimental results from quasielastic electron scattering [63]
and from Green’s function calculations [7].

Our second test used the mp-mh CM calculations to
estimate the impact of LRC on Nnlj . These results are listed
in Tables IV and V in the column labeled “CM” and appear as
black circles in Fig. 5. The depletion is low for the deepest hole
state, 1s1/2, and then increases for the valence orbitals. For the
1s1/2 orbitals, the mp-mh CM calculations give a depletion of
about 2%. These bear a similarity to the DOM LRC variants
(the downward blue triangles), which give a depletion of
about 1%.

V. SUMMARY AND CONCLUSIONS

New neutron scattering measurements performed at TUNL
between 8 and 18.9 MeV, as well as previous scattering and
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reaction data available for 28Si and 32S, have been analyzed
in the present study using the DOM, which was established
about 25 years ago by Mahaux and Sartor for closed-shell
nuclei. In applying the DOM to our open sd-shell nuclei,
we fit the neutron DOMs to a large scattering database
and extrapolated them to the bound-state regime. We then
compared our DOM predictions of Enlj , Nnlj , Rrms

nlj , and Snlj ,
to the best available experimental data and to predictions of
the USD shell model. We also extended the neutron DOMs
to make predictions for proton bound-state quantities, taking
advantage of a DOM prescription that is straightforward to
implement for self-conjugate nuclei.

The overall agreement between the DOM predictions and
measurements is only fair. In the scattering continuum, the
neutron DOMs faced difficulties in fitting σT in the low-energy
regime up to 25 MeV. Below about 15 MeV, the models also
had some difficulty with the differential observables, espe-
cially at forward angles. In the bound-state region, our results
are also mixed. The Enlj predictions are reasonable for the
deep-hole states but, otherwise, tend to be too shallow. The Nnlj

predictions compare reasonably to the experimental data and to
the USD predictions. The Rrms

nlj predictions compare well to the
neutron data but are too large compared to the proton data. The
neutron Snlj predictions compare reasonably to the data but
the proton predictions are low, close to the lower bound of the
60%–70% quenching of the independent-particle model value.

Both LRCs and SRCs affect the DOM predictions. We
estimated the magnitude of LRC effects on Nnlj by performing
mp-mh CM calculations for neutron and proton orbitals and
also by generating variations of our DOMs in which one or the
other of the dispersive corrections was turned off. The mp-mh
CM calculations and the LRC variants of the DOM predict
weak depletion for the deep-hole orbitals, while the full DOM
predicts a depletion of the valence orbitals of about 30%. We
conclude that SRCs dominate the depletion of the deep-hole
orbitals, and gradually melt into LRCs when approaching the
valence orbitals.

The merely adequate performance of our DOM para-
metrizations leads us to suggest a number of ways that they
might be improved. One might be to consider phenomenolog-
ical components other than central and spin-orbit potentials.
Consideration of l- and parity-dependent components likely
would improve the DOM fits to both the scattering and bound-
state regions [49]. However, such an approach is not very
appealing because it would add phenomenological parameters.

One limitation of our DOM parametrization is the as-
sumption that the imaginary volume potential is symmetric
with respect to EF . This assumption is unreliable at large
negative energies, as has been demonstrated previously in

a semiclassical OM approach [67] and more recently in the
Green’s function-based OM of Ref. [68]. Another limitation
of our parametrization is the assumption that the DOM is local.
Implementing a Gaussian-type of nonlocality in the imaginary
potential (treated as on-shell) would remove the spurious en-
ergy dependence tied with the nonlocality cast in the dispersive
potentials to a large extent [69]. Exploratory calculations
along these lines show that DOM components calculated
with and without nonlocality display MeV differences in their
strengths [70]. More significant improvements are expected
by using the nonlocality of the Perey-Buck type for the HF
potential component, as has been discussed recently [71]. Full
microscopic nonlocal DOM calculations in the bound-state
region would shed light on the interpretation of spectral distri-
butions deduced from (e, e′p) measurements [62]. Although
such calculations are highly desirable, their implementation
for open-shell, deformed nuclei probably lie some years in the
future. Implementing the microscopic DOM formalism with
Gorkov-Green’s functions [72] would be a step forward.

Finally, we hope that new, high-resolution (p,pn) and
(p,2p) measurements will be performed, similar to those
recently accomplished for 40Ca in Ref. [73]. The determination
of more reliable nucleon centroid energies for 28Si and 32S
would allow us to better assess the reliability of the DOM. Of
course, our calculations rely upon a spherical OM picture that
ignores residual interactions originating from deformations.
The DOM could be extended by including coupling to
collective levels. This would require solving coupled-channel
equations, not only for the continuum but also for the bound-
state region. Because there is current interest in spherical OM
potentials for the study of reactions in which one nucleon is
added to or removed from a nucleus, an alternative strategy
would be to evaluate the dynamic polarization potential orig-
inating from channel coupling, which is nonlocal, complex,
and energy dependent [74]. The generalized DOM would then
require the solution of Schrödinger equations implemented
with nonlocal complex potentials. Pioneering efforts along
these lines are presented in Refs. [75].
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