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Background: Alpha emission from a nucleus is a fundamental decay process in which the alpha particle formed
inside the nucleus tunnels out through the potential barrier.
Purpose: We describe alpha decay of 212Po and 104Te by means of the configuration interaction approach.
Method: To compute the preformation factor and penetrability, we use the complex-energy shell model with
a separable T = 1 interaction. The single-particle space is expanded in a Woods-Saxon basis that consists of
bound and unbound resonant states. Special attention is paid to the treatment of the norm kernel appearing in the
definition of the formation amplitude that guarantees the normalization of the channel function.
Results: Without explicitly considering the alpha-cluster component in the wave function of the parent nucleus,
we reproduce the experimental alpha-decay width of 212Po and predict an upper limit of T1/2 = 5.5 × 10−7 sec
for the half-life of 104Te.
Conclusions: The complex-energy shell model in a large valence configuration space is capable of providing a
microscopic description of the alpha decay of heavy nuclei having two valence protons and two valence neutrons
outside the doubly magic core. The inclusion of proton-neutron interaction between the valence nucleons is likely
to shorten the predicted half-live of 104Te.
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I. INTRODUCTION

According to Gamow theory of alpha decay [1,2], this
fundamental radioactive decay can be considered as a two-step
process [3–5]. In the first step, an alpha cluster is formed
inside the parent nucleus. The resulting alpha particle resides
in a metastable state of an average potential of the daughter
system. In the second step, the particle tunnels through
the potential barrier. Each step requires different theoretical
treatment. To compute the preformation factor that describes
the alpha formation probability, one needs to evaluate the
overlap integral involving wave functions of the parent and
daughter nuclei, and that of the alpha particle. The estimate of
the penetration probability requires a careful treatment of the
resonance state.

The commonly used formulation of the alpha-decay prob-
lem employs the R-matrix expression [6,7]

�L = 2PLγ 2
L (1)

for the absolute width. In this formalism, the first stage
(formation of alpha particle with angular momentum L) is
given by the reduced width γ 2

L , while the second stage (decay)
is expressed by means of the penetrability PL. Alternatively,
the absolute width can be obtained from the general reaction-
theory expression [8–11]

�L = SL�
sp
L , (2)

where SL is the alpha-spectroscopic factor and �
sp
L is the single-

particle (s.p.) decay width.
Historically, expression (1) was derived in 1954 by Thomas

[6] using the time-independent R-matrix theory of nuclear
reactions. In 1957, Mang [7] developed the alpha-decay

formalism based on the time-dependent perturbation theory.
He made the connection with the shell model and succeeded
in expressing the alpha-decay formation amplitude in a basis of
s.p. states. As shown in Refs. [12,13], formulations of Thomas
and Mang are formally equivalent; there are, however, many
differences when it comes to practical implementations.

The reduced width calculated in a shell-model configuration
expressed in the harmonic oscillator (h.o.) basis is too
small. This can be partly cured by means of configuration
mixing involving extended shell-model spaces [14,15] as
each admixed configuration contributes coherently to γ 2

L . To
improve asymptotic properties of s.p. wave functions, the
particle continuum was taken into account [16] by considering
h.o. expansion [17] or within a Woods-Saxon (WS) basis
consisting of bound and outgoing single-particle resonant
(Gamow) states [18,19]. The configuration mixing calculations
of Refs. [15,18] in the valence space of 212Po assumed the
seniority-zero (pairing vibrational) wave functions obtained
by considering the monopole pairing interaction between
like nucleons. However, all these improvements were not
sufficient to reproduce the experimental alpha decay in 212Po.
It was only after the valence proton-neutron interaction had
been considered together with a generalized wave function
expressed as a combination of cluster and shell model compo-
nents [20] that theoretical and experimental widths could be
reconciled [21].

The R-matrix expression for the width (1) depends on the
channel radius R. This radius should be chosen large enough
so that the alpha-daughter interaction in the external region is
given by the Coulomb force alone [22]. The infinite range of the
Coulomb force implies, however, that the asymptotic behavior
of the R-matrix expression is reached only at large values of R,

034338-10556-2813/2012/86(3)/034338(13) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.86.034338


R. ID BETAN AND W. NAZAREWICZ PHYSICAL REVIEW C 86, 034338 (2012)

at which the asymptotic behavior of the shell-model s.p. basis
(h.o. basis in most applications) used to calculate γ 2

L(R) does
matter. Due to the mismatch between the internal part of the
s.p. wave function (well described in the h.o. basis) and the
asymptotic part (poorly or not described in the h.o. basis),
rather small changes in R may produce appreciable variations
in penetrability. Physically, the reason for this sensitivity is
the fact that the alpha cluster is formed in the surface region
of the nucleus in which the coupling to the alpha continuum
that impacts the radial behavior of the formation amplitude
is important [16]. Consequently, the absolute R-matrix width
depends in general on the channel radius [5,23], and this is an
obvious drawback of the method [22].

Our renewed interest in the alpha-decay problem is stim-
ulated by the recent experimental data above the doubly-
magic 100Sn [24,25] that demonstrate the presence of very
fast alpha decays. Indeed, the observed enhancement of the
reduced widths of 105,106Te relative to 213,212Po is 2–3, thus
confirming earlier expectations [26] of “superallowed” alpha
decays in this region due to the large overlaps of valence s.p.
shell-model proton and neutron wave functions. Our long-term
goal is to estimate alpha preformation factors in nuclei above
208Pb and 100Sn by using large valence s.p. spaces, including
positive-energy Gamow states of a finite-depth WS potential
[18,19]. In this study, we focus on 212Po and 104Te nuclei
having two valence protons and two valence neutrons outside
doubly-magic cores.

Our paper is organized as follows. Section II briefly
describes the alpha-decay formalism used in this work, with
special emphasis on approximations used to describe wave
functions of parent and daughter nuclei. Section III deals
with the approximations employed and parameters used.
In particular, we discuss the sensitivity of the calculated
spectroscopic factor to the parameters defining the shifted
Gaussian basis that is used to compute the normalization
of the channel function. In Sec. IV we study the sensitivity
of the reduced alpha width in 212Po on the choice of s.p.
basis used. In Sec. V we discuss the absolute alpha-decay
width of 212Po and in Sec. VI we compare it with the
absolute width of the superallowed alpha emitter 104Te.
Finally, the main conclusions of this work are summarized in
Sec. VII.

II. FORMALISM

In this section, we discuss the R-matrix (1) and spectro-
scopic factor (2) expressions for the decay width. The con-
nection between the two formulations is given in Ref. [8]. We
also discuss the so-called δ-approximation for the formation
amplitude.

A. R-matrix expression for the decay width

Within the R-matrix theory [6,7,12], the absolute width is
given by Eq. (1) with PL(R) being the barrier penetrability and
γL(R) the reduced width amplitude [27]. While both quantities
strongly depend on the value of the channel radius R, the
absolute width should be R independent.

For PL(R) we use the standard expression [6]

PL(R) = kR

|H+
L (η, kR)|2 , (3)

where k is given by the alpha energy Eα = h̄2k2

2μ
, obtained

from the experimental Qα value by correcting for electron
screening; μ = mdmα

md+mα
is the reduced mass of alpha particle

with md being the mass of the daughter nucleus; H+
L (η, kR)

is the outgoing spherical Coulomb-Hankel function; and
η = 2Zdμe2

h̄2k
is the Sommerfeld Coulomb parameter.

The reduced width amplitude γL(R) may be written in terms
of the formation amplitude gL(R) [5,14]:

γL =
√

h̄2R

2μ
gL(R), (4)

with

gL(R) =
∫

d�R

∫
dξα

∫
dξD

×	P
JM A

[
φα(ξα) �D

j (ξD) YL(R̂)
]∗
JM

, (5)

where φα is the normalized wave function of the alpha particle
with zero angular momentum, YLML

is the angular part of
the center-of-mass (c.o.m.) motion of the alpha particle, �D

jmj

is the wave function of the daughter nucleus, and 	P
JM is

the wave function of the parent nucleus. The coordinates
ξα and ξD are the intrinsic coordinates of the alpha particle
and daughter nucleus, respectively. All wave functions are
normalized in terms of the internal and c.o.m. coordinates
[27]. By construction, the parent and daughter wave functions
are antisymmetric. The antisymmetrization with respect to
interfragment nucleons is done by means of the operator A. Its
action can be approximated by means of a factor [( Nv

2 )( Zv

2 )]1/2

[14,27,28], with Nv and Zv being, respectively, the numbers
of valence neutrons and protons in the parent nucleus.

For the internal alpha-particle wave function we take the
standard Gaussian ansatz [18,29]:

φα(ρ1ρ2ρ3, σ1σ2σ3σ4) = φ(ρ1ρ2ρ3)χ00(σ1σ2)χ00(σ3σ4),

χ00(σ1σ2) = [χ1/2(σ1)χ1/2(σ2)]00, (6)

φ(ρ1ρ2ρ3) =
(

8β

π

)9/4

e−4β(ρ2
1 +ρ2

2 +ρ2
3 ).

The parameter β = 9
64r2

α
= 0.057 fm−2 depends on the root-

mean-square alpha radius rα = 1.57 fm [29].
The transformation between the intrinsic ξα = {ρ1, ρ2, ρ3}

and nucleonic {ri } (i = 1, 2, 3, 4) coordinates reads

ρ1 = r1 − r2√
2

, ρ2 = r3 − r4√
2

,

(7)

ρ3 = (r1 + r2) − (r3 + r4)

2
,

and

R = r1 + r2 + r3 + r4

4
(8)

is the c.o.m. coordinate of alpha particle. Let us de-
note the spherical components of intrinsic coordinates by
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ρi = (ρi, θ̃i , ϕ̃i). Assuming θR = ϕR = 0, the nucleonic co-
ordinates can be written as

4r2
1,2 = 4R2 + ρ2

3 + 2ρ2
1 ± 2

√
2ρ3ρ1 cos θ̃31

+ 4R(ρ3 cos θ̃3 ±
√

2ρ1 cos θ̃1),

4r2
3,4 = 4R2 + ρ2

3 + 2ρ2
2 ∓ 2

√
2ρ3ρ2 cos θ̃32

− 4R(ρ3 cos θ̃3 ±
√

2ρ2 cos θ̃2),

(9)

where θ̃ij = θ̃j − θ̃i , and

cos θ1,2 = 2R + ρ3 cos θ̃3 ± √
2ρ1 cos θ̃1

2r1,2
,

cos θ3,4 = 2R − ρ3 cos θ̃3 ± √
2ρ2 cos θ̃2

2r3,4
.

(10)

This paper deals with g.s. → g.s. alpha decays to the magic
daughter nucleus. Assuming the seniority-zero wave function,
the corresponding formation amplitude is [13,14]

F0(R) =
√

8

16π3/2

∑
νn,νp

(−)ln+lp bνn,νp
ĵnĵpIvn,νp

(R), (11)

where

Iνn,νp
(R) =

∫
dρ1dρ2dρ3φ(ρ1ρ2ρ3)

×uνn
(r1)

r1

uνn
(r2)

r2
Pln (cos θ12)

×uνp
(r3)

r3

uνp
(r4)

r4
Plp (cos θ34), (12)

with θij = θj − θi , ν = {n, l, j}, and uν(r) being s.p. radial
wave functions. The factor

√
8 comes from the Jacobian of

the transformation between the nucleonic coordinates {ri } and
the internal and c.o.m. coordinates [5,30]. In Eq. (12) and in
the following, the s.p. indices 1, 2 refer to neutrons while 3, 4
refer to protons. The coefficients bνn,νp

are the shell-model
four-particle wave function amplitudes.

B. δ-function approximation

In the calculation of alpha-decay rates based on h.o. wave
functions, it was noticed [28] that the relative rates change
little with the oscillator length bh.o. of the basis. Using this
argument, Mang proposed to take β � 1/b2

h.o.. In this limit,
the expression for the formation amplitude can be simplified
(see also Ref. [31]). In the literature, this is known as δ-function
approximation [32].

In practice, one assumes that the alpha-particle wave
function is constant inside a small volume of radius sα =
2.34 fm [32] and zero outside. Within this approximation
ρi = 0; hence, it immediately follows from Eqs. (9) that
r1 = r2 = r3 = r4 = R [32,33], and the formation amplitude
reduces to

F δ
0 (R) =

√
8

16π3/2

(
4πs3

α

3

)3/2
(∑

νn

I n
νn

) ⎛
⎝∑

νp

I p
νp

⎞
⎠ , (13)

with

I τ
ν = (−)lν bτ

ν ĵνBν

u2
ντ (R)

R2
, (14)

where τ = n, p. The correction factor Bν depends on the
relative angular momentum [32]:

Bν = 1 − 0.013lν(lν + 1). (15)

C. Four-particle amplitudes

For the g.s. alpha decay of 212Po and 104Te, we are going
to assume that the four valence nucleons move around the
rigid, doubly-magic core. The parent-nucleus wave function
is approximated by a product of two-neutron and two-proton
seniority-zero states:∣∣	P

J=0,M=0

〉 = |�2n,00〉 ⊗ |�2p,00〉, (16)

where

|�2τ,0〉 =
∑

ν

Xτ
ν |νν, 00〉, (17)

|νν, 00〉 = [a†
νa

†
ν̄ ]00√
2

|0τ 〉, and |0〉 = |0n〉 ⊗ |0p〉 is the shell-

model vacuum representing the 208Pb or 100Sn g.s. wave
function. The four-particle amplitudes bνn,νp

in Eq. (11) can
thus be written in a separable form:

bνn,νp
= Xn

νn
Xp

νp
. (18)

D. Alpha-decay spectroscopic factor

Based on the general theoretical arguments [8–11], the
absolute width can be expressed as a product of the alpha-
particle spectroscopic factor and the single-particle width;
see Eq. (2). The spectroscopic factor SL contains information
about the probability of forming an alpha cluster in the parent
system. Since the alpha particle, when formed, occupies the
resonant state, the s.p. width can be obtained from the so-called
current expression [5,34,35]:

�
sp
L = i

h̄2

2μ

u′∗
L (R) uL(R) − u′

L(R) u∗
L(R)∫ |uL(R)|2 dR

, (19)

where the Gamow function uL(R) is obtained as a solution of
the Schrödinger equation with outgoing boundary condition.
When the imaginary part of the complex energy eigenvalue
Eα = h̄2k2

2μ
is small, which is always the case for the considered

g.s. alpha emitters, one can approximate (19) with [36]

�
sp

L = h̄2
(k)

μ

|uL(R)|2
|H+

L (η, kR)|2 . (20)

The s.p. width obtained in this way should be identical to the
value −2Im(Eα) given by the imaginary part of the Gamow
resonance energy, if the latter is computed with a sufficient
precision.

The conventional alpha spectroscopic factor as introduced
in Ref. [8] is defined by

SL = ∣∣〈A[
φα(ξα) �D

j (ξD) ψL(R)
]
JM

∣∣	P
JM

〉∣∣2
, (21)
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where ψLM (R) = uL(R)
R

YLM (R̂) represents the relative motion
alpha particle with respect to the daughter. In terms of the
formation amplitude, SL reads [3,5,37]

SL =
∫ ∞

0
g2

L(R)R2dR. (22)

E. Modified spectroscopic factor

Since the formation amplitude Eq. (5) represents the overlap
of the parent wave function with the daughter-alpha product
state, one would be tempted to associate it with the probability
amplitude that in the parent wave function 	P

JM an alpha
particle φα and a daughter nucleus �D

jmj
are at a distance

R. The value of SL would then be associated with the
total probability of formation of an alpha particle. However,
the fundamental problem with this interpretation is that the
channel function A[φα(ξα) �D

j (ξD) ψL(R)]JM is not properly
normalized [3,10,11,38–41].

The properly defined spectroscopic factor (sometimes
referred to as “the amount of clustering”) [21,38,42–45] is
given by

SL =
∫ ∞

0
G2

L(R)R2dR, (23)

where

GL(R) =
∫

N−1/2
L (R,R′) gL(R′)R′2 dR′ (24)

is the modified formation amplitude. The norm kernel NL

appearing in Eq. (24) is [43]

NL(R,R′)

=
〈
Aδ(Rα − R)

R2
φα

[
YL�D

j

]
J

∣∣∣∣Aδ(Rα − R′)
R′2 φα

[
YL�D

j

]
J

〉
.

(25)

The presence of the norm kernel N effectively enhances
the spectroscopic factor by 1–2 orders of magnitude [21,40,
41,45,46].

To computeN−1/2
L (R,R′), we expand the eigenfunctions of

the norm kernel in an orthonormalized shifted Gaussian basis
(SGB) [43],

F̃L(R,Rk) =
∑
k′

(
N

−1/2
F

)
kk′ FL(R,Rk′), (26)

with Rk equidistant mesh points in the interval (0, Rmax) and
k = 1, . . . ,M , where M is the dimension of the basis. The
SGB is given by

FL(R,Rk) = 4π

(
8β ′

π

)3/4

e−4β ′(R2+R2
k )iLjL(−i8β ′RRk),

(27)

while the SGB overlap (NF )kk′ is given by

(NF )kk′ =
∫

F ∗
L(R,Rk)FL(R,Rk′ )R2dR

= 4πe−2β ′(R2
k+R2

k′ )iLjL(−i4β ′RkRk′). (28)

Using the SGB overlaps, the eigenvalue equation for the norm
matrix can be expressed in the form

M∑
k′

N F̃
kk′ cν

k′ = nν cν
k , (29)

where

N F̃
kk′ =

M∑
nn′

(
N

−1/2
F

)
kn

N F
nn′

(
N

−1/2
F

)
n′k′ (30)

For β ′ = 4β, the core-projected norm N F in Eq. (30)
reduces to a simple expression [21,43,47]:

N F
kk′ = (〈

ψ
(ν),L
k

∣∣ψ (ν),L
k′

〉)2 (〈
ψ

(π),L
k

∣∣ψ (π),L
k′

〉)2
, (31)

where〈
ψ

(μ),L
k

∣∣ψ (μ),L
k′

〉
= 〈

φL
k

∣∣φL
k′
〉 − ∑

nljτ∈core

δlL

〈
φl

k

∣∣Rnlj

〉〈
Rnlj

∣∣φl
k′
〉
, (32)

with φL
k (R) = FL(R,Rk)(β ′ → β) and Rnlj (R) = unlj /R are

the radial s.p. wave functions of the core.
In terms of eigenstates cν

k of (29), the spectral representation
of the norm kernel can be written as

N−1/2
L (R,R′) =

∑
ν

n−1/2
ν uL∗

ν (R) uL
ν (R′), (33)

(nν>nmin)

where the eigenfunctions uL
ν (R) of the norm kernel are

uL
ν (R) =

M∑
k

cν
k F̃L(R,Rk), (34)

and nmin represents the usual cutoff on the eigenvalue of the
norm kernel. The final expression for the modified formation
amplitude in the normalized SGB becomes [43]

GL(R) =
∑

ν

n−1/2
ν uL

ν (R) gL
ν (35)

(nν>nmin)

with

gL
ν =

∫
uL

ν (R) gL(R) R2dR. (36)

III. THE MODEL

A. Single-particle space

The s.p. space is spanned on resonant states of a WS
+ Coulomb average potential. The parameters of the s.p.
Hamiltonian, namely the WS potential depth V0, spin-orbit
potential depth Vso, diffuseness a(=aso), radius r0 (=r0,so),
and the radius of the uniform charge distribution rc defining
the Coulomb potential are listed in Table I. The resulting
neutron and proton s.p. energies for 208Pb and 100Sn are given
in Tables II and III, respectively. The nucleus 101Sb is proton
unbound; the values in Table III are generally consistent with
systematics [48]. In particular, we predict a very small splitting
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TABLE I. Parameters of the average WS Hamiltonian used in this
work to compute s.p. neutron and proton states of 208Pb and 100Sn
cores.

Core τ V0 Vso a r0 rc

(MeV) (MeV) (fm) (fm) (fm)

208Pb n 44.40 16.5 0.70 1.27
p 66.04 19.0 0.75 1.19 1.27

100Sn n 51.60 11.3 0.70 1.27
p 52.20 10.5 0.70 1.27 1.27

between the 0g7/2 and 1d5/2 neutron shells outside 100Sn, and
a 0g7/2 g.s. in 101Sn as suggested by recent experiment [49].

B. Two-particle interaction

The correlated two-particle wave functions |�2τ,0〉 (17)
have been obtained using a separable two-body T = 1 pairing
interaction [51]:

〈νν, 00|V |ν ′ν ′, 00〉 = −Gτf (ν, τ )f (ν ′, τ ), (37)

where

f (ν, τ ) = (−)lν√
2

〈jν ||Y0||jν〉I (ν, τ ). (38)

In Eq. (38) we used the Condon-Shortley phase convention for
〈jν ||Y0||jν〉 and

I (ν, τ ) =
∫

u2
ντ (r)fτ (r)dr. (39)

TABLE II. The eigenstates (in MeV) of the s.p. Hamiltonian
of Table I for 208Pb calculated with the Gamow solver ANTI [50].
The positive-energy eigenvalues represent Gamow resonances; their
imaginary energies reflect nonzero particle width.

Orbit Neutrons Orbit Protons

1g9/2 −3.926 0h9/2 −3.784
0i11/2 −2.797 1f7/2 −3.542
2d5/2 −2.072 0i13/2 −1.844
0j15/2 −1.883 2p3/2 −0.690
3s1/2 −1.438 1f5/2 −0.518
2d3/2 −0.781 2p1/2 0.491 − i0.200 × 10−11

1g7/2 −0.768 1g9/2 4.028 − i0.130 × 10−7

1h11/2 2.251 − i0.026 0i11/2 5.434 − i0.992 × 10−8

0j13/2 5.411 − i0.009 0j15/2 5.960 − i0.115 × 10−7

2d5/2 6.748 − i0.184 × 10−2

3s1/2 7.843 − i0.367 × 10−1

1g7/2 8.087 − i0.898 × 10−3

2d3/2 8.530 − i0.284 × 10−1

1h11/2 11.390 − i0.215 × 10−1

0j13/2 15.086 − i0.493 × 10−2

1h9/2 15.964 − i0.393

TABLE III. Similar to Table II except for 100Sn.

Orbit Neutrons Protons

0g7/2 −10.830 2.669 − i0.207 × 10−7

1d5/2 −10.674 2.869 − i0.963 × 10−5

2s1/2 −9.074 4.150 − i0595 × 10−2

1d3/2 −8.927 4.393 − i0.166 × 10−2

0h11/2 −5.793 7.280 − i0.110 × 10−2

1f7/2 −2.346 9.649 − i0.452
2p3/2 −1.531
2p1/2 −0.912
0h9/2 −0.641 12.012 − i0.0736
1f5/2 −0.171
0i13/2 3.254 − i0.132 × 10−2 15.572 − i0.185

For the radial form factor fτ (r) we took the derivative of the
WS potential multiplied by r:

fτ (r) = r

avτ

e
r−Rvτ

avτ(
1 + e

r−Rvτ
avτ

)2
. (40)

In the case of 212Po and 104Te the two-particle amplitudes
of Eq. (17) were obtained exactly in the Tamm-Dancoff
approximation [52,53]:

Xτ
ν = N0

f (ν, τ )

2ετ
ν − Eτ

0

, (41)

where ετ
ν are s.p. energies, Eτ

0 is the correlated two-particle
energy, and N0 is the normalization constant fixed by the
condition

∑
ν(Xτ

ν )2 = 1.
The parameters Rvτ and avτ defining the radial form factor

(40) for 210Pb and 210Po were chosen to reproduce the wave
functions used by Harada [14]. Since such data are not
available for 102Sn and 102Te, in this case we adopted the values
of the WS potential for 100Sn shown in Table I. The pairing
strength Gτ was adjusted to fit the experimental two-nucleon
separation energies S2τ through the dispersion relation

1

Gτ

=
∑

ν

f 2(ν, τ )

2ετ
ν − Eτ

0

. (42)

Since the proton-unbound nucleus 102Te is not known ex-
perimentally, for this system we adopted the value of S2p =
−2.14 MeV obtained by extrapolating down from the heavier
Te isotopes [54]. This value is in reasonable agreement with
recent phenomenological estimates [48]. Table IV lists the
parameters of the residual interaction used in our study.

TABLE IV. Parameters Rvτ and avτ of the residual interaction
(37). The last column lists the value of S2τ that has been used to
constrain the pairing strength Gτ for various configuration spaces
considered.

Nucleus Rv (fm) av (fm) S2τ (MeV)

210Pb 7.525 0.70 9.123
210Po 5.451 0.75 8.783
102Sn 5.895 0.70 24.3
102Te 5.895 0.70 −2.14
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TABLE V. Model spaces used in this work to describe 212Po alpha
decay.

Model Neutron States Proton States

M0 1g9/2 0h9/2

M1 1g9/2, 0i11/2, 2d5/2, 0j15/2 0h9/2, 1f7/2, 0i13/2, 2p3/2

3s1/2, 2d3/2, 1g7/2 1f5/2, 2p1/2

M2 1g9/2, 0i11/2, 2d5/2 0h9/2, 1f7/2, 0i13/2

M3 1g9/2, 0i11/2, 2d5/2, 0j15/2 0h9/2, 1f7/2, 0i13/2

M4 1g9/2, 0i11/2, 2d5/2, 0j15/2 0h9/2, 1f7/2, 0i13/2, 2p3/2

3s1/2, 2d3/2, 1g7/2, 1h11/2 1f5/2, 2p1/2, 1g9/2, 0i11/2

0j13/2 0j15/2, 2d5/2, 3s1/2, 1g7/2

2d3/2, 1h11/2, 0j13/2, 1h9/2

C. Configuration space

To study the dependence of the formation amplitude on the
size of valence space, and to compare with previous work, we
considered several model spaces. Those used in the description
of the alpha decay of 212Po are given in Table V. The model
space M0 contains only one valence shell. The space M1
contains one major shell, including the unusual-parity intruder
orbit. The model space M2 is that used by Harada [14]. The
model space M3 is that of Glendenning and Harada [55].
Finally, M4 is the extended shell model space employed by
Tonozuka and Arima. The model spaces used to describe 104Te
alpha decay are shown in Table VI; M1 consists of one major
shell, including the unusual-parity intruder orbit, while M4
consists of states with width less than 1 MeV.

D. Wave functions

For the alpha formation amplitude in 212Po discussed
in Sec. IV we considered the model spaces M2, M3, and
M4. The wave function amplitudes in M2 were taken from
Refs. [14,56]. For calculations in M3, we took the T = 1
seniority-zero amplitudes of Ref. [55] and renormalized them
accordingly. For calculations in the extended space M4,
we used the renormalized amplitudes of Ref. [15]; here
we retained only configurations having width smaller than
1 MeV. The comparison between 212Po and 104Te discussed
in Sec. VI was carried out in the model spaces M1 and
M4. The corresponding wave functions were calculated in
the two-particle approximation described in Sec. III B, except
for 212Po in the M4 model space, where Ref. [55] was used
instead.

TABLE VI. Model spaces used in this work to describe 104Te
alpha decay.

Model Neutron States Proton States

M1 0g7/2, 1d5/2, 2s1/2, 1d3/2 0g7/2, 1d5/2, 2s1/2, 1d3/2

0h11/2 0h11/2

M4 0g7/2, 1d5/2, 2s1/2, 1d3/2 0g7/2, 1d5/2, 2s1/2, 1d3/2

0h11/2, 1f7/2, 2p3/2, 2p1/2 0h11/2, 1f7/2, 0h9/2, 0i13/2

0h9/2, 1f5/2, 0i13/2

E. Penetration factor

The s.p. alpha width �
sp

0 has been obtained from the current
expression (20). The alpha-core potential was assumed to be
of a WS + Coulomb form with the parameters of Ref. [57]:
r0 = Rc = 1.315 fm, a = 0.65 fm. The strength of the WS
potential has been adjusted to reproduce the measured Qα

value corrected by the electron screening term [6,13,58–60]:

Qα = Eα

AP

AD

+ �Esc, (43)

where

�Esc = 65.3Z1.4
P − 80Z0.4

P (eV). (44)

For 212Po, Eα = 8.785 MeV [54] and �Esc = 31.8 keV;
hence, Qα = 8.986 MeV. The g.s. alpha decay of 104Te
has not been observed. For that reason, we took the value
QBE

α = 5.135 MeV extrapolated down from the binding energy
differences in 108Te (3.445 MeV) and 106Te (4.290 MeV)
[61]. By adding the screening correction �Esc = 16.1 keV,
we arrived at Qα = 5.151 MeV. The resulting WS potential
strength is V0 = 143.49 MeV for 212Po and 149.64 MeV for
104Te.

The Gamow wave functions, obtained by means of the
code ANTI [50], were normalized using the complex rotation
method proposed in Ref. [62]. The complex energy of the
metastable alpha state is Eα = (8.986 − i0.632 × 10−13) MeV
for 212Po and Eα = (5.151 − i0.814 × 10−13) MeV for 104Te.
The outgoing spherical Coulomb-Hankel function H+ was
calculated using the code in Ref. [63].

F. Calculation of the spectroscopic factor

The radial integration in the expressions for the spec-
troscopic factor (23) and the formation amplitude in the
normalized SGB (36) have been carried out using 200 Gauss-
Legendre mesh-points with the maximum radius of 20 fm.

The s.p. core wave functions entering Eq. (32) are those of
the s.p. Hamiltonian of Table I. The radial mesh Rk defining
the normalized SGB (26) was taken at equidistant points
Rk = k �R. In order to determine the step �R we expanded
the s.p. core states u(r) in the normalized SGB: ũ(r) ≡∑M

k=1 ak [rF̃0(r, Rk)]. Under the condition that udiff(r) =
|u(r) − ũ(r)| < 0.005 fm−1/2 we found that 0.44 � �R �
0.57 fm and Rmax � 14 fm. For this range of �R and Rmax

the normalized SGB is orthonormal with an accuracy better
than 10−9. To illustrate the quality of the resulting expansion,
Fig. 1 shows udiff(r) for the neutron core states in 208Pb.

To calculate the modified formation amplitude G(R), one
needs to determine the eigenvalue cutoff nmin. To this end, we
show in Figs. 2 and 3 typical distribution of the eigenvalues nν

of the norm kernel (25) for 212Po and 104Te, respectively, for
different values of �R. One may observe that a significant
fraction of them accumulate at zero [53,64]. To eliminate
these spurious eigenvectors, we define the cutoff at the value
where the eigenvalue distribution changes slope. For 212Po
and 104Te this happens at nν around 10−3. Consequently, in
our calculations, we adopt the cutoff value of nmin = 0.001.
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FIG. 1. udiff (r) = |u(r) − ũ(r)| for the neutron core states in 208Pb
for �R = 0.5 fm, M = 30, and Rmax = 15 fm.

The eigenfunctions uL
ν (R) of the norm kernel (34) are

orthonormal with an accuracy of 10−10 for all eigenvalues.
The eigenfunctions with nν < nmin oscillate inside the nuclear
volume and vanish outside the surface region. To further check
the quality of uL

ν (R) we compute expression (35) by assuming
nmin = 0 and nν = 1 for all ν. In this case, Eq. (35) formally
reduces to g(R). Figure 4 shows g(R) for 212Po calculated in
this way. The agreement with the original formation amplitude
is excellent, except for a small deviation close to R = 0 and a
small oscillation around and beyond the nuclear surface, which
is not visible in the scale of Fig. 4.

Next we study the sensitivity of S to the choice of Rmax,
�R, and nmin. For this analysis we relax the condition for
udiff(r) in order to access a wider range of �R. First, we study
the sensitivity of S as a function of Rmax for various values of
�R. Figure 5 shows the result for 0.53 � �R � 0.59 fm for
212Po in the model space M4 and nmin = 0.001. Except for a
small value of �R = 0.53 fm, which does not produce stable
results, a plateau in Rmax is reached around 14 fm.

The dependence of S on �R displayed in Fig. 5 reflects
the fact that for too small values of the step the basis functions
become numerically linearly dependent, while for too large
�R’s the basis cannot capture high Fourier components [43,
53,64]. Figure 6 shows S for 212Po in the model space M4
and nmin = 0.001 as a function of �R. In general, appreciable

R (fm)

FIG. 2. Eigenvalues of the norm kernel (25) for 212Po for
Rmax = 13 fm for different values of �R.

R (fm)

FIG. 3. Similar as in Fig. 2 except for 104Te and Rmax = 10 fm.

oscillations of S can be seen except for the “safe” region
0.54 � �R � 0.59 fm, where results weakly depend on Rmax.

Finally, Fig. 7 shows the behavior of S as a function of the
eigenvalue cutoff nmin for �R = 0.57 fm. The cutoff used in
Figs. 5 and 6 corresponds to n

−1/2
min = (0.001)−1/2 ≈ 31.5.

G. Integral over intrinsic coordinates

The multidimensional integral (12) depends on the nucle-
onic coordinates, which are parametrized in terms of intrinsic
variables through Eqs. (9) and (10). The integration over ϕ̃i can
easily be done analytically. Since the coordinates of particles
1 and 2 depend only on the relative coordinates 1 and 3, and
the particle coordinates 3 and 4 depend only on the relative
coordinates 2 and 3, one can greatly simplify the remaining
six-dimensional integral by making first the integration over
the relative coordinates 1 and 2 and then the integration over
the coordinate 3:∫

dρ3

[
· · ·

(∫
· · · dρ1

)(∫
· · · dρ2

)]
. (45)

The integration has been carried out using the Gauss-Legendre
quadrature using ten points for the radial integrals and eight
points for the the angular coordinates. This guarantees the
convergence up to the fourth significant digit.

FIG. 4. Formation amplitude g(R) for 212Po in the M4 model
space expanded in eigenfunctions of the norm kernel for �R = 0.500
fm and Rmax = 13 fm.
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R (fm)

FIG. 5. Convergence of S for 212Po (model space M4) as a
function of Rmax of the normalized SGB for different values of �R

(with nmin = 0.001.)

IV. REDUCED WIDTH FOR 212Po

A. Single- j configuration

Following Rasmussen [32], it is instructive to compute
relative reduced widths assuming a pure single-jn shell-model
orbital assignment for the neutron pair, while the proton pair
fills the 0h9/2 shell. For simplicity, the results are expressed
relative to the 210Po reference (a neutron pair in 2p1/2).

In the δ-function approximation of Sec. II B, the ratio rδ of
the reduced widths is given by a simple expression [32]:

rδ = γ 2
jn

γ 2
2p1/2

= 2jn + 1

2

(
ujn

(R)

u2p1/2 (R)

)4

. (46)

In a more general case expressed by Eq. (11), the ratio r

depends on the proton wave function:

r =
γ 2

jn,0h9/2

γ 2
2p1/2,0h9/2

= 2jn + 1

2

(
Ijn,0h9/2 (R)

I2p1/2,0h9/2 (R)

)2

. (47)

Table VII compares the ratio rδ given by Eq. (46) using the
WS wave functions with that of Table I of Rasmussen [32]
based on the rounded square well potential of Blomqvist
and Wahlborn [65] for several neutron configurations at
R = 9.5 fm. We find excellent agreement between these two

Rmax (fm)

FIG. 6. Similar as in Fig. 5 but as a function of the step size �R

for different values of Rmax.

Rmax (fm)

FIG. 7. Similar as in Fig. 5 but as a function of nmin for different
values of Rmax and �R = 0.57.

calculations, and we checked that this agreement also holds
for R = 9.0 fm. This is not surprising as both calculations
employ finite-depth potentials. The fourth column of Table VII
displays the ratio r given by Eq. (47) using the WS wave
functions; they are compared with the h.o. values of Ref. [66]
(last column). It is seen that h.o. calculations underestimate
WS values for high-j orbits by a factor 2–3.

It has been early recognized [28,32] that the δ-function
approximation overestimates the contributions of high-j or-
bitals. One can see it clearly by comparing the values of rδ of
Eq. (46) with those of r (47), i.e., the third and fourth columns
of Table VII. To cure this deficiency, a correction factor Bν (15)
was introduced [32] in Eq. (14) that depends on the relative
angular momentum.

B. Enhancement due to configuration mixing

As was first shown by Harada [14], the reduced width at
the surface region is strongly enhanced by the configuration
mixing because contributions from various shell-model orbits
add coherently. To assess the effect of collective enhancement
due to the configuration mixing, we carried out calculations in
the M2 space. For R = 8 fm, our WS calculations yield the
enhancement factor of ζ = 8.5 with respect to the valence-
shell configuration M0. This is to be compared with ζ = 11
obtained in the δ-function approximation; ζ = 10 obtained by
Rasmussen [32]; and ζ = 5.5 of Harada [14] using h.o. wave
functions.

TABLE VII. Single-j alpha reduced width ratios at R = 9.5 fm.
Shown are: rδ of Ref. [32], rδ of Eq. (46), r of Eq. (47), and r of
Ref. [66].

Orbital jn rδ [32] rδ r r [66]

0i13/2 0.44 0.46 0.20 0.10
0i11/2 0.32 0.34 0.21 0.08
1g9/2 7.50 7.50 6.50 3.73
1f5/2 0.73 0.74 0.58 0.55
2p3/2 1.89 1.89 1.73 1.89
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TABLE VIII. The relative reduced width θ2 (48) obtained in
Ref. [15] and this work.

Model space R (fm) Ref. [15] This work
M0 8.4 6.3 × 10−6 0.60 × 10−6

M3 8.5 4.4 × 10−5 0.48 × 10−5

M4 9.0 2.9 × 10−4 0.41 × 10−4

For the model space M3 of Glendenning and Harada [55],
obtained by adding the intruder neutron state 0j15/2 to M2,
we obtain ζ = 21. This should be compared with ζ = 24
obtained in the δ-function approximation and ζ = 30 obtained
in Ref. [55] (also within the δ-function approximation) using a
fairly rich wave function that also includes proton-neutron cor-
relations and J > 0 two-particle couplings. It is worth noting
that our enhancement is around 80% of that by Glendenning
and Harada, and that the seniority-zero component in their
wave function is also 80%.

C. Extended shell-model space

Due to the strong collective enhancement of the reduced
width due to configuration mixing, it is important to consider
extended shell-model space by taking into account higher-
lying orbitals [15]. For finite-depth shell-model potentials,
such as the WS potential used in this study, this necessitates
a proper treatment of the particle continuum. An appropriate
representation to deal with the continuum space is the complex
Berggren ensemble representing bound and unbound s.p. states
[67,68].

Here we consider the large configuration space M4 of
Tonozuka and Arima [15], i.e., all s.p. orbits up to the N = 7
harmonic oscillator shell except for broad resonances with
widths greater than 1 MeV. The shell-model amplitudes were
taken from Ref. [15] and renormalized to the reduced model
space. For the sake of comparison with Ref. [15], we consider
the relative reduced width

θ2(R) = γ 2(R)

γ 2
W (R)

, (48)

where γ 2
W (R) = 3h̄2

2μR2 is the Wigner limit [69].

Table VIII compares our WS results for θ2(R) with those
of Ref. [15] obtained in the h.o. basis for several values of
R. Generally, the reduced width obtained in the WS model
is about one order of magnitude smaller than that in the h.o.
basis. This is because the h.o. basis knows nothing about the
particle thresholds, and the radial behavior at large distances
is solely determined by the oscillator length. For that reason,
calculations based on the h.o. wave functions show large
sensitivity to this parameter [70].

The formation amplitude obtained in this work is shown
in Fig. 8 for the configuration spaces M0, M1, M2, M3, and
M4. Compared with the formation amplitudes of Ref. [15],
the maximum of the formation amplitudes obtained in the WS
model are significantly larger, and appear at lower values of R,
than in the h.o. model. Also the overall shape of the formation
amplitude is very different in the two cases. A characteristic

FIG. 8. Formation amplitude g(R) for 212Po obtained in this work
in the model spaces M0 to M4 as defined in Table V. The imaginary
part of the formation amplitude in M4 (dotted line) is also shown.

two-humped shape of g(R) calculated in M4 resembles the
formation amplitude G(R) obtained in Refs. [15,42]. A
similar result was also obtained in Refs. [20,21]. It is indeed
interesting to see that a two-humped behavior of the formation
amplitude for 212Po has been obtained by considering a large
configuration space and the Berggren ensemble of the WS
potential.

Figure 8 also shows that the formation amplitude in the
M4 model space has a small imaginary part. This is because
our calculations are carried out in the pole approximation
that ignores the nonresonant continuum [68,71–73]. This
spurious component of g(R) results in a very small imaginary
contribution to the reduced width, which can be safely
neglected considering the expected accuracy of our model.

V. ABSOLUTE ALPHA-DECAY WIDTH OF 212Po

The g.s. alpha-decay width of 212Po has been determined in
the seniority-zero approximation using three different models
spaces listed in Table V: M0, M3, and M4. The corresponding
four-particle shell-model wave function contains one config-
uration in the M0 space, 12 configurations in M3, and 144
seniority zero configurations in M4.

The absolute width from Eq. (1) should not depend on
the channel radius R. However, in R-matrix studies involving
approximations, such as the one-channel R-matrix treatment,
this condition cannot be met [22]. Therefore, in practical
calculations, in which the dependence of �L on R around
the nuclear surface is small relative to the appreciable R

dependence of the formation amplitude, one is trying to meet
the plateau condition for �L(R) in which the absolute width
varies weakly around the nuclear surface [74]. Figure 9 shows
the dependence of the R-matrix width (1) on the channel
radius. It is seen that the plateau condition is met only in
the case of the extended configuration space M4 involving
particle continuum. Here, we find a fairly weak variation of
�(R) between 7 and 11 fm.

As seen in Fig. 9, and discussed in Sec. IV B and Refs. [15,
70,75], the width strongly increases with the size of the shell-
model space. Indeed, in the surface region, �(R) obtained in
M3 shows an enhancement of ∼15 with respect to M0, and in
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FIG. 9. Dependence of the absolute alpha-decay width (1) of
212Po on the R-matrix channel radius R for three different model
spaces M0, M3, and M4.

the extended space M4 the enhancement is ∼260. Compared
to experimental value, however, the width obtained in M4 is
still 600 times smaller than the experimental value �exp =
0.153 × 10−14 MeV [54].

A further enhancement in the reduced width is due to the
antisymmetrization and normalization of the channel decay
[38,42]. This is achieved by replacing the standard formation
amplitude g(R) with the modified formation amplitude G(R)
of Eq. (24). Figure 10 shows G(R) calculated in the M4 model
space with �R = 0.56 fm, Rmax = 11.76 fm (M = 21), and
nmin = 0.001. A small oscillation at the tail of G(R) can be
seen. The amplitude of this oscillation, around the asymptotic
behavior given by H+

0 (η, kR), varies very little with Rmax for
this value of �R. As discussed in, e.g., Refs. [3,42,45], the
behavior of g(R) and G(R) is generally very different. This
can be seen by comparing Figs. 8 and 10.

The absolute alpha-decay width obtained by using the
R-matrix expression (1) with the formation amplitude G(R)
of Fig. 10 is shown in Fig. 11. There appears a small
plateau in the region of nuclear surface that corresponds to
� ≈ 0.0042 × 10−14 MeV. This value is ∼36 times smaller

(

FIG. 10. Modified formation amplitude G(R) of Eq. (24) in
the extended model space M4 with nmin = 0.001, �R = 0.56 fm,
and Rmax = 11.76. Unlike g(R), G(R) properly accounts for the
normalization and antisymmetrization of the decay channel. The
asymptotic behavior of G(R) is given by the Coulomb-Hankel
function at the alpha-decay energy Qα = 8.986 MeV (dashed line).

FIG. 11. Absolute width from R-matrix expression (1) calculated
in the M4 model space using the modified formation amplitude G(R)
of Fig. 10. At R > 9 fm, the result obtained by assuming G(R) ∝
H+

0 (η, kR) is marked by a dotted line.

than �exp. At larger distances R > 9 fm, the result is affected
by spurious oscillations of G(R) around H+

0 (η, kR); i.e., it is
quite unreliable.

The absolute width can also be obtained from expression
(2), which involves the alpha-particle spectroscopic factor
S and the s.p. decay width. Figure 12 shows the result of
the current expression (20) for �sp as a function of the
channel radius. As discussed in Ref. [36], �sp calculated
this way should be independent of R if R is large enough.
This is precisely what is seen in Fig. 12: the s.p. width
converges beyond the range of the WS potential to �sp =
0.1247 × 10−12 MeV, which is indeed very close to the value
of −2Im(Eα) = 0.1265 × 10−12 MeV given by the imaginary
part of the Gamow resonance.

Using the modified formation amplitude G(R) of Fig. 11,
we compute the spectroscopic factor S = 0.011, which—
combined with the value of �sp above—yields � = 0.14 ×
10−14 MeV. Using �R = 0.55 fm we obtain S = 0.0080
and � = 0.10 × 10−14 MeV. Both these values are close to
�exp = 0.153 × 10−14 MeV.

sp
 (

10
-1

4 
M

eV
)

R (fm)

FIG. 12. Single-particle width of 212Po from current expression
(20).
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TABLE IX. Alpha-decay spectroscopic factor and absolute width
for 212Po and 104Te computed in the configuration spaces M1 and M4,
with nmin = 0.001, �R = 0.56, and Rmax = 11.76 fm (M = 21).

Model space S � × 1014 MeV
212Po 104Te 212Po 104Te

M1 0.00032 0.00046 0.0040 0.0075
M4 0.011 0.0051 0.14 0.083

VI. COMPARISON BETWEEN GROUND-STATE ALPHA
DECAY OF 212Po AND 104Te

To compare absolute widths of 212Po and 104Te in a
consistent way, we consider similar M1 and M4 model spaces
for both nuclei. The norm kernel eigenvalues nν do not depend
on the model space in which g(R) is calculated, so we take the
cutoff nmin = 0.001.

Let us begin with 212Po by making a convergence analysis
of S in the M1 model space as a function of �R and Rmax (as
in Fig. 5). For �R = 0.53, 0.54, 0.55, and 0.56 fm, we found
S = 0.0041, 0.0011, 0.00030, and 0.00032, respectively. The
resulting converged valueS = 0.0003 is too small, as expected
from Fig. 8. This deficiency is related to the poor quality of the
interaction used to describe 212Po in M1. To better understand
this fact, let us take a look of the spectroscopic factor in terms
of the spectral representation of the norm kernel,

S =
∑

ν

g2
ν

nν

, (49)

where the sum is truncated by the condition nν > nmin. The
summation range and eigenvalues nν are the same for M1 and
M4; the only difference comes from gν . Because of the rapid
oscillation of the eigenfunctions inside the nucleus, only the
eigenfunctions which are peaked at and beyond the nuclear
surface will contribute significantly to the sum. But—because
g(R) in M1 is small in the surface region—the overlap with
those eigenfunctions is small, and this gives rise to a very
reduced value of S.

By making a similar analysis for 104Te in M1, we found
S = 0.067, 0.024, 0.0066, and 0.00046 for �R = 0.53, 0.54,
0.55, and 0.56 fm, respectively. In the model space M4 we
found S = 0.21, 0.088, 0.032, and 0.0051 for the same values
of �R. Clearly, the convergence in S has not been achieved
for 104Te. We would like to attribute this to the impact of the
proton continuum on gν , which results in increased oscillations
of G(R) in the surface area. Table IX compares the values
of S and the corresponding absolute widths for 212Po and
104Te at �R = 0.56 fm. (The single-particle width for Te is
�sp = 0.162 × 10−12 MeV.)

It is interesting to compare our current results for 104Te
with the estimates of phenomenological alpha-decay models
based on a semiclassical approximation [76–78]. The assumed
large value of Qα = 6.12 MeV in Ref. [76] results in a
very short half-life of 7 × 10−11 s. The alpha-decay energies
of 5.05 MeV [77] and 5.42 ± 0.07 MeV [78] result in
T1/2 ∼ 10−7 s and ∼5 × 10−9 s, respectively, and these
estimates are not inconsistent with our value (M4 model space)

FIG. 13. Ground-state alpha-decay width (left scale) and half-life
(right scale) in 104Te as functions of the decay energy.

T1/2 = 5.5 × 10−7 s (Qα = 5.151 MeV). As the value of Qα

in 104Te is very uncertain, we show in Fig. 13 the absolute
width and half-life T1/2 as a function of Qα for the model
space M4.

Our predicted spectroscopic factors in M4 for 104Te and
212Po are about 0.5% and 1%, respectively. As mentioned
above, a fairly small value ofS in 104Te could be a consequence
of the proximity of the proton continuum. Indeed, all the
valence proton shells are resonances. The small value of S in
104Te could also be attributed to the poor quality of the valence
interaction assumed, and the neglect of the T = 0 force. The
effect of the proton-neutron interaction was examined in, e.g.,
Refs. [14,79] for 212Po and was found to be minor due to
the fact that neutrons and protons in 212Po occupy different
shells. This is no longer true in the N = Z nucleus 104Te, in
which the major enhancement of S is expected due to T = 0
correlations. Therefore, our predictions for S and � in 104Te
given in Table IX should be considered as a very conservative
lower limit.

VII. CONCLUSIONS

The g.s. alpha decay of 212Po has been studied within the
complex-energy shell-model framework with the Berggren
ensemble of the average Woods-Saxon potential. We applied
the pole approximation by considering s.p. resonant states
only. The overlap integral involving alpha-cluster nucleons
was computed exactly, without resorting to the δ-function
approximation. We considered the large valence space of
Tonozuka and Arima that is necessary to produce the collective
enhancement of the formation amplitude.

The absolute alpha-decay width was computed using the
reduced width obtained in the framework of the R-matrix
theory and also from the alpha spectroscopic factor. The
latter approach yielded results consistent with experimental
value, but only after considering the antisymmetrization and
normalization of the decay-channel wave function. The R-
matrix estimate underestimates the experimental width by
a factor of ∼36. The R-matrix expression depends on the
asymptotic value of the formation amplitude, which is very
sensitive to the size of the configuration space. On the
other hand, the reaction-theory expression (2) involves the
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spectroscopic factor—an integral quantity that depends less on
the size of the basis used. It is very encouraging to see that a
reasonable agreement with the experimental width of 212Po has
been obtained without explicitly considering the alpha-cluster
component in the wave function of the parent nucleus. In this
context, we believe that the improved treatment of the particle
continuum has been essential.

We have also provided an estimate of the alpha-decay rate
in 104Te. Unfortunately, due to the fact that the valence proton
shells in this nucleus lie in the continuum, no fully convergent
result has been achieved. We hope to improve the situation in
the future by inclusion of the nonresonant continuum space that
will remove some of the undesired oscillations in G(R) at large
distances. In addition, since the residual interaction employed
in our work neglects the proton-neutron components, and the
wave function has a seniority-zero character based on T =
1 nucleonic pairs, the predicted alpha width in this N = Z

nucleus should be viewed as a conservative low limit. Indeed,
the inclusion of T = 0 correlations is expected to increase the
value of � significantly.

The calculations presented in this study should be consid-
ered as an important step towards an improved microscopic
understanding of the alpha-decay process. Still, as this work

demonstrates, further improvements are needed. The neglect
of the nonresonant continuum, i.e., complex-energy scattering
states in the Berggren ensemble, slightly violates the com-
pleteness relation at a one-body level. This results in small
imaginary contributions to spectroscopic factors and reduced
widths, and—most importantly—can affect the behavior of
formation amplitudes at very large distances. The second
crucial development will be the use of large-scale shell-model
calculations, including realistic T = 0 and T = 1 interactions,
to compute wave function amplitudes. This will enable us to
provide a more meaningful estimate of 104Te alpha-decay rate.
The work in both directions is underway.
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