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Deformation effects on the Gamow-Teller strength distributions
in the double-β decay partners 76Ge and 76Se
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A theoretical approach based on a deformed quasiparticle random phase approximation built on a Skyrme
self-consistent mean field is used to describe the recent measurements of the Gamow-Teller GT− strength
distribution extracted from the charge-exchange reaction 76Ge(3He, t)76As with high energy resolution. The
same analysis is made to describe the Gamow-Teller GT+ strength distribution measured in the 76Se(d,2He)76As
reaction. Combining these two branches, the nuclear matrix element for the two-neutrino double-β decay process
is evaluated and compared to experiment. The role of the nuclear deformation on those processes is emphasized
and analyzed.
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I. INTRODUCTION

The Gamow-Teller (GT) nuclear response is a very fertile
source of information about important issues related not only
to nuclear physics [1], but also to astrophysics [2] and particle
physics [3,4]. In the case of unstable nuclei this information
is mainly extracted from β decays, where there is a severe
restriction due to the Q-energy limitation. In the case of stable
or close to stability nuclei, the GT strength is obtained from
charge-exchange reactions at intermediate incident energies
and forward angles [5]. Under these conditions the nuclear
states are probed at small momentum transfer, and the cross
section becomes proportional to the GT matrix element
without the energy limitations that characterize β decays.

The spin-isospin nuclear properties in 76Ge and 76Se are
among the most extensively studied both theoretically [6–12]
and experimentally [13–18]. This is due to their significance
as double-β decay partners and the implications of this
process in the determination of the neutrino nature and its
absolute mass [3]. The study of these nuclei is indeed a
part of a large experimental program being pursued in the
last several years and aimed to explore the GT properties at
low excitation energies of double-β decay partners by high
resolution charge-exchange reactions [1,16,19–21].

The present work is motivated by the recent high resolution
charge-exchange experiment 76Ge(3He, t)76As [14] that has
allowed the unveiling of some remarkable features of this
nucleus, which previous charge-exchange experiments [13]
at much lower resolution were unable to identify. In particular
the authors of Ref. [14] reported an unusually strong frag-
mentation of the GT strength that was interpreted in terms of
possible effects of deformation. In Ref. [14] it was also noted a
lack of correlation among the GT transition strengths feeding
the same levels in 76As from the two different directions, GT−
measured in the 76Ge(3He, t)76As reaction and GT+ measured
in the 76Se(d,2He)76As reaction [16]. In view of this new
experimental information that has become available, it is worth
reconsidering the theoretical description of these nuclei and the
role that deformation might play to understand the observed
features.

In this work we explore the ability of the deformed proton-
neutron quasiparticle random phase approximation (QRPA)
approach to describe together all of this rich information
available at present that includes (i) the global properties of
the GT response, such as the total GT strength as well as the
location and strength of the GT resonance, (ii) the GT strength
distribution in the low-lying excitation region that contains
much more accurate information, and (iii) the two-neutrino
double-β (2νββ) decay matrix element and the implications
of the single β branches in the 2νββ process.

The QRPA is one of the most reliable and broadly used
microscopic approximations for calculating the correlated
wave functions involved in β and double-β [22] decay
processes, especially after the inclusion of particle-hole (ph)
and particle-particle (pp) residual interactions. The method
was first studied in Ref. [23] to describe the β strength in
spherical nuclei. Subsequent extensions of the QRPA method
to deal with deformed nuclei were done later in Refs. [24–29].
Deformation effects were also studied in the double-β decay
process [7,9,11,30–32]. In particular, it has been found [9,30]
that the nuclear matrix elements for the 2νββ process are
suppressed with respect to the spherical case with a reduction
factor that scales roughly with the deformation difference
between parent and daughter. This suppression mechanism,
which is ignored in spherical treatments may play an im-
portant role in approaching the theoretical estimates to the
experiment.

As it shall be described later, our theoretical approach
[28,29] is based on a deformed QRPA formalism on top
of a self-consistent deformed Hartree-Fock (HF) mean field
with Skyrme forces and pairing correlations in the BCS
approximation. In particular, we shall study the dependence
on deformation of the single β branches that build up the
double-β process.

The paper is organized as follows. In Sec. II, we present a
brief summary of the theoretical approach used to describe the
GT properties. Section III contains the results obtained for the
GT strength distributions, as well as the results for the 2νββ

decay, stressing the effect of deformation. The summary and
conclusions are given in Sec. IV.
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II. THEORETICAL APPROACH

We describe here briefly the theoretical formalism used
in this work, whose details can be found in Ref. [28,29].
First, we carry out a self-consistent deformed HF calculation
with the effective nucleon-nucleon density-dependent Skyrme
interaction SLy4 [33], assuming axial deformation and time
reversal symmetry [34]. The single-particle wave functions are
expanded in terms of the eigenstates of an axially symmetric
harmonic oscillator in cylindrical coordinates using twelve
major shells. Pairing correlations between like nucleons are
included in the BCS approximation taking fixed pairing gap
parameters for protons and neutrons, which are determined
phenomenologically from the odd-even mass differences of
neighboring nuclei through a symmetric five-term formula
involving experimental binding energies [35]. The occupation
probabilities v2

i of the single particle levels are computed
at the end of each HF iteration and are then used to
calculate the one-body density and mean field of the next
iteration, so that one gets new single-particle wave functions,
energies, and occupation numbers at each iteration. Therefore,
the self-consistent determination of the binding energy and
deformation includes pairing correlations from the beginning.
After convergence, the QRPA equations are solved on the
deformed ground state basis for 76Ge and 76Se to get their GT
strength distributions and to compute the 2νββ decay matrix
element.

To describe GT excitations in the QRPA, we add to the
quasiparticle mean field a separable spin-isospin residual
interaction in ph and pp channels. The advantage of using
separable forces is that the QRPA energy eigenvalue problem
is reduced to finding the roots of an algebraic equation. The
ph part is responsible for the position and structure of the
GT resonance [25,26,28]. Its coupling constant χGT

ph could
in principle be obtained in a consistent way from the same
Skyrme energy density functional as the HF mean field through
the second derivatives of the energy functional with respect to
the densities and averaging the contact interaction over the
nuclear volume, as it was done in Ref. [28] to study exotic
nuclei. The pp part consists of a proton-neutron pairing force
and it is also introduced as a separable force [26]. The coupling
constant κGT

pp is usually fitted to the half-lives phenomenology
[26]. Following the above mentioned procedure and taking into
account the experience accumulated in this mass region [36],
we have chosen in this work the values χGT

ph = 0.15 MeV
and κGT

pp = 0.03 MeV. In addition, we will also show the
sensitivity of the GT strength distributions and 2νββ nuclear
matrix elements to the value of coupling constant κGT

pp .
The technical details to solve the QRPA equations have

been described in Refs. [26,28,29]. Here we only mention that,
because of the use of separable residual forces, the solutions
of the QRPA equations are found by solving first a dispersion
relation, which is an algebraic equation of fourth order in the
excitation energy ω. Then, for each value of the energy, the
GT transition amplitudes in the intrinsic frame connecting
the ground state |0〉 to one phonon states in the daughter
nucleus |ωK〉 are found to be

〈ωK |σKt±|0〉 = ∓M
ωK± , (1)

where

M
ωK− =

∑

πν

(
qπνX

ωK

πν + q̃πνY
ωK

πν

)
, (2)

M
ωK+ =

∑

πν

(
q̃πνX

ωK

πν + qπνY
ωK

πν

)
, (3)

with

q̃πν = uνvπ	νπ
K , qπν = vνuπ	νπ

K , 	νπ
K = 〈ν|σK |π〉,

(4)

in terms of the occupation amplitudes for neutrons and protons
vν,π (u2

ν,π = 1 − v2
ν,π ) and the matrix elements of the spin

operator connecting proton and neutron single-particle states,
as they come out from the HF + BCS calculation. XωK

πν and
YωK

πν are the forward and backward amplitudes of the QRPA
phonon operator, respectively.

Once the intrinsic amplitudes in Eq. (1) are calculated, the
Gamow-Teller strength B(GT) in the laboratory frame for a
transition IiKi(0+0) → If Kf (1+K) can be obtained as

Bω(GT±) =
∑

ωK

[〈ωK=0|σ0t
±|0〉2δ(ωK=0 − ω)

+ 2〈ωK=1|σ1t
±|0〉2δ(ωK=1 − ω)], (5)

in [g2
A/4π ] units. To obtain this expression we have used the

initial and final states in the laboratory frame expressed in
terms of the intrinsic states using the Bohr and Mottelson fac-
torization [37]. Finally, a quenching factor gA,eff = 0.7 gA,free

is included in the calculations to take into account in an
effective way all the correlations [38] that are not properly
considered in the present approach.

The role of the residual interactions and BCS correlations
on the GT strengths was already studied in Ref. [28,29]. The
role of deformation was also studied there, where it was shown
that the GT strength distributions corresponding to deformed
nuclei are much more fragmented than the corresponding
to spherical ones, because of the broken degeneracy of the
spherical shells. It was also shown that the crossing of
deformed energy levels, which depends on the magnitude of
the quadrupole deformation as well as on the oblate or prolate
character, may lead to sizable differences between the GT
strength distributions corresponding to different shapes. These
features have been exploited to use the β-decay properties as
an alternative method to learn about the nuclear deformation in
highly unstable isotopes [39]. It has also been shown [40] that
deformation is a key ingredient to reproduce the occupation
probabilities of the relevant single particle levels in the valence
shells of 76Ge and 76Se involved in the double-β decay process
that have been measured for neutrons [17] and protons [18].

The nuclear double-β decay is a rare second order weak
interaction process that takes place when the transition to
the intermediate nucleus is energetically forbidden or highly
retarded. Two decay modes are expected, the two neutrino
mode, involving the emission of two electrons and two
neutrinos, and the neutrinoless mode with no neutrino leaving
the nucleus. Whereas the first type is perfectly compatible
with the standard model, the second one violates lepton
number conservation and implies the existence of a massive
Majorana neutrino. Because the nuclear wave functions and
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the underlying theory for treating the neutrinoless and the
two-neutrino modes are similar, the Gamow-Teller part that
drives the 2νββ decay provides insight for theoretical models
that are required to reproduce the available experimental
information on the 2νββ half-lives.

The 2νββ decay is described in the second order pertur-
bation of the weak interaction as two successive Gamow-
Teller transitions via virtual intermediate 1+ states. The basic
expressions for the 2νββ decay within a deformed QRPA
formalism can be found in [9,40]. Here we only write the
half-life of the 2νββ decay

[
T

2νββ

1/2 (0+
gs → 0+

gs)
]−1 = (gA)4 G2νββ

∣∣M2νββ

GT

∣∣2
, (6)

in terms of the phase-space integral G2νββ and the nuclear
matrix element M

2νββ

GT that contains all the information of the
nuclear structure involved in the process,

M
2νββ

GT =
∑

K=0,±1

∑

mi,mf

(−1)K
〈ωK,mf

|ωK,mi
〉

(
ω

mf

K + ω
mi

K

)
/2

×〈0f |σ−Kt−|ωK,mf
〉 〈ωK,mi

|σKt−|0i〉. (7)

In this equation ω
mi

K (ω
mf

K ) are the QRPA excitation energies of
the intermediate 1+ states |ωK,mi

〉(|ωK,mf
〉) with respect to the

initial (final) nucleus. The indices mi , mf label the 1+ states
of the intermediate nucleus. The overlaps are needed to take
into account the nonorthogonality of the intermediate states
reached from different initial |0i〉 and final |0f 〉 ground states.
Their expressions can be found in Ref. [9].

The various measurements reported for the 2νββ decay in
76Ge have been analyzed in Ref. [41], where a recommended
value T

2νββ

1/2 = (1.5 ± 0.1) × 1021 yr was adopted. Using the
phase-space factor [9] G2νββ (76Ge) = 1.4910−20 yr−1 MeV2,
we get the experimental nuclear matrix elements M

2νββ

GT =
0.129 MeV−1 when the bare gA = 1.269 is used and M

2νββ

GT =
0.216 MeV−1 when quenched factors gA = 1 are used.

III. RESULTS AND DISCUSSION

In this section, we first discuss the global ground-state prop-
erties of 76Ge and 76Se. In Table I we compare with experiment
our results from microscopic SLy4 HF + BCS calculations
corresponding to charge root mean square radii rc, quadrupole
moments Qp, and quadrupole deformation parameters β. The
experimental values for charge radii from Ref. [42] are well

TABLE I. Experimental and calculated charge root mean square
radii rc, intrinsic charge quadrupole moments Qp , and quadrupole
deformations β for 76Ge and 76Se. Experimental values for rc are
from [42]. The first experimental values for Qp are from [43], while
the second values are from [44].

rc (fm) Qp (fm2) β

76Ge Expt. 4.080/4.127 66(21)/164.1(2.5) 0.10/0.26
SLy4 4.104 93.85 0.14

76Se Expt. 4.088/4.162 119(25)/205.5(2.4) 0.16/0.31
SLy4 4.151 125.1 0.17

reproduced in our calculations. The experimental intrinsic
quadrupole moments quoted correspond to values extracted
from Coulomb excitation reorientation methods [43] and from
electric quadrupole transition probabilities B(E2) [44]. Our
calculations produce quadrupole deformations within those
experimental values.

Besides the self-consistent solution that gives us the energy
minimum and the nuclear shapes at equilibrium, we are
also interested in the behavior of the energy as a function
of the deformation. These energy curves are obtained by
performing constrained HF + BCS calculations [45], where
the HF energy is minimized under the constraint of keeping
the nuclear deformation fixed. The energy curves for 76Ge
and 76Se exhibit two local minima at oblate and prolate
shapes that are practically symmetric with very low energy
barriers. The profiles of these curves are very shallow and
roughly have the same energy for quadrupole deformations
from β = −0.2 up to β = 0.2. These results are in agreement
with those from similar calculations using the Gogny-D1S
finite-range effective interaction [46]. Taking into account
these characteristics, with oblate, spherical, and prolate shapes
having practically the same energy and where small changes
in the calculation can lead to different results for the absolute
minimum associated to the ground state, we have opted
to show here results for the GT strength distributions at
various shapes corresponding to β = −0.2, 0, 0.15, 0.2, 0.3
to study the sensitivity of the GT strength distributions to the
deformation.

A. Gamow-Teller strength distributions

In the upper plot of Fig. 1 we show the measured GT
strength distribution as a function of the excitation energy
of the daughter nucleus, extracted from the charge-exchange
reactions 76Ge(p, n)76As [13] and 76Ge(3He, t)76As [14].
While the former measurements were taken at a rather low
resolution, the latter experiment was performed at a high
energy resolution of 30 keV. The inset shows a more detailed
comparison of these two measurements in the overlapping
energy range below 5 MeV. The curves correspond to the
same distributions obtained from a folding procedure using
1 MeV width Breit-Wigner functions, so that the original
discrete spectrum is transformed into a continuous curve.

In the lower panel we can see the GT strength distributions
calculated within QRPA for various deformation parameters
using the same folding procedure. Taking as a reference
the solid black line (β = 0.15), we can see that the main
characteristics observed, such as the location and strength of
the GT resonance, are qualitatively reproduced. In Table II we
can see a comparison between measured and calculated GT
strengths with β = 0.15 in different energy regions. In the low
energy region up to 5 MeV, we have two different evaluations
of the GT strength measured in Ref. [14] that compare well
with the old measurements of Ref. [13]. Our calculations
overestimate clearly these measurements in this range of
energy. Nevertheless, if we consider the range of energy up
to 7 MeV, then the calculations produce comparable results.
This is also true when we compare the strength contained
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FIG. 1. (Color online) Gamow-Teller B(GT−) strength distribu-
tions in 76Ge as a function of the excitation energy in the daughter
nucleus. The upper panel shows the data [13,14] from different
experiments. The lower panel shows calculated QRPA results with
various quadrupole deformations.

between 7 and 10 MeV, where another peak is observed, as well
as when we compare the strength contained between 10 and
20 MeV, where the GT resonance is located. The total strength
in the whole energy range is also well described. Calculations
with other deformations produce peaks that are displaced, but
qualitatively they are similar with one broad peak centered at
about 5 MeV and another one centered beyond 10 MeV.

Similarly, we can see in Fig. 2 the corresponding results
for the charge-exchange reactions 76Se(n, p)76As [15] and
76Se(d,2He)76As [16] with an improved energy resolution of
120 keV. The curves represent again folded distributions. The
lower panel shows the QRPA results for different values of
quadrupole deformations. We see in this case an increased
sensitivity to deformation in the low energy region where a first
peak carrying most of the strength is particularly enhanced for
prolate deformations. In any case, we should keep in mind that
in the case of B(GT+) the total strength is much lower than
in the case of B(GT−), as it must be according to the Ikeda

TABLE II. Measured and calculated GT strength in 76Ge accu-
mulated in various energy regions (MeV).

∑
B(GT−)

∑
0−5

∑
0−7

∑
7−10

∑
10−20

∑
0−20

Thies et al. [14] 1.60(18)/2.43(32)
Madey et al. [13] 1.52 4.88 2.58 12.43 19.9
QRPA (β = 0.15) 4.0 5.5 2.2 10.6 18.3
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FIG. 2. (Color online) Same as in Fig. 1, but for the B(GT+)
strength in 76Se. Experimental data are from Refs. [15,16].

sum rule for N > Z nuclei. Taking in this case β = 0.2 (solid
black line) as a reference, we can see in Table III the strength
contained in various energy ranges compared to experiment.
The GT strength contained below 2 MeV is largest for the
most recent data of Ref. [16]. However, as in the case of 76Ge,
for energies below 5 MeV both sets of data and the theoretical
results are comparable. The total strength contained in the
whole energy range is also well reproduced by the calculations.

This comparison tells us that the global behavior of the
GT strength distribution as a whole is well reproduced in our
calculations for reasonable values of the coupling constants
of the residual interaction and for deformation parameters
compatible with experiment.

In the next two figures, Figs. 3 and 4, we can see the com-
parison between the QRPA results for various deformations
(blue lines) and the high resolution measurements for 76Ge and
76Se, respectively. In both figures we show the folded measured
(solid lines) and calculated (dashed lines) distributions for a
better comparison.

In the case of 76Ge we can see that we get system-
atically less (more) strength than experimentally observed
below (above) an excitation energy of about 2 MeV. This is

TABLE III. Same as in Table II, but for 76Se.

∑
B(GT+)

∑
0−2

∑
0−5

∑
5−20

∑
0−20

Grewe et al. [16] 0.54(7) 0.7(2) 0.3(2) 1.0(4)
Helmer et al. [15] 0.38(3) 0.79(7) 0.64(9) 1.43(16)
QRPA (β = 0.2) 0.15 0.87 0.53 1.4
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FIG. 3. (Color online) High resolution 76Ge(3He,t)76As data [14]
compared to QRPA calculations (dashed and vertical lines) with
various quadrupole deformations.

true for any deformation and the total GT strength in this
region is somewhat compensated. On the other hand, it is
clear that the highly fragmented strength measured is only
qualitatively reproduced when prolate deformations of about
β ∼ 0.15 are considered. In particular, the spherical strength
distribution shows a concentration of the strength in a few
peaks at variance with experiment. The strength distributions
in Fig. 4 corresponding to 76Se show also the characteristic
fragmentation due to deformation that agrees better with the
experiment. In this case the total calculated strength below
this small range of energy is lower than experiment except for
large deformations that accumulate strength around 2 MeV
(see Table III).

In Figs. 5 and 6 we show the accumulated GT strength
[
∑

B(GT)(Eex) = ∑
E<Eex

B(GT)(E)] for 76Ge and 76Se,
respectively. They are calculated from the folded distribu-
tions and correspond to QRPA calculations with various
deformations using two different Skyrme forces to appreciate
the sensitivity of the results to different parametrizations
of the effective Skyrme interaction used. In the left panels
(a) we have the results from SLy4, whereas in the right panels
(b) we have the results from the Skyrme interaction SG2 [47].
The latter has been successfully tested against spin and isospin
excitations in spherical [47] and deformed nuclei [28,48].
As we can see from these figures, the tendencies are very
similar and the small discrepancies are only quantitative. This
type of plot is very useful because it shows at the same
time both the detailed structure of the strength distribution
and the global behavior in terms of total strength contained
at each excitation energy. In Fig. 5 the calculations for the
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FIG. 4. (Color online) Same as in Fig. 3, but for 76Se(d,2He)76As
data [16].
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FIG. 5. (Color online) Accumulated B(GT−) of 76Ge as a function
of the excitation energy in the daughter nucleus. The data [13,14]
are compared with theoretical calculations obtained with different
quadrupole deformations.

accumulated B(GT−) strength in 76Ge are compared to the
data from 76Ge(3He, t)76As [14] (circles) and with the data
extracted over 0.5 MeV energy bins (triangles) that contain
the influence of the tail of the GT resonance [14]. We also
show for comparison the data from (p, n) reactions [13]
(open squares). We can see that the measured strength is
systematically underestimated at low excitation energy, but
beyond 4 MeV the tendency is the opposite. The data are best
reproduced by the calculations with a quadrupole deformation
β = 0.15. In Fig. 6 we show the calculations for the B(GT+)
strength in 76Se for various deformations. They are compared
with data from the 76Se(d,2He)76As [16] (dots) and (n, p)
reactions [15] (open squares). In this case the results from
spherical and oblate shapes clearly underestimate the data.
Prolate deformations produce much more strength and follow
better the observed trend.

Finally, it should also be mentioned that the strength of the
residual proton-neutron interaction in the pp channel, κGT

pp ,
has been shown to play an important role to describe both
the GT strength distributions [26,29,49] and the 2νββ nuclear
matrix elements [6,9,11,30]. To demonstrate the sensitivity
of the GT strength distributions to this parameter, we show
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FIG. 6. (Color online) Same as in Fig. 5, but for the B(GT+) of
76Se. Data are from Refs. [15,16].
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FIG. 7. (Color online) Accumulated (a) B(GT−) and (b) B(GT+)
as a function of the excitation energy in the daughter nucleus. The
results correspond to the Skyrme force SLy4 for various values of the
coupling strength κGT

pp (MeV). Experimental points in (a) and (b) are
as in Figs. 5 and 6, respectively.

in Fig. 7 the accumulated (a) B(GT−) and (b) B(GT+) for
several values of the coupling strength κGT

pp (MeV). The results
correspond to the Skyrme force SLy4 for various values of
the deformation parameters close to the self-consistent ones
and to the experiment. We observe a dispersion of the results
characterized by a larger accumulation of the strength at lower
energies as the value of κGT

pp increases. A similar tendency
is found for other values of the deformation parameter. In
the case of B(GT−), the spread in the profile produced by
κGT

pp is comparable to the spread produced by the deformation
[see Fig. 5(a)]. On the other hand, the effect of κGT

pp in the
accumulated B(GT+) at low energies is much smaller than the
effect produced by the deformation [see Fig. 6(a)].

B. Two-neutrino double-β decay

In this subsection we evaluate the 2νββ matrix elements
for the decay of 76Ge and compare them with the experimental
information extracted from both the measured half-life of the
process [41] and the running sum, as extracted directly from
the high resolution measurements [14,16].

In Fig. 8 we can see the running sum of the 2νββ

nuclear matrix element for various combinations of parent and
daughter deformations as a function of the excitation energy of
the intermediate nucleus 76As. The shaded area indicates the
experimental range for the matrix element M

2νββ

GT extracted
from the experimental half-life using bare and quenched gA

factors. Also included (red solid line) is the experimental
running sum up to 5 MeV derived following the procedure
explained in Ref. [14] using the GT strength distributions
from [14] and [16].

The spherical description of these nuclei produce a very
large matrix element that overestimates the experiment. The
matrix elements are reduced when different deformations
from parent and daughter are considered. In particular, the
combination of deformation parameters β(76Ge) = 0.15 and
β(76Se) = 0.2 (solid black line) produce optimal results
reproducing the experiment. When the deformations are very
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FIG. 8. (Color online) Experimental running sum [14] of the
nuclear matrix element for the 2νββ decay in 76Ge as a function
of the intermediate excitation energy in 76As, compared with results
from calculations using different quadrupole deformations for parent
and daughter nuclei. The shaded area indicates the experimental range
extracted from the experimental half-life using bare and quenched gA

factors.

different, the matrix element becomes very small as compared
to the experiment.

It should also be noted that all the calculations lie below
the experimental running sum of Ref. [14] that reaches the
experimental value from the half-life already at 2 MeV. As
pointed out by the authors in that reference, the consequence
of this is that any further contributions must be very small
or must cancel each other. However, one should also take
into account that the construction of the running sums in
[14] was based on summing the products of GT− and GT+
matrix elements accumulated in different overlapping energy
windows. This was done because the different resolutions of
the experiments on the two branches and the lack of correlation
between the GT− and GT+ strengths do not allow a one-to-one
correspondence between the states in 76As excited from 76Ge
and 76Se. Then, this procedure provides an upper limit of

0 5 10 15 20
E

ex
 [MeV]

0

0.05

0.1

0.15

0.2

0.25

M
G

T

2ν
ββ

  [
M

eV
-1

]

κ
pp

 = 0
κ

pp
 = 0.03

κ
pp

 = 0.07

(β
76Ge

 = 0.15 , β
76Se

 = 0.2)

FIG. 9. (Color online) Same running sums as in Fig. 8, but for
different values of the pp coupling strength. The shaded area has the
same meaning as in Fig. 8.
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FIG. 10. Nuclear matrix element for the 2νββ decay in 76Ge as a
function of the coupling strength κGT

pp . The shaded area has the same
meaning as in Fig. 8.

the actual running sum because the product of accumulated
strengths is always larger than the sum of one-to-one products.
In this sense, our calculations for the running sums are
consistently below the experimental running sum extracted
in that way.

The dependence of the running sum with the coupling
strength of the proton-neutron residual interaction in the pp

channel, κGT
pp , is shown in Fig. 9, using the deformations

β(76Ge) = 0.15 and β(76Se) = 0.20 for the parent and daugh-
ter nuclei, respectively. The concentration of the strength at
low energies produced with higher values of κGT

pp makes the
2νββ nuclear matrix element increase at low energies with
increasing values of κGT

pp , but nevertheless, this increase is not
enough to reproduce the experimental running sum extracted
in Ref. [14]. When the running sum exhausts, the final matrix
element decreases with increasing values of κGT

pp . This effect

can be better appreciated in Fig. 10, where M
2νββ

GT is plotted as
a function of κGT

pp .

IV. SUMMARY AND CONCLUSIONS

In this work we have studied the GT strength distributions
in the daughter nucleus 76As reached from both 76Ge and
76Se double-β decay partners. Calculations from a deformed
QRPA approach with ph and pp residual interactions based on
a self-consistent Skyrme Hartree-Fock mean field with pairing

correlations are compared with data from (p, n) and (n, p)
charge-exchange reactions and their associated high resolution
(3He, t) and (d,2He) reactions.

Using quadrupole deformations compatible with the equi-
librium shapes obtained from the SLy4 interaction, which
lie within the experimental values, we obtain reasonable
agreement with experiment in both single-β branches, GT−
in 76Ge and GT+ in 76Se, as measured in Refs. [13,14]
and [15,16], respectively, as well as with the nuclear matrix
element of the 2νββ process, extracted from the experimental
half-life [41]. The deformed QRPA approach used in this work
is able to reproduce the gross features of the GT strength
distributions, but fails to account for a detailed description
of the high resolution data in the low excitation energy.
Although a fine spectroscopy is beyond the scope of this
HF + BCS + QRPA approach, where the use of universal
effective Skyrme interactions (SLy4 in this work) intended to
describe spherical and deformed nuclei all along the nuclear
chart prevents reproducing accurately local details, the global
performance of this approach is very reasonable. It is also
worth mentioning that the agreement with experiment is
optimum for the most reasonable choices of deformations and
strengths of the residual interaction.

It has been shown that nuclear deformation plays a sig-
nificant role in understanding the GT strength distribution, as
well as in understanding the 2νββ process, where differences
between parent and daughter nuclear deformations introduce
a reduction factor in the nuclear matrix elements that finally
determines the 2νββ half-lives.

The role of the coupling strength of the proton-neutron
residual interaction in the pp channel, κGT

pp , to describe
GT strength distributions and 2νββ nuclear matrix elements
has been studied. It has been shown that, within a range
of reasonable values of κGT

pp , its effect on the GT strength
distributions at low energy is comparable or smaller than the
effect produced by the deformation. It has also an effect on the
2νββ matrix elements, especially on the total matrix element
that finally determines the 2νββ half-life.
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[9] F. Šimkovic, L. Pacearescu and A. Faessler, Nucl. Phys. A 733,
321 (2004).

[10] J. Suhonen and O. Civitarese, Phys. Lett. B 668, 277 (2008).

034335-7

http://dx.doi.org/10.1016/j.ppnp.2011.01.056
http://dx.doi.org/10.1016/j.ppnp.2011.01.056
http://dx.doi.org/10.1103/RevModPhys.75.819
http://dx.doi.org/10.1103/RevModPhys.75.819
http://dx.doi.org/10.1016/S0370-1573(97)00087-2
http://dx.doi.org/10.1088/0954-3899/24/12/001
http://dx.doi.org/10.1088/0954-3899/24/12/001
http://dx.doi.org/10.1103/PhysRevLett.88.252501
http://dx.doi.org/10.1103/PhysRevC.79.055502
http://dx.doi.org/10.1103/RevModPhys.64.491
http://dx.doi.org/10.1016/0370-2693(88)90594-1
http://dx.doi.org/10.1088/0954-3899/25/6/306
http://dx.doi.org/10.1088/0954-3899/25/6/306
http://dx.doi.org/10.1103/PhysRevC.67.044313
http://dx.doi.org/10.1103/PhysRevC.67.044313
http://dx.doi.org/10.1016/j.nuclphysa.2004.01.002
http://dx.doi.org/10.1016/j.nuclphysa.2004.01.002
http://dx.doi.org/10.1016/j.physletb.2008.08.056


P. SARRIGUREN PHYSICAL REVIEW C 86, 034335 (2012)

[11] M. S. Yousef, V. Rodin, A. Faessler, and F. Simkovic, Phys. Rev.
C 79, 014314 (2009).

[12] O. Moreno, E. Moya de Guerra, P. Sarriguren, and A. Faessler,
Phys. Rev. C 81, 041303(R) (2010).

[13] R. Madey et al., Phys. Rev. C 40, 540 (1989).
[14] J. H. Thies et al., Phys. Rev. C 86, 014304 (2012).
[15] R. L. Helmer et al., Phys. Rev. C 55, 2802 (1997).
[16] E.-W. Grewe et al., Phys. Rev. C 78, 044301 (2008).
[17] J. P. Schiffer et al., Phys. Rev. Lett. 100, 112501 (2008).
[18] B. P. Kay et al., Phys. Rev. C 79, 021301(R) (2009).
[19] D. Frekers, Prog. Part. Nucl. Phys. 57, 217 (2006); 64, 281

(2010).
[20] S. Rakers et al., Phys. Rev. C 70, 054302 (2004); E. W. Grewe

et al., ibid. 76, 054307 (2007); 77, 064303 (2008).
[21] R. G. T. Zegers et al., Phys. Rev. Lett. 99, 202501 (2007).
[22] P. Vogel and M. R. Zirnbauer, Phys. Rev. Lett. 57, 3148 (1986);

D. Cha, Phys. Rev. C 27, 2269 (1983); T. Tomoda and A.
Faessler, Phys. Lett. B 199, 475 (1987); K. Muto, E. Bender,
and H. V. Klapdor, Z. Phys. A Hadrons Nucl. 334, 177 (1989).

[23] J. A. Halbleib and R. A. Sorensen, Nucl. Phys. A 98, 542
(1967).

[24] J. Krumlinde and P. Moeller, Nucl. Phys. A 417, 419
(1984).

[25] P. Moeller and J. Randrup, Nucl. Phys. A 514, 1 (1990).
[26] M. Hirsch, A. Staudt, K. Muto, and H. V. Klapdor-

Kleingrothaus, Nucl. Phys. A 535, 62 (1991); K. Muto,
E. Bender, and H. V. Klapdor, Z. Phys. A 333, 125 (1989);
K. Muto, E. Bender, T. Oda, and H. V. Klapdor-Kleingrothaus,
ibid. 341, 407 (1992); H. Homma, E. Bender, M. Hirsch,
K. Muto, H. V. Klapdor-Kleingrothaus, and T. Oda, Phys. Rev.
C 54, 2972 (1996).

[27] F. Frisk, I. Hamamoto, and X. Z. Zhang, Phys. Rev. C 52, 2468
(1995); I. Hamamoto and X. Z. Zhang, Z. Phys. A 353, 145
(1995).

[28] P. Sarriguren, E. Moya de Guerra, A. Escuderos, and A. C.
Carrizo, Nucl. Phys. A 635, 55 (1998); P. Sarriguren, E. Moya
de Guerra, and A. Escuderos, ibid. 658, 13 (1999); 691, 631
(2001).

[29] P. Sarriguren, E. Moya de Guerra, and A. Escuderos, Phys. Rev.
C 64, 064306 (2001).
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