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Isoscalar and isovector density dependence of the pairing functional determined from global fitting
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We optimize the density dependence of a local energy density functional for pairing correlations (pair-DF),
taking into account both the isoscalar and the isovector densities. All the experimental pairing gaps in even-even
nuclei with N,Z > 8 are analyzed by performing the Hartree-Fock-Bogoliubov calculation. The new pairing
energy density functionals give the best fit for all the pairing gaps with the rms deviation of σtot = (260–360) keV,
depending on adopted Skyrme interactions in the particle-hole channel. It is shown that the isoscalar-density
dependence in the pair-DF can be determined almost uniquely for the several Skyrme forces by adjusting the
neutron and proton pairing gaps. An empirical relation among the parameters in the isoscalar part of pair-DF is
extracted. The uncertainty of the isovector part is also examined by calculating the pairing gaps of neutron-rich
and proton-rich nuclei in a wider region of the nuclear chart. We point out also that the linear isovector-density
dependence in the pair-DF can mimic well the Coulomb effect for pairing correlations in neutron-rich nuclei. We
discuss finally the predictive power of the pair-DF for pairing properties around drip-line regions.
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I. INTRODUCTION

The low-energy nuclear properties are strongly influenced
by the pairing correlation. In order to understand unstable
nuclei that exist in celestial bodies and in a nuclear reactor,
it is necessary to develop an effective interaction that allows
one to reproduce the global pairing properties, that is, the
dependence on the mass number A and on the neutron excess
α = (N − Z)/A.

In contrast to extensive efforts for improving the energy
density functional (EDF) for the particle-hole channel [1],
the pairing part (pair-DF) has not been well controlled. A
promising procedure is a microscopic derivation of the pair-
DF from a bare interaction by including both the medium
polarization effect and the surface phonon coupling effect in
finite nuclei. This progress continues steadily in spite of the
massive computational effort [2–12].

A phenomenological construction with the aid of experi-
mental data is also a promising strategy for constructing EDFs
(see Refs. [13,14] for recent investigations). The parameters in
the pair-DF are constrained by the requirement to reproduce
the experimental data such as masses, low-lying excited states,
and rotational properties. For this direction, the pair-DF, which
depends only on the isoscalar density (ρ = ρn + ρp) [15–19],
is widely employed.

It is to be noted that the functional form of the ρ dependence
is still under discussion [20,21]. The ρ dependence has
influence on the A dependence of the pairing gap [21,22],
while the average trend of the experimental pairing gaps
has dependence not only on A but also the neutron excess
α [23]. In order to overcome this difficulty, in previous
works we proposed a pair-DF including the linear [24–26]
and quadratic isovector density (ρ1 = ρn − ρp) terms and
analyzed the medium-heavy mass region (122 � A � 194 and
0.08 < α < 0.23) [23].

In this work, we extend our previous study and analyze
all the experimental pairing gaps in even-even nuclei with

N,Z > 8 [27] for global fitting of parameters in the pair-DF
with the ρ and ρ1 terms. It is under debate whether a single
pair-DF can describe pairing properties from the β-stable line
to drip-line regions (for example, see Refs. [13,14,23]). We
expect that the new pair-DF has better predicting power across
the nuclear chart.

This paper is organized as follows. In Sec. II, the functional
form of our pair-DF is discussed. The procedures for the
parameter optimization are detailed. In Sec. III, we determine
the parameters of our pair-DF by extensive Hartree-Fock-
Bogoliubov (HFB) calculations with a Skyrme force. In
Sec. IV, the uncertainties of the parameters are also estimated.
In Sec. V, the Coulomb effect in the pairing channel are
discussed.

II. MODEL

A. Parameterization of pair-DF

The α dependence of pairing gap in neutron-rich nuclei was
pointed out by Vogel et al. [28] by analyzing the experimental
data in the region of 50 < Z < 82 and 82 < N < 126. In
Ref. [23], we extended the analysis with recently measured
mass and found that the pairing gap can be empirically
parameterized as

�̄(exp)
n (A, α) = (1 − 7.74 α2)�(A)

n , (1)

�̄(exp)
p (A, α) = (1 − 8.25 α2)�(A)

p , (2)

with the A-dependent parts �(A)
n = 6.75/A1/3 MeV and

�(A)
p = 6.36/A1/3 MeV.
The microscopic origin of the α dependence is still under

debate. The authors of Ref. [29] showed the reduction of the
pairing gap toward the neutron drip line in Sn isotopes, based
on a Thomas-Fermi calculation with the Gogny D1S force
for both the particle-hole and pairing channels. In Ref. [28],
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the authors considered the neutron-excess dependence of the
particle-hole mean field (Lane potential) as a possible origin.

In order to distinguish the effects in the particle-hole
channel and in the pairing channel, it is useful to carry out
self-consistent HFB calculations with the isoscalar-density-
dependent pairing force (for example, see Refs. [1,20])

Hpair(r) = V0

4

{
1 − η0

[
ρ(r)

ρ0

]β
} ∑

τ=n,p

[ρ̃τ (r)]2 . (3)

Here, V0 is the strength parameter, and ρ0 = 0.16 fm−3 is
the saturation density of the symmetric nuclear matter. The
parameters η0 and β control the isoscalar-density dependence
of pairing force.

Apart from rending the weakened pairing correlations in the
nuclear interior, the isoscalar-density dependence in Eq. (3)
is not motivated by any arguments based on the microscopic
theory of effective interaction. A pure two-body force (η0 = 0)
keeps some sensitivity of pairing to the nuclear interior while
a density dependence with (η0 = 1) pushes the sensitivity
towards the outer surface.

The parameter η0 has influence on the mass-number
dependence of pairing gap. An intermediate value between
the two extremes is adopted in Refs. [21,22]. The power of
density, β, may affect the appearance of neutron skins and
halos [22]. Since it is difficult to fix the value β using the
available data, β = 1 is commonly adopted [1].

In Ref. [23], we performed self-consistent HFB calculation
with Skyrme force in the particle-hole channel and pairing
force of Eq. (3). We showed that the α dependence of
the pairing gap cannot be reproduced unless the pair-DF
incorporates the isovector-density dependence [23].

Utilization of the same Skyrme force for both in the
particle-hole channel and in the particle-particle channel [30],
or more general theories such as the density matrix expansion
[31], provide the local energy density functional including
various terms incorporating the isovector properties in the
pairing channel.

The Skyrme SkP parametrization is a unique case for this
direction, although the isovector properties do not seem well
constrained for the α dependence of pairing gap (for example,
see Fig. 22 in Ref. [20] for the calculation of neutron pairing
gaps in Sn isotopes).

In order to reproduce the α dependence of pairing gap
in the region of 50 < Z < 82 and 82 < N < 126 (which
corresponds to zone 0 in Subsec. II B of the present study) by
calculation with a local energy density functional, we proposed
a pair-DF including not only a linear ρ dependence but also
new terms depending on ρ1 and ρ2

1 in Ref. [23].
We intend to include the minimum set of the isoscalar-

and isovector-density terms in the pair-DF for our propose.
The complete investigation of various terms appearing in the
density matrix expansion is not our present goal.

Therefore, we employ the functional form of

Hpair(r) = 1

4

∑
τ=n,p

Vτ gτ [ρ, ρ1][ρ̃τ (r)]2 (4)

with

gτ [ρ, ρ1] = 1 − η0
ρ(r)

ρ0
− η1

τ3ρ1(r)

ρ0
− η2

[
ρ1(r)

ρ0

]2

. (5)

Here τ3 = 1 for τ = n (neutron) and −1 for p (proton). ρ̃τ is
the pair density. We call the pair-DF with only the ρ term (that
is, η1 = η2 = 0) PDF-IS, that with the ρ and linear ρ1 terms
(that is, η2 = 0) PDF-IV1, and that with all terms PDF-IV2.

Reference [25] introduced the linear ρ1 term so as to
simulate the neutron pairing gaps in symmetric and neutron
matters. In Ref. [24], the linear ρ1 term was considered to
take into account the neutron skin effect on pairing. It was
also pointed out that the parameter η1 has a linear dependence
on the isovector effective mass parameter of the particle-hole
channel [23].

As we argue in Sec. V, the linear ρ1 term can also simulate
the Coulomb effect in the pairing channel. This allows us
to make the strength parameters for the neutron and proton
identical, that is, V0 = Vn = Vp. This preserves the charge
symmetry of the pair-DF.

The quadratic ρ1 term is necessary so as to reproduce the α

dependence of experimental pairing gaps [23].
In Ref. [23], these phenomenological terms were examined

by analyzing experimental data in a limited region of the mass
number and the neutron excess. In this paper, we re-examine
the phenomenological terms by analyzing experimental data
in a wider region.

B. Setup of analysis

The Skyrme SLy4 parametrization [32] is mainly used
in the particle-hole channel of EDF in this work. To draw
a general conclusion, we compare the results to those with
other standard Skyrme parameters: SkM* [33], LNS [34], and
SkP [30]. The computer code developed by Stoitsov et al. [35]
is utilized. Starting from three different initial conditions,
that is, the spherical, prolate, and oblate configurations, the
lowest energy solution is searched for in the space of axially
symmetric quadrupole deformation. The cutoff quasiparticle
energy Ecut = 60 MeV is fixed.

We analyze all the experimental pairing gaps of even-even
nuclei with Z,N > 8 for optimization of the pair-DF. We
divide the nuclear chart into four zones: zones 0, 1, 2, and 3.
The definitions of zones are listed in Table I. Zone 0, adopted
in Ref. [23], is now a part of zone 1, which includes nuclei
being well apart from the closed shells. Zone 2 is the data set
closer to the closed shells, and zone 3 includes only the data
of semimagic nuclei as shown in Fig. 1. The histograms in
Fig. 2 represent the distributions of the experimental data as a
function of A and α in each zone.

In Ref. [23], the parameters (V0, η0, η1, η2) have been
determined by analyzing a smaller set of data in the medium-
heavy mass region called zone 0. In the present study, we
determine the parameters in a wider region called zone 1.
We check the performance of the pair-DF so obtained with
near-semimagic nuclei (zone 2) and semimagic nuclei (zone 3).

The root-mean-square (rms) deviation of the result of the
calculation from the experimental pairing gaps is evaluated in
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TABLE I. Definition of zones 0, 1, 2, and 3 shown in Fig. 1. The N
(i)
nucl is the number of nuclei that have experimental data of neutron

and/or proton pairing gaps, and the N (i)
n (N (i)

p ) represents the number of experimental neutron (proton) pairing gaps in zone i (i = 0, 1, 2, 3).
The symbols Zmag and Nmag are the nearest magic numbers, 20, 28, 50, 82, and 126.

Region of N and Z A α N
(i)
nucl N (i)

n N (i)
p

Zone 0 Inside zone 1 restricted to 56 � Z � 76 122 � A � 194 0.08 < α < 0.23 94 93 84
Zone 1 |Z − Zmag| � 6 and |N − Nmag| � 6 24 � A � 254 −0.08 < α < 0.24 170 159 139
Zone 2 2 � |Z − Zmag| � 4 and 2 � |N − Nmag| � 4 20 � A � 220 −0.09 < α < 0.29 216 211 191
Zone 3 Semimagic nuclei 32 � A � 216 −0.05 < α < 0.25 69 40 29

each zone. The neutron, proton, and total rms deviations for
zone i (i = 0, 1, 2, 3) are defined by

σ (zone i)
τ =

[
1

N
(i)
τ

∑
Nuclei∈zone i

(
�τ − �(exp)

τ

)2

]1/2

, (6)

σ
(zone i)
tot =

[
1

N
(i)
tot

∑
τ=n,p

∑
Nuclei∈zone i

(
�τ − �(exp)

τ

)2

]1/2

, (7)

where τ is n or p. The superscript of σ (zone i) indicates the zone
where the fitting procedure is performed. The deviations σ

(all)
tot ,

σ (all)
n , and σ (all)

p are obtained by analyzing all the data in zones
1 to 3.

The theoretical pairing gap is defined by Refs. [36–38]

�τ = −
∫

d rρ̃τ (r)h̃τ (r)∫
d rρ̃τ (r)

, (8)

where the local pairing potential is given by

h̃τ (r) = δ

δρ̃τ (r)

∫
d r ′Hpair(r ′). (9)

The N (i)
n (N (i)

p ) is the number of the experimental neutron

(proton) pairing gaps in zone i, and N
(i)
tot = N (i)

n + N (i)
p is

the sum. The experimental pairing gap �
(exp)
τ is extracted

by the odd-even staggering of binding energy defined by
the three-point formula �(3). The theoretical pairing gap for
even N is often compared with the experimental �(3) for
N + 1 [39]. In this work, we consider the average over the

FIG. 1. (Color online) Experimental pairing gaps of even-even
nuclei are grouped into zones 1, 2, and 3. The subset of zone 1,
which we call zone 0, is also indicated. See text and Table I for the
definitions.

two gaps centered at neighboring odd isotopes: �
(exp)
n (N ) =

[�(3)(N − 1) + �(3)(N + 1)]/2 for each even N nucleus to
eliminate the local fluctuations [13,21]. The same definition of
�

(exp)
p (Z) is used for each even Z nucleus.

C. Fitting procedure

We examine the four fitting procedures for determination
of the four phenomenological parameters η0, η1, η2, and
V0(= Vn = Vp). In order to demonstrate these procedures,
an illustrative process at η0 = 0.75 is shown in Table II.
The Skyrme SLy4 is used in the particle-hole channel.
The influence of the charge symmetry breaking Vn �= Vp is
discussed in Sec. V.

1. The V (156Dy)
0 procedure

This procedure was used in our previous analysis [23].
The σ

(zone 0)
tot is minimized by searching the optimal density

dependence (η0, η1, η2), while the strength V0 is constrained

Th
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FIG. 2. (Color online) (Left) Distribution of experimental pairing
gaps in each zone is shown as a function of A. (Right) The same data
sets are plotted as a function of α.
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TABLE II. The four fitting procedures for PDF-IV2 are demonstrated at fixed η0 = 0.75. The strength parameter V0 (MeV fm−3) and the
isovector-density dependences η1 and η2 are shown. The σ

(zone 0)
tot , σ

(zone 1)
tot , σ

(zone 2)
tot , σ

(zone 3)
tot , and σ

(all)
tot (MeV) are also listed. The bold numbers

indicate the result of each optimization procedure. The Skyrme SLy4 is used for the particle-hole channel. See the text for details.

SLy4 plus PDF-IV2 (η0 = 0.75)

Procedure Condition for V0 V0 Condition for (η1, η2) η1 η2 σ
(zone 0)
tot σ

(zone 1)
tot σ

(zone 2)
tot σ

(zone 3)
tot σ

(all)
tot

V
(156Dy)

0 �n(156Dy) −434.07 Fit in zone 0 0.270 2.5 0.186 0.559 0.461 0.588 0.520
V

(Zone 0)
0 Fit in zone 0 −427.07 Unchanged 0.270 2.5 0.163 0.493 0.386 0.508 0.450

Two-step Fit in zone 1 −396.47 Unchanged 0.270 2.5 0.400 0.333 0.302 0.269 0.314
Direct Fit in zone 1 −396.26 Fit in zone 1 with η2 = 2.5 0.390 2.5 0.411 0.324 0.308 0.278 0.313

so as to reproduce the neutron pairing gap in 156Dy. At fixed
η0 = 0.75, (η1, η2) = (0.270, 2.5) is the optimal set.

2. The V (zone 0)
0 procedure

This procedure was also examined in Ref. [23]. The optimal
V0 is searched in zone 0, while the parameter set (η0, η1, η2)

is kept fixed to that determined by the V
(156Dy)

0 procedure.
The improvement of σ

(zone 0)
tot in this procedure compared

to the V
(156Dy)

0 procedure is only 0.023 MeV. This means that the
constraint to �n(156Dy) is useful, if our analysis is restricted
only to zone 0 [23].

However, the parameter set determined by the V
(zone 0)

0
procedure gives large errors outside zone 0. For exam-
ple, σ

(zone 1)
tot = 0.493 MeV is about three times larger

than σ
(zone 0)
tot = 0.163 MeV with V

(zone 0)
0 and (η0, η1, η2) =

(0.75, 0.270, 2.5).

3. The two-step procedure

In this procedure, the strength V0 is optimized in zone
1, while the parameter set (η0, η1, η2) determined by the

V
(156Dy)

0 procedure is unchanged. By changing from the V
(zone 0)

0

procedure to the two-step procedure, although σ
(zone 0)
tot gets

0.237 MeV worse, the improvements of σ
(zone 1)
tot , σ

(zone 2)
tot , and

σ
(zone 3)
tot are 0.160, 0.084, and 0.239 MeV respectively.

We notice that the σ
(all)
tot decreases monotonically as 0.520,

0.450, and 0.314 MeV in calculations with the PDF-IV2, when
changing the V

(156Dy)
0 procedure, the V

(zone 0)
0 procedure, and

the two-step procedure.
This desirable property may not be expected in other

functional forms. For example, the σ
(all)
tot with the pair-DF with

the isoscalar-density dependence (PDF-IS) does not have this
property, as is shown in Table III.

In our analysis, the common value η2 = 2.5 is used for all
sets of (V0, η0, η1) and Skyrme forces. The applicability was
checked in zone 0 for various Skyrme forces [23]. Here, we
show that this is also the optimal value outside zone 0.

In order to justify this, the σ
(all)
tot is plotted as a function of

η2 in Fig. 3. The SLy4 plus PDF-IV2 at η0 = 0.75 is used. The
parameters V0 and η1 are determined in a similar way as the
two-step procedure: In the first step, η1 is determined in zone
0 for given (η0, η2), while the V0 is constrained by the neutron
pairing gap of 156Dy. Next, V0 is optimized in zone 1 for given
(η0, η1, η2).

The σ
(all)
tot is flat between η2 = 2.5 and 4 and has the

minimum around η2 = 3.5, although this minimum is very
shallow: The difference is σ

(all)
tot (η2 = 0) − σ

(all)
tot (η2 = 2.5) =

0.035 MeV, and the σ
(all)
tot is insensitive for η2 � 2.5.

D. Accuracy of two-step procedure

1. The direct procedure

The accuracy of the two-step procedure should be checked
by extending the analysis in wider zones. Here, we consider the
direct procedure in which the the strength V0 and the density-
dependence (η0, η1) are determined in zone 1 simultaneously.
During the procedure, the parameter η2 is fixed to be 2.5,
because the σ

(all)
tot has weak dependence on η2 around 2.5 (see

discussion in Subsec. II C).
The result of the direct procedure at η0 = 0.75 is listed

in Table II. The differences between the two-step procedure
and the direct procedures are −0.011, 0.009, −0.006, and
−0.009 MeV for σ

(zone 0)
tot , σ

(zone 1)
tot , σ

(zone 2)
tot , and σ

(zone 3)
tot

TABLE III. The three fitting procedures for PDF-IS are demonstrated at fixed η0 = 0.75. The strength parameter V0 (MeV fm−3) of each
procedure is shown. The σ

(zone 0)
tot , σ

(zone 1)
tot , σ

(zone 2)
tot , σ

(zone 3)
tot , and σ

(all)
tot (MeV) are also listed. The bold numbers indicate the result of each

optimization procedure. The Skyrme SLy4 is used for the particle-hole channel. See the text for details.

SLy4 plus PDF-IS (η0 = 0.75)

Procedure Condition for V0 V0 σ
(zone 0)
tot σ

(zone 1)
tot σ

(zone 2)
tot σ

(zone 3)
tot σ

(all)
tot

V
(156Dy)

0 �n(156Dy) −401.21 0.305 0.530 0.354 0.406 0.449
V

(zone 0)
0 Fit in zone 0 −407.27 0.289 0.575 0.383 0.458 0.487

V
(zone 1)

0 Fit in zone 1 −370.80 0.502 0.432 0.417 0.251 0.412
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FIG. 3. (Color online) The σ
(all)
tot is shown as a function of η2. Here

η0 = 0.75 is fixed. The parameters η1 and V0 for SLy4 plus PDF-IV2
are optimized for each η2. See text for details.

respectively. As a result, the σ
(all)
tot of these procedures coincide

within 0.001 MeV.
In order to understand the reason for the good agreement,

we consider the σ
(zone 1)
tot as functions of V0 and η1, while η0 =

0.75 and η2 = 2.5 are fixed. The V0 dependence of σ
(zone 1)
tot

is shown in Fig. 4(a), where the results with η1 = 0.27 (the
optimal value in the two-step procedure) and η1 = 0.39 (the
optimal value in the direct procedure) are compared. This
analysis shows that the strength parameter can be determined
accurately due to the strong V0 dependence.

On the other hand, the η1 parameter has large uncertainty
when changing the analyzed zones. This is shown in Fig. 4(b).
Here, V0 is optimized in zone 1 for given (η0, η1, η2). The
curve of σ

(zone 1)
tot is shallow as a function of η1.

The difference of η1 in the two-step procedure and the direct
procedure can be related to the distribution of nuclei used for
the fit. In zone 1, used in the direct procedure, the distribution
of pairing gaps versus α peaks at large values of α as shown
in Fig. 2, while it is more flat in the case of zone 0, used in the
two-step procedure. The direct procedure gives therefore more
weight to nuclei with larger neutron excess and pushed η1 to
higher values than those obtained from the two-step procedure.

FIG. 4. (Color online) (Left) σ
(zone 1)
tot is shown as a function of V0.

The results with η1 = 0.270 and 0.390 are compared. Here η0 = 0.75
and η2 = 2.5 are fixed, and V

(two-step)
0 = −396.47 MeV fm−3. The

filled box and circle represent the minimum values of σ
(zone 1)
tot in the

two-step and direct procedures respectively. The Skyrme SLy4 and
PDF-IV2 are used. (Right) The σ

(zone 1)
tot is shown as a function of η1.

The V0 is optimized in zone 1 for each η1.

The good agreement of the rms deviations between the
two fitting procedures guarantees the accuracy of the two-step
procedure in our analysis. However, this implies that our pair-
DF has freedom in η1 value to improve the description power
with future experimental data of more neutron-rich nuclei and
possible extensions of the functional form.

Finally, we estimate the numerical task of our fitting
procedures in order to show a computational advantage of the
two-step procedure. To perform the HFB calculation for 170
nuclei in zone 1 (we call one iteration), it takes about 26 hours
on a single CPU of the Altix3700 BX2 computer at the Yukawa
Institute for Theoretical Physics in Kyoto University. This is
estimated as follows: 170 [nuclei] × 3 [spherical, prolate,
oblate initial conditions] × about 3 minutes [convergence from
one initial condition] = about 26 hours.

In the two-step procedure, the strong V0 dependence of the
rms deviation requires typically 10 iterations for the five-digit
accuracy of V0. In the direct procedure, a few dozen iterations
for each V0 are additionally needed for the three-digit accuracy
of η1: A few hundred days are required on a single CPU for
each η0, in spite of the negligible improvement of the rms
deviations. Therefore, the direct procedure consumes much
more computer time and can be applied only for a limited
region of the value η0.

III. OPTIMIZATION OF PAIR-DF

A. Unique determination of ρ dependence

σ
(all)
tot , σ (all)

n , and σ (all)
p are shown as functions of η0 in Fig. 5.

The parameters of PDF-IV2 are determined by the two-step
procedure. The Skyrme SLy4 parametrization is used for the
particle-hole channel. For comparison, we also plot the result
of the direct procedure by open circles. Here, the parameters
η1 and V0 are determined simultaneously for each η0 in
zone 1. Details of the direct procedure are given in Sec. II C
and Table II.

We investigate the η0 dependence of σ
(all)
tot for improving the

reproduction power of the A dependence of pairing gaps. As

FIG. 5. (Color online) σ
(all)
tot , σ (all)

n , and σ (all)
p are shown as functions

of η0. The SLy4 and the PDF-IV2 determined by the two-step
procedure are used to draw the curves. The direct procedure is also
performed at η0 = 0.625, 0.750, and 0.875 and the results are marked
by the open circles. The results with PDF-IS are also shown.
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FIG. 6. (Color online) Comparison of σ
(all)
tot with SLy4, SkM*,

LNS, and SkP. The PDF-IV2 determined by the two-step procedure
is used.

shown in Fig. 5, σ
(all)
tot with PDF-IV2 gradually decreases as a

function of η0 and reaches the minimum at η0 = 0.75. σ (all)
n

and σ (all)
p also have the minimums at the same point η0 = 0.75

simultaneously. This tendency can be obtained by the linear
ρ1 term in the pair-DF, while the contribution of the quadratic
ρ1 term is small (see Fig. 3).

To clarify the role of the ρ1 dependence, σ
(all)
tot , σ (all)

n , and
σ (all)

p obtained with PDF-IS without ρ1 terms are also plotted
in Fig. 5. Here the V0 is optimized for each η0 in zone 1. σ (all)

n

and σ (all)
p decrease as a function of η0 up to around η0 = 0.7.

For larger η0, on the other hand, only σ (all)
n has a plateau, while

σ (all)
p increases due to the artificial quenching of �p attributed

to the neutron skin effect [24]: The growth of the neutron skin
reduces the overlap between the form factor [1 − η0ρ(r)/ρ0]
and ρ̃p(r). Therefore σ (all)

n and σ (all)
p give different constraints

on the parameter η0 in the case of PDF-IS. This shortcoming of
PDF-IS is solved by introducing the ρ1 dependence as shown
in Fig. 5 as σ (all)

n and σ (all)
p are simultaneously changed as a

function of η0 with the PDF-IV2.
We also perform the same analysis with other Skyrme

parametrizations: SkM*, LNS, and SkP. The results are
compared in Fig. 6. It is clearly seen that the minima of
σ

(all)
tot are at about η0 = 0.75 in these Skyrme forces, although

the absolute value of σ
(all)
tot at the minimum depends on

the particle-hole interaction. This result supports the unique
determination of the ρ dependence and the pairing properties
around the nuclear surface. The parameters of the pair-DF and
the rms deviations at η0 = 0.75 are given in Table IV.

TABLE IV. The parameter sets of PDF-IV2 at (η0, η2) =
(0.75, 2.5) for SLy4, SkM*, LNS, and SkP. The two-step procedure is
performed. σ (all)

tot , σ (all)
n , σ (all)

p are listed. m∗
s /m is the isoscalar effective

mass parameter of the Skyrme force.

Skyrme (m∗
s /m) V0 η1 σ

(all)
tot σ (all)

n σ (all)
p

SLy4 (0.69) −396.47 0.270 0.314 0.334 0.289
SkM* (0.79) −371.60 0.427 0.268 0.282 0.251
LNS (0.83) −388.60 0.400 0.362 0.365 0.359
SkP (1.00) −317.50 0.300 0.264 0.297 0.218

(a) (b)

FIG. 7. (Color online) (a) σ
(zone 1)
tot , σ (zone 2)

tot , and σ
(zone 3)
tot are shown

as a function of η0. Here η2 = 2.5 is fixed. The parameters η1 and V0

for SLy4 plus PDF-IV2 are determined by the two-step procedure.
(b) The same figure with Fig. 7(a) but plotted as a function of η2.
Here η0 = 0.75 is fixed.

B. Zone dependence

To check the performance of the pair-DF, we show σtot in
zones 1, 2, and 3 separately in Fig. 7(a). Here SLy4 and PDF-
IV2 are used. It is clear that the better minimum is obtained
in zone 2, zone 1 has a less pronounced minimum, and the
pairing gaps in zone 3 for semimagic nuclei give almost no
constraint on η0.

To understand the reason, the difference of the pairing
gaps, δ�τ = �τ (η0 = 0.75) − �τ (η0 = 0), is evaluated for
each nuclei in zone 3. The result obtained with SLy4 and
PDF-IV2 is shown as a function of A in Fig. 8. We notice that
the dominant proportion of nuclei in zone 3 have A > 100,
and the A dependence of pairing gap is weak in this A region
due to the trend of �

(exp)
τ ∝ A−1/3. This fact causes the weak

η0 dependence of σ
(zone 3)
tot .

The correlations beyond the mean-field calculation may
also contribute to the peculiar behavior in zone 3. The
authors of Ref. [40] considered that the different behavior
in semimagic nuclei may be partly attributed to the effect of
the particle number fluctuation. They showed that the HFB
calculation with the approximate particle number projection
using the Lipkin-Nogami method improves the agreement with
experiment for spherical nuclei. We leave it as an open problem
to construct the pair-DF, which allows one to describe the

FIG. 8. (Color online) The difference of pairing gaps obtained
with η0 = 0 and η0 = 0.75 for each nucleus. The result in zone 3 is
plotted as a function of A. The SLy4 and PDF-IV2 determined by the
two-step procedure are used.
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pairing properties along the chains of semimagic nuclei in the
same quality achieved for the deformed region [13,23,40–42].

We also plot σ
(zone 1)
tot , σ

(zone 2)
tot , and σ

(zone 3)
tot separately as

a function of η2 in Fig. 7(b). The SLy4 and the PDF-IV2
at η0 = 0.75 are used. It is seen that σ

(zone 1)
tot and σ

(zone 2)
tot

have the same tendency as σ
(all)
tot . On the other hand, σ

(zone 3)
tot

increases as a function of η2. This peculiar behavior in zone
3 is caused by the lack of experimental data in order to
extract the neutron-excess dependence. To see this, the neutron
pairing gaps in Ca, Ni, Sn, and Pb isotopes obtained with
PDF-IS, PDF-IV1, and PDF-IV2 at η0 = 0.75 are compared in
Fig. 9.

The reduction effect for neutron pairing correlations due
to the quadratic ρ1 term is stronger than that due to the
linear ρ1 term in nuclei with large neutron excess. This
is seen by comparing the results with PDF-IV1 and PDF-
IV2. However, this effect is not visible in the experimental
data due to the vanishing pairing gaps around the magic
numbers; N = 28, 50, 82, and 126 in Ca, Ni, Sn, and Pb
respectively. The tendency of reducing neutron pairing gaps
toward the neutron drip line is also discussed in Ref. [29]

SLy4

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 9. (Color online) The neutron pairing gaps in Ca, Ni, Sn,
and Pb isotopes (left) and the proton pairing gaps in N = 20, 28,
50, and 82 isotones (right). The results obtained with PDF-IS,
PDF-IV1, and PDF-IV2 at η0 = 0.75 are compared. The two-step
procedure is performed. The experimental pairing gaps are also
shown.

by performing the Thomas-Fermi calculation with the Gogny
force.

The same analysis but for the proton pairing gaps in N =
20, 28, 50, and 82 isotones is also shown in Fig. 9. In the
proton case, the linear ρ1 term enhances the proton pairing
gaps, while the quadratic ρ1 term reduces them. The sizable
quenching effect due to the quadratic term can be seen also in
nuclei with large neutron excess: Z < 12 in N = 20 isotones,
Z < 14 in N = 28 isotones, Z < 28 in N = 50 isotones, and
Z < 50 in N = 82 isotones.

IV. UNCERTAINTIES IN PAIR-DF

A. Empirical expression for V0

Pairing correlations are sensitive to the single-particle
structure around the Fermi level [43]. The connections between
effective interactions in the particle-hole and particle-particle
channels can be expected. In the previous study [23], we
showed the two relations: (1) the linear relation between the
pairing strength V0 and the isoscalar effective mass m∗

s /m

of the Skyrme force and (2) the linear relation between the
isovector-density dependence η1 and the isovector effective
mass m∗

v/m of the Skyrme force. Here, m∗
s /m and m∗

v/m [1]

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 10. (Color online) The same as in Fig. 9, but the results
obtained by the PDF-IV2 with the optimized strengths under the
assumption Vp = Vn and Vp = 0.9Vn, and the fixed Vp = Vn = Vvac

are compared. See the text for details.
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FIG. 11. (Color online) The parameters V0 of PDF-IV2 for SLy4,
SkM*, LNS, and SkP are shown as functions of (η0)2. The two-step
procedure is performed.

are defined by

m

m∗
s (r)

= 1 + 2m

h̄2

(
b1 − b′

1

2

)
ρ (10)

m

m∗
v(r)

= 1 + 2m

h̄2 b1ρ. (11)

The b1 and b1 are combinations of Skyrme-force parameters
t1, t2, x1, and x2:

b1 = 1
8 [t1(2 + x1) + t2(2 + x2)] (12)

b′
1 = 1

8 [t1(1 + 2x1) − t2(1 + 2x2)]. (13)

In this section, we extract empirical correlations among
V0, η0, and m∗

s /m for PDF-IV2. For this purpose, the V0 for
SLy4, SkM*, LNS, and SkP are plotted as a function of (η0)2 in
Fig. 11. The two-step procedure is performed. The V0 has linear
dependence on (η0)2 except for (η0)2 < 0.1. The slope can be
parameterized commonly as |V0| = 260.58(η0)2 + f (m∗

s /m)
MeV fm−3 for SLy4, SkM*, and SkP. In the LNS case, the
slope is steeper: |V0| = 327.75(η0)2 + f (m∗

s /m) MeV fm−3.
Here f (m∗

s /m) is a function of m∗
s /m.

f (m∗
s /m) has linear dependence on m∗

s /m, and the coef-
ficients were determined in zone 0 by analyzing 13 Skyrme
forces in Ref. [23]. In the present study, we analyze the strength
parameters determined by the two-step procedure. By fitting
to the results shown in Fig. 12, we obtain the η0 and m∗

s /m

dependence:

|V0| = 260.58(η0)2 − 255.18
m∗

s

m
+ 418.59 MeV fm−3. (14)

B. Constraint by low-density limit

It is desirable that a single EDF can describe nuclear
properties from β-stability line to drip-line regions. For the
description of drip-line nuclei, the density-dependent contact
force is often used for the nuclear part of pairing interaction
and the strength parameter is determined so as to reproduce
the neutron-neutron (nn) scattering length ann,

Vvac = 2π2h̄2

m

2ann

π − 2annkcut
. (15)

TABLE V. The parameters set of PDF-IV2 for SLy4, SkM*, LNS,
and SkP determined under the assumption V0 = Vvac and η2 = 2.5.
The optimization procedure for (η0, η1) is performed in zone 1. The
σ

(all)
tot , σ (all)

n , and σ (all)
p are also compared.

Skyrme (m∗
s /m) η0 η1 σ

(all)
tot σ (all)

n σ (all)
p

SLy4 (0.69) 0.903 0.483 0.322 0.345 0.293
SkM* (0.79) 0.942 0.600 0.300 0.314 0.282
LNS (0.83) 0.875 0.612 0.374 0.401 0.340
SkP (1.00) 1.095 0.700 0.309 0.344 0.261

Here kcut =
√

mEcut/h̄
2 with a cutoff energy Ecut. The ann =

−18.5 fm [44] and the Ecut = 60 MeV give the strength Vvac =
−458.15 MeV fm−3. This procedure has been used in the three-
body model [17,45–48] and the nuclear matter calculation
[25,49].

We can infer the optimal value of η0 for a given V0 using
Eq. (14). By substituting V0 = Vvac = −458.15 MeV fm−3

into the empirical expression, we obtain η
(empirical)
0 = 0.909,

0.962, 0.900, and 0.988 for SLy4, SkM*, LNS, and SkP
respectively.

It is worth mentioning that σ
(all)
tot is shallow from the

minimum point to η
(empirical)
0 along the η0 direction for each

Skyrme force (see Fig. 6). This may suggest a need for
additional constraint for our pair-DF.

We examine the validity of the assumption V0 = Vvac by
analyzing σ

(all)
tot . The parameter set (η0, η1) of PDF-IV2 is

optimized in zone 1 under the assumption V0 = Vvac. During
the procedure, η2 = 2.5 is fixed.

The minimum values of σ
(all)
tot and the parameter set for

each Skyrme force are listed in Table V. The difference of
σ

(all)
tot with the results of the two-step procedure is less than

0.05 MeV (0.008, 0.032, 0.012, and 0.045 MeV for SLy4,
SkM*, LNS, and SkP, respectively). In addition, the optimal

FIG. 12. (Color online) The optimal values of V0 at η0 = 0.25,
0.5, 0.75, and 1.0 are shown as functions of m∗

s /m. The two-step
procedure is performed. The dashed lines represent the extracted
relation |V0| = 260.58(η0)2 − 255.18m∗

s /m + 418.59 MeV fm−3.
The shaded region indicates the uncertainty of parameters in the
isoscalar part of PDF-IV2. σ

(all)
tot differs less than 0.05 MeV from the

minimum value for each Skyrme force if (V0, η0) is in the shaded
region. See the text for details.
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values of the isoscalar-density dependence are also close to
the empirical values η

(empirical)
0 as expected.

The empirical expression Eq. (14) and the comparison
between the fitting procedures with or without the constraint
V0 = Vvac give a possible estimation of uncertainties in the
phenomenological parameters in our pair-DF. The uncertainty
of V0 in connection with m∗

s /m and η0 is indicated by the
shaded region in Fig. 12.

The lower boundary of |V0| is determined by η0 = 0.75
in the two-step procedure (see Fig. 6). The upper boundary
is |V0| = |Vvac|, and the corresponding value of η0 can be
estimated by Eq. (14). For each Skyrme force, the parameter
set in this shaded region gives less than 0.05 MeV difference
in σ

(all)
tot (see Tables IV and V).

The upper boundary for |V0| is equivalent to a condition
that our pair-DF should be attractive inside nuclei. Here, we
show this for nuclei with α > 0 (the same discussion can be
applied for nuclei with α < 0).

The attractive condition for our pair-DF of Eq. (4) can be
written by

gp > gn � 1 − η0 − η1αmax − η2α
2
max � 0. (16)

Here, ρ � ρ0 and ρ1 � αρ0 are used. The maximum neutron
excess is αmax ≈ 0.3 in this study. This condition gives an
inequality for η0,

η0 � 1 − η1αmax − η2α
2
max < 1 − η1αmax. (17)

By inserting this inequality into Eq. (14), we obtain

|V0| < 260.58(1 − η1αmax)2 − 255.18
m∗

s

m
+ 418.59

� 462.59 (SLy4) ≈ |Vvac|. (18)

For the estimation of the last line, we use the results of the
two-step procedure: η1 � 0.27 (SLy4), 0.427 (SkM∗), 0.400
(LNS), and 0.300 (SkP) for η0 � 0.75 (see Table IV).

We advocate the use of the pair-DF determined by the
two-step procedure. This is because the value of σ

(all)
tot is

minimal in this procedure. However, the synthetic use of
experimental observables having sensitivity to pairing prop-
erties in the nuclear surface region may be promising for
more accurate determination of the parameters: for example,
neutron halos [22,50], dineutron correlations [17,51], pairing
vibrations and two-neutron transfer reactions [52–56], and
the isoscalar giant monopole resonances [57]. The further
extension of the functional form may be also required for the
accurate determination of the parameters (see discussion in
Subsec. II A). These investigations remain for future studies.

V. COULOMB EFFECT

The repulsive Coulomb force weakens the pairing correla-
tions. The 20–30% reduction of the proton pairing gap by the
self-consistent treatment of the Coulomb force was reported in
Refs. [58,59]. In Ref. [60], the authors proposed a prescription
in which the explicit Coulomb effect can be taken into account
by reducing Vp by about 10% for a wide range of mass number
and neutron excess. This is shown by performing a fully self-
consistent HFB calculation with Gogny force and the Coulomb

TABLE VI. The parameter sets of PDF-IV2 optimized under the
assumption Vp = 0.9Vn and Vp = Vn are compared. Here (η0, η2) =
(0.75, 2.5) is fixed, and the two-step procedure is performed. σ

(all)
tot ,

σ (all)
n , and σ (all)

p are also listed.

Skyrme Vp/Vn Vn η1 σ
(all)
tot σ (all)

n σ (all)
p

SLy4 0.90 −415.28 0.585 0.322 0.325 0.317
SLy4 1.00 −396.47 0.270 0.314 0.334 0.289

force. A similar prescription has been found to work also for
a three-body model calculation for the 17Ne nucleus [48].

In most Skyrme EDF calculations so far, the pair-DF with
only ρ dependence has been adopted. Instead of the explicit
treatment of the Coulomb force, the parameters Vn and Vp are
adjusted. The strength Vp is substantially stronger than Vn to
reproduce the observed pairing properties [13,14,40,61].

On the other hand, we obtain smaller σ (all)
p than σ (all)

n by
assuming Vp = Vn for PDF-IV2 (see Table IV). In order to
resolve the contradiction in the Skyrme EDF calculations,
we investigate the role of the linear ρ1 term in PDF-IV2 by
comparing two assumptions: One is Vp = Vn. The other is
Vp = 0.9Vn in order to take into account the Coulomb effect
within the local density approximation (the preliminary result
is shown in Ref. [62]).

For the global comparison, we compare σ
(all)
tot , σ (all)

n , and
σ (all)

p in Table VI. The differences between the results obtained
with Vp = 0.9Vn and Vp = Vn are only 0.028 MeV for σ (all)

p

and 0.009 MeV for σ (all)
n . Here, the Skyrme SLy4 plus PDF-IV2

with (η0, η2) = (0.75, 2.5) is used. The parameters η1 and Vn

are determined by the two-step procedure for both cases. The
value of η1 is 0.585 for Vp = 0.9Vn, and this is about two times
larger than 0.270 for Vp = Vn.

In Fig. 10, the neutron pairing gaps in Ca, Ni, Sn, and Pb
isotopes and the proton pairing gaps in N = 20, 28, 50, and 82
isotones are shown. We see that the two pair-DFs give almost
the same results for both neutron and proton pairing gaps from
the proton to neutron drip lines, if N > Z is satisfied. This
means that the weaker Vp can be compensated by the larger
η1 in the local pairing strength Vpgp[ρ, ρ1] = Vp(1 + η1ρ1/

ρ0 + · · · ) in the case of ρ1 > 0. This mechanism is absent in
the pair-DF with only ρ dependence, and stronger Vp than Vn

is needed.
In nuclei with Z > N , the calculation with Vp = Vn gives

larger proton pairing gaps compared to that with Vp = 0.9Vn.
This is due to ρ1 < 0. This means that the linear ρ1 term in our
pair-DF can mimic the Coulomb effect, but this approximation
can be applied to nuclei with N > Z.

VI. CONCLUSION

We determined the pair-DF with ρ and ρ1 dependences by
analyzing all the experimental pairing gaps in even-even nuclei
with N,Z > 8. For this purpose, we performed the extensive
Hartree-Fock-Bogoliubov calculations with Skyrme force.
Our pair-DF is promising for improving the global description
of pairing correlations and pairing-sensitive observables due
to the reproducibility of the mass number and neutron-excess
dependence of the pairing gaps.
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In this study, we advocate the use of the pair-DF determined
by the two-step procedure. We found that the strong ρ

dependence η0 ≈ 0.75 is commonly required for the Skyrme
parametrizations: SLy4, SkM*, LNS, and SkP.

The empirical correlations among the V0 and η0 in the
isoscalar part of our pair-DF and the isoscalar effective mass
ms/m of the particle-hole Skyrme force are extracted. Through
these analyses, we found that the change of σ

(all)
tot is less

than 0.05 MeV when the parameter set (V0, η0) satisfies two
conditions: η0 � 0.75 and |V0| � |Vvac|.

Under these constraints, the isovector-density dependence
η1 is optimized for each (V0, η0) to minimize the uncertainties
of the isovector terms η1 and η2. We pointed out that the
available experimental information on pairing gaps in neutron-
rich nuclei is not sufficient for accurate determination of the
isovector part in the pair-DF. It is indispensable to continue
to analyze upcoming experimental data for more neutron-rich
nuclei and also the excited states for further extension of the
pair-DF. This remains for future study.

We also discussed the Coulomb effect in the pairing
channel. We showed that the linear ρ1 term in the pair-DF can
mimic the Coulomb reduction effect in neutron-rich nuclei.
This means that the pair-DF with charge symmetry has the
same global description power compared to the pairing force,

including the explicit Coulomb effect. In this work, we showed
the applicability of this prescription for the ground state only,
but it is an interesting subject to clarify the Coulomb effect in
excited states as well [63]. This will remain a future subject
for quasiparticle RPA calculation with exact treatment of the
Coulomb force [64].

We discussed finally the predictive power of the present
pair-DF for pairing properties around drip-line regions in
comparison with the pairing interaction Vvac determined by
the neutron-neutron scattering length of 1S0 channel.
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