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Effect of pairing correlations on the isospin-mixing parameter in deformed N = Z even-even nuclei
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Within the particle-number conserving highly truncated diagonalization approach (amounting to a severely
truncated shell model built on self-consistent mean-field single-particle states), we investigate the isospin mixing
in the ground state of axially deformed even-even N = Z nuclei with A < 80. The Skyrme interaction in its
SIII parametrization is used to generate the self-consistent mean-field solution, whereas the effective residual
interaction is approximated by density-independent δ interactions in the T = 0 and T = 1 isospin channels. In the
correlated ground state of the considered nuclei, the obtained values of the isospin-mixing parameter range from a
few tens of a percent to a couple of percents. The pairing correlations in both isospin channels are found to increase
a little the isospin-mixing parameter with respect to the Hartree-Fock value by two competing mechanisms. In
the T = 0 channel, isospin mixing is brought mostly by neutron-proton one-pair excitations, whereas in the
T = 1 channel it is essentially generated by the difference between neutron-neutron and proton-proton one-pair
excitations.
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I. INTRODUCTION

One of the most striking aspects of the structure of atomic
nuclei is the very small violation of the isospin invariance. This
is so even for heavy nuclei where the Coulomb interaction
is thought a priori to act in a nonperturbative manner. As
pointed out, for instance, in Ref. [1], this is attributable
to the weak variation of the symmetry-breaking Coulomb
field over the nuclear volume. It has also been suggested
from phenomenological and fundamental (at the level of
quarks having different masses) points of view that genuine
isospin nonconserving parts of the strong interaction should
be considered [2]. They should, however, be rather small as
compared to their conserving counterparts.

As a consequence, a nuclear ground state |�〉 may be
thought as being composed of mostly a T0 = |Tz| component,
where Tz = (N − Z)/2, with a small T0 + 1 admixture,
namely, omitting other degrees of freedom for simplicity,

|�〉 ≈ c0 |T0 Tz〉 + c1 |T0 + 1 Tz〉, (1)

with |c0|2 + |c1|2 = 1, all above kets being normalized. The
isospin-mixing parameter is then simply given by α = |c1|2.

Even though in most cases the isospin invariance may
be flatly assumed, there are phenomena where a specific
knowledge of the isospin mixing is needed. This is the case
whenever some observed transition or reaction would be
forbidden, should this invariance be exactly fulfilled.

It has also been noticed (see the seminal paper by
MacDonald [3], as well as Ref. [4] as an example of further
studies) that the amount of isospin mixing of the T0 and T0 + 1
isospin components in the ground state could be related with
RPA-like correlations associated with the isovector monopole
mode. Interesting cases where the isospin mixing has to be
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considered are also related with β-decay properties (see, e.g.,
the review of Ref. [5]). Of particular importance in that
respect are the studies of superallowed 0+ → 0+ nuclear β

decays in the context of the tests of the conserved-vector-
current hypothesis (see, e.g., Ref. [6]) through f t-value
measurements. Hence, a specific determination of the effect
of the isospin mixing is required to correct the value yielded
by the crude isospin-multiplet approximation. This yields the
so-called δC correction term (see, e.g., Ref. [7]).

Before entering in a subsequent study into a detailed
assessment of the transition matrix element involved in such
particular decays, we consider it interesting to evaluate first
the actual importance of the isospin mixing, as measured, for
instance, by α. This is the subject of the present paper.

Presently available theoretical estimates of the isospin
mixing fall into three different categories.

(i) First, one has to quote the hydrodynamical approach
of Bohr, Damgård, and Mottelson [8], which consists
of quantifying the normal modes associated with the
polarization effect of the Coulomb field on a spheri-
cally symmetrical isovector density. In N = Z nuclei
this approach yields the probability α of the T = 1
component, in sole addition to the dominating T = 0
component, which is given by

α = 3.5 × 10−7Z2A2/3. (2)

It therefore amounts, for example, for the 40Ca nucleus
to about 0.16%. In nuclei having a neutron excess, α

(meaning now the probability of the |Tz| + 1 compo-
nent over the dominating |Tz| component) is estimated
to be equal to the value given by Eq. (2) divided by
|Tz| + 1. This reduction, which is expressed in terms of
a factor being merely the square of a Clebsch-Gordan
coefficient, had been first advocated by Lane and
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Soper [9]. It yields, for example, for the 48Ca nucleus,
a value of α of about 0.04%.

(ii) The second class of approaches is based on shell-
model calculations. Their success is contingent, as
usual within such an approach, upon the relevance
of the matrix elements in use. For the description of
isospin mixing, an accurate determination of Coulomb
matrix elements is, of course, of paramount importance
(see, for instance, the discussion of Coulomb energy
differences in A = 47 and A = 49 mirror pairs [10]).
This constitutes an a priori necessary condition to
provide valuable answers to the question left open on
the real importance of isospin nonconserving forces as
studied, for example, to explain the isobaric multiplet
yrast energies in Ref. [11]. Other concerns are related
to a good description of radial single-particle wave
functions as in, for example, Ref. [12] to describe
asymmetry factors in parity-violating electron scatter-
ing. One definite difficulty of shell-model calculations
is attributable to the fact that they do not take into
account any core isospin mixing, except, of course, for
the no-core shell model calculations limited to very
light nuclei (see, for instance, Ref. [13]).

(iii) One might then be inclined to think that micro-
scopic calculations making use of phenomenological
nucleon-nucleon forces should be able to describe
the polarization effects of the Coulomb interaction,
at least at the mean-field level, in a satisfactory
way. Indeed, as opposed to shell-model calculations,
mean-field calculations are expected to provide rather
elaborate single-particle wave functions and they do not
rely on any inert-core approximation. However, apart
from possible consequences of well-known symmetry
violations inherent to the mean-field approximation
requiring isospin projection, as done by Caurier [14]
and Satuła [15], they require as a next very important
step to account accurately for the correlations. This may
be done without serious problems for RPA-type corre-
lations, as performed, for instance, in Refs. [16,17]. In
Ref. [16], it is shown that the hydrodynamical ansatz of
Ref. [8] underestimates the isospin mixing by a factor
of 2 to 4 (see Fig. 3 of Ref. [16]).

Calculations within the RPA for the isovector monopole
mode of Ref. [4] provide upper limits for α, for example, about
1.45% in 40Ca as calculated with the Skyrme SIII effective
force [18]. It is important to note that the latter approaches do
not include pairing correlations. There are good practical rea-
sons for such an omission. The usual handling of pairing corre-
lations within a kind of Bogoliubov quasiparticle vacuum ap-
proximation as in the BCS or Hartree-Fock-Bogoliubov theory
is totally unfit for the isospin-mixing problem. Indeed, such an
ansatz yields spurious components in the particle numbers of
both charge states, giving rise, in turn, to a spurious mixing of
Tz components. This invalidates a priori any attempt to extract
out of these solutions any meaningful T -mixing properties.

This is why we make use of the highly truncated diag-
onalization approach (HTDA), which can be interpreted as
a strongly truncated shell model built on a self-consistent

Hartree-Fock-BCS solution [19–25]. Moreover, we focus on
the role of T = 1 and T = 0 pairing correlations, leaving
for a future work the inclusion on an equal footing of
RPA correlations in the HTDA framework as in Ref. [24].
Because we are interested in the isospin-symmetry-breaking
mechanisms at the many-body level, we choose the SIII
parametrization of the Skyrme energy-density functional to
generate the self-consistent mean field as a representative
parametrization. To describe the pairing correlations we use
zero-range density-independent residual interactions in both
isospin channels. The use of more recent Skyrme parametriza-
tions or finite-range residual interactions would not alter the
generality of our conclusions.

In this paper we focus on even-even N = Z nuclei because
they exhibit stronger isospin mixing than other even-even
nuclei. Moreover, the Hartree-Fock approximation applied to
these nuclei does not spuriously break the isospin symmetry
in the absence of isospin nonconserving interactions (in our
work the Coulomb interaction only), as numerically checked
in Ref. [15]. For the mean-field approach to hold, we need
to restrict to rigid nuclei, that is, nuclei exhibiting a stiff
potential energy surface in the deformation space around
the ground-state minimum. To keep contact with available
experimental data, we limit ourselves to light- and medium-
mass nuclei (A < 80). Moreover, we consider only axially
symmetric ground-state shapes. According to the calculations
of Refs. [26,27], the nuclei to retain are thus 28Si, 48Cr,
68Se (oblate and prolate solutions responsible for a shape
coexistence [28]), and 76Sr.

In this work we study the mechanisms by which the T = 0
and T = 1 pairing correlations bring isospin mixing into
the HTDA ground state of well-deformed N = Z even-even
nuclei. In addition, we test the quality of the usual approx-
imation (1) consisting of neglecting the T � 2 components
in the expansion of the nuclear ground state onto eigenstates
of the T̂2 operator and analyze the sensitivity of the isospin
admixture to the treatment of the Coulomb interaction.

The paper is organized as follows. In Sec. II we present the
HTDA formalism and the algebraic approach to isospin pro-
jection after variation to extract the isospin-mixing parameter.
We also discuss the properties of the approximate good-isospin
basis, made of the same eigenvectors of T̂2 as those obtained
in the limit where the Coulomb interaction is vanishing. Then
in Secs. III to V we present and discuss successively the
results about the isospin-mixing in the mean-field solutions
and the structure of the pair-correlated ground-state solutions
and their isospin mixing. Concluding remarks and perspectives
are given in Sec. VI.

II. THEORETICAL FRAMEWORK

A. The highly truncated diagonalization approach

In self-consistent mean-field-plus-pairing approaches mak-
ing use of a phenomenological density-dependent effective
interaction, such as the Skyrme-Hartree-Fock-BCS or the
Gogny-Hartree-Fock-Bogoliubov approximations, the ground
state is a quasiparticle vacuum taking the form of a linear
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combination of Slater determinants corresponding to different
particle numbers (for neutrons and protons). It is obtained by
a variational procedure leading to a self-consistent one-body
eigenvalue problem.

In contrast, the HTDA framework explicitly preserves
the particle-number symmetry through the expansion of the
ground state in a basis of Slater determinants corresponding
to the same number of neutrons and protons. The ground-state
solution is determined by diagonalizing the Hamiltonian in a
basis relevant to the type of correlations to be described (here
pairing correlations). In this way, the HTDA approach can
be viewed as a kind of intrinsic-state shell model. However,
instead of using an underlying harmonic-oscillator one-body
potential, we use the one-body potential issuing from a
Skyrme-Hartree-Fock-BCS calculation. We thus expect that,
owing to the self-consistency of the thus obtained mean-field
solution, the many-body basis can be chosen much smaller
than in the standard shell-model approach.

More precisely, the HTDA Hamiltonian is a phenomeno-
logical effective Hamiltonian based on the following steps.
We begin with a Hamiltonian written as the sum of the kinetic
energy K̂ , the nuclear interaction V̂NN (assumed here to be a
two-body operator), and the Coulomb interaction V̂C (between
pointlike protons):

Ĥ = K̂ + V̂NN + V̂C. (3)

The total interaction between the nucleons, V̂NN + V̂C , is
denoted by V̂ . Then we consider an attractive one-body
potential Û , obtained in this work by a Skyrme-Hartree-Fock-
BCS calculation, and the associated one-body Hamiltonian Ĥ0

defined by

Ĥ0 = K̂ + Û , (4)

whose single-particle eigenstates |k〉, corresponding to the
eigenvalues ek , are assumed to form an orthonormal basis
of the one-body space (including position, spin, and isospin
degrees of freedom). The lowest eigenstate of Ĥ0 is a
quasiparticle vacuum of particle-hole type, in other words, a
Slater determinant, denoted by |�0〉. In the following this state
is called merely quasivacuum and serves as a reference state
in the definition of all normal products. We can express the
Hamiltonian Ĥ as the sum of a one-body Hamiltonian, which
we refer to as the independent quasiparticle Hamiltonian Ĥiqp,
a residual-interaction operator V̂res and a constant depending
on |�0〉,

Ĥ = Ĥiqp + V̂res + 〈�0|Ĥ |�0〉. (5)

The independent quasiparticle Hamiltonian Ĥiqp is the normal-
product form of Ĥ0,

Ĥiqp = : Ĥ0 : = Ĥ0 − 〈�0|Ĥ0|�0〉. (6)

In the single-particle basis associated with Ĥ0, Ĥiqp takes, in
second quantization, the form

Ĥiqp =
∑

k

ek : â
†
kâk :, (7)

where the operator â
†
k creates a nucleon in a state |k〉 whose

isospin is implicitly specified in the label k, whereas ak

annihilates a nucleon in the state |k〉. The residual interaction
V̂res is defined by

V̂res = : V̂ : + : V − Û :, (8)

where V denotes the one-body reduction of V̂ for |�0〉
and V̂ = : V̂ : + : V : +〈�0|V |�0〉 according to the Wick
theorem applied to the two-body operator V̂ , so that : V̂ : =
V̂ − V + 〈�0|V |�0〉. Because the potential Û comes from a
Hartree-Fock-BCS calculation, it is expected to slightly differ
from V when the solution to the BCS equations corresponds
to nonvanishing pairing gaps. In the HTDA framework we ne-
glect the contribution : V − Û : to the residual interaction V̂res.

A proper account of pairing correlations beyond |�0〉
requires one to use in V̂res a nucleon-nucleon interaction
V̂NN having satisfactory particle-particle matrix elements.
Very few Skyrme parametrizations provide a good description
of mean-field and pairing properties simultaneously. Those
that do (such as, e.g., the SkP parametrization [29]) are
unfortunately not fitted to reproduce pairing properties in
N = Z nuclei. Therefore, we resort to replacing the nuclear
two-body interaction V̂NN in V̂res with a contact interaction in
the form of a density-independent δ interaction V̂δ . The nuclear
part V̂NN,res of the residual interaction is thus written as

V̂NN,res ≈ : V̂δ : . (9)

In this way, the expectation value of V̂NN,res in the quasivacuum
|�0〉 vanishes.

Then one has to ensure that the δ interaction acts on states
of well-defined spin and isospin. One therefore writes V̂δ in
the form

V̂δ = V̂
(T =0)
δ + V̂

(T =1)
δ , (10)

with [22]

V̂
(T )
δ = V

(T )
0 δ(r1 − r2) �̂S �̂T , (11)

where �̂S (�̂T ) is the spin (isospin) projection operator
in the two-body subspace of the Fock space. Because of
the space-symmetric character of the δ interaction, specific
combinations of �̂S and �̂T operators are imposed when
acting on an antisymmetrized two-body state, namely (S = 0,
T = 1) and (S = 1, T = 0). The strength of V̂δ in the T = 0
channel is usually expressed as a fraction x of the strength in
the T = 1 channel,

V
(T =0)

0 = x V
(T =1)

0 . (12)

The calculation of the two-body matrix elements of V̂δ is
presented in Appendix A.

In practical HTDA applications, as in any shell-model
calculation, the many-body basis in which the Hamiltonian
is diagonalized has to be truncated. Here we consider a
model space including single-pair (SP), double-pair (DP), and
triple-pair (TP) excitations—with respect to the quasivacuum
|�0〉—whose particle-hole excitation energy does not exceed
a given cutoff energy Ecut. We choose Ecut as three times
the empirical intershell energy h̄ω(A) = 41 A−1/3 (in MeV).
Because the correlations considered in this work are of pairing
type in both T = 1 and T = 0 channels, all combinations of
nn, np, and pp pairs in the excited configurations are taken
into account.

034332-3



LE BLOAS, BONNEAU, QUENTIN, BARTEL, AND STROTTMAN PHYSICAL REVIEW C 86, 034332 (2012)

B. Treatment of the Coulomb interaction

As mentioned at the beginning of the previous section, the
finite size of nucleons is not taken into account in the present
work. Therefore, the Coulomb interaction V̂C acts between
pointlike protons only. Moreover, given the partitioning (5)
of the Hamiltonian Ĥ , it contributes to the mean-field channel
through a term ÛC in the one-body potential Û as well as to the
residual interaction V̂res through a term V̂C,res approximated by

V̂C,res ≈ : V̂C :, (13)

because we consistently neglect the term : V C − ÛC : in
Eq. (8). Therefore, the residual interaction used in this work
can be written as

V̂res ≈ : V̂δ : + : V̂C : . (14)

For an accurate description of isospin mixing, we evaluate
ÛC exactly instead of using the Slater approximation [30]. To
do so, we calculate the two-body matrix elements of V̂C in
the axially deformed harmonic-oscillator basis as discussed in
Refs. [31,32] and recalled in Appendix B to keep this paper
self-contained. These matrix elements are also used to evaluate
exactly : V̂C : in the many-body basis.

C. Approximate isospin distribution

From a general point of view, any many-body state |�〉 of
a (N,Z) nucleus can be expanded on good-isospin states,

|�〉 =
T0+n∑
T =T0

∑
ξ

a
(n)
T ,ξ |ξ T Tz〉, (15)

where ξ denotes all degrees of freedom other than isospin,
Tz = (N − Z)/2, A = N + Z, and n is the number of T values
beyond T0 that are included. The maximal T value T = A/2
results from angular-momentum coupling rules. However, this
expansion is known to rapidly converge with T for the ground
state of an even-N–even-Z nucleus and can be truncated at
T0 + n � A/2. The resulting isospin probability distribution
of |�〉 is thus defined by

P
(n)
� (T ) =

∑
ξ

∣∣a(n)
T ,ξ

∣∣2 (T0 � T � T0 + n) (16)

and is the solution to the linear system of equations

〈�|�〉 =
T0+n∑
T =T0

P
(n)
� (T ), (17)

〈�|T̂2|�〉 =
T0+n∑
T =T0

T (T + 1) P
(n)
� (T ), (18)

〈�|T̂4|�〉 =
T0+n∑
T =T0

T 2(T + 1)2 P
(n)
� (T ), (19)

...

〈�|T̂2n|�〉 =
T0+n∑
T =T0

T n(T + 1)n P
(n)
� (T ). (20)

Setting τi = (T0 + i)(T0 + i + 1) for i ranging from 0 to n,
one can bring this system to the matrix form:

⎛⎜⎜⎜⎜⎝
1 1 1 · · · 1
τ0 τ1 τ2 · · · τn

τ 2
0 τ 2

1 τ 2
2 · · · τ 2

n
...

...
...

. . .
...

τn
0 τn

1 τn
2 · · · τn

n

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

V

⎛⎜⎜⎜⎜⎜⎝
P

(n)
� (T0)

P
(n)
� (T0 + 1)

P
(n)
� (T0 + 2)

...
P

(n)
� (T0 + n)

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
〈�|�〉

〈�|T̂2|�〉
〈�|T̂4|�〉

...
〈�|T̂2n|�〉

⎞⎟⎟⎟⎟⎟⎠. (21)

One can recognize a Vandermonde linear system of order n + 1
with a nonvanishing determinant

det V =
∏

0�i<j�n

(τj − τi). (22)

The Vandermonde matrix V can be analytically inverted to
yield the following expression of the isospin distribution [33]:

P
(n)
� (T ) = δT T0 +

n∑
j=1

�
(n)
T −T0j

T2j (T0), (23)

with

�
(n)
ij = (−)i+j σn−j (τ0, . . . ,τi−1, τi+1, . . . ,τn)∏i−1

k=0(τi − τk)
∏n

k=i+1(τk − τi)
, (24)

and

T2k(T ) = 〈�|T̂2k|�〉 − T k(T + 1)k, k ∈ N. (25)

In the coefficients �
(n)
ij , σk(X1, X2, . . . ,XN ) is the ele-

mentary symmetric polynomial of degree k whose general
expression is

σk(X1, . . . ,XN ) =
∑

1�n1�···�nk�N
Xn1Xn2 · · · Xnk

and satisfying the identity (for any parameter λ)

N∏
�=1

(λ − X�) =
N∑

k=0

(−)kλN−kσk(X1, . . . ,XN ).

The isospin-mixing parameter for a nuclear state having a
dominant isospin contribution Td is defined by

α = 1 − P
(n)
� (Td ). (26)

In the ground state of even-even N = Z nuclei (i.e., Td = T0 =
0) we thus have for n = 1

α = 1
2 〈�|T̂2|�〉, (27)
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that is the well-known expression α = 1
2 〈�|T̂−T̂+|�〉, and for

n = 2 we obtain

α = 2
3 〈�|T̂2|�〉 − 1

12 〈�|T̂4|�〉. (28)

The calculation of the matrix elements of the T̂4 operator is
presented in detail in Appendix C.

D. Approximate good-isospin basis

To analyze the isospin content of the pair-correlated ground
state of an even-even N = Z nucleus, the relevant many-body
basis is built from the above-described Slater-determinant
basis using a (real) unitary transformation which corresponds
to the diagonalization of T̂2 in the space spanned by the
many-body basis in the limit where the Coulomb interaction
is switched off. In this limit the Slater-determinant many-body
basis can be partitioned in subsets of pair excitations of given
orders that are separately invariant under T̂2.

In each category mentioned above, an additional parti-
tioning of the many-body basis is possible to obtain small
groups (called cluster in the following) which are individually
invariant under T̂2. This partitioning comes from a general
mechanism. Let us illustrate it within the subset of SP
configurations.

A single-particle excitation involves one hole level and one
particle level (fourfold degenerate because of the time-reversal
and isospin symmetries). For a given hole level � and a given
particle level λ, four different SP excitations can occur, one
nn-pair, one pp-pair, and two np-pair excitations. Such a set
of levels thus defines a cluster of four many-body states. Let
us call � (λ) the time-reversal conjugate state of � (λ), n

†
λ (p†

λ)
the creation operator of a neutron (proton) in the state |λ〉, and
n� (p�) the annihilation operator of a neutron (proton) in the
state |�〉. With this notation, the like-nucleon pair excitations
are defined, for a given cluster, by

|�20〉 = n
†
λn

†
λ
n

�
n�|�0〉, (29)

|�02〉 = p
†
λp

†
λ
p

�
p�|�0〉, (30)

whereas the two possible np pair excitations are

|�11〉 = n
†
λp

†
λ
p

�
n�|�0〉, (31)

|�′
11〉 = n

†
λp

†
λ
p�n�

|�0〉. (32)

The time-reversal symmetric expressions of the np pair
excitations are

|�̃11〉 = 1√
2

(|�11〉 + |�11〉
)
, (33)

|�̃′
11〉 = 1√

2

(|�′
11〉 + |�′

11〉
)
. (34)

Such a cluster is decoupled, according to T̂2, from the other
clusters defined by different sets of hole and particle levels (let
us say m and μ with m 
= � or μ 
= λ or both). All clusters are
composed by the same type of SP excitations described above.

Thus, one can diagonalize the T̂2 operator applying the
same unitary transformation for each cluster whatever the size
of the many-body basis. In terms of the proton-proton pair

TABLE I. Description of the possible classes of clusters within
the DP-type excitations.

No. of levels
Size of

Isospin

(Hole, Particle) clusters T value Degeneracy

(1, 1) 1 0 1

(1, 2) 0 2
or 4 1 1
(2, 1) 2 1

0 10
1 12

(2, 2) 38 2 12
3 3
4 1

excitation |�02〉, neutron-neutron pair excitation |�20〉, and
time-reversed symmetrized neutron-proton pair excitations
|�̃11〉 and |�̃′

11〉 created on the quasivacuum |�0〉, the
eigenstates of T̂2 are given, for a given cluster, by

|�01〉 = 1√
2

(|�̃11〉 + |�̃′
11〉), (35)

|�02〉 = 1√
3

(|�02〉 + |�20〉) + 1√
6

(|�̃11〉 − |�̃′
11〉), (36)

|�1〉 = 1√
2

(|�02〉 − |�20〉), (37)

|�2〉 = 1√
6

(|�02〉 + |�20〉) − 1√
3

(|�̃11〉 − |�̃′
11〉). (38)

The same idea exposed here for the SP excitation can
be applied for the DPs and TPs but with a new aspect that
generalizes what we have seen up to now.

Indeed, the number of levels (hole and particle) involved
in a DP or a TP excitation is not unique. One has various
classes of clusters according to the number of levels involved
in a given cluster of excitations. The case of DP excitations is
presented as an example in Table I. The possible classes of DP
excitations with the corresponding value of the isospin T are
listed in this table. A similar, but necessarily more complex
table can be drawn for TP excitations.

In the presence of the Coulomb interaction, of much
smaller strength (and longer range) than the nuclear force,
the states (35)–(38) are generally expected to remain to a
good approximation eigenstates of T̂2 and the diagonal matrix
elements of T̂2 in these states to only slightly differ from the
integer values T (T + 1). For this reason we call them quasi-
eigenstates of T̂2 associated with the nearest corresponding
integer value of T . The same holds in the subsets of states
beyond one-pair excitations but the expressions of the quasi-
eigenstates become less transparent and are not given here.
Altogether they form an approximate good-isospin basis.

The approximate eigenstate character for T̂2 of the states
of this basis constitutes what we call the decoupled-cluster
approximation (DCA), an approximation checked numerically
in Sec. V B below.

For practical calculations of the isospin admixtures in the
dominantly T = 0 correlated ground state of an even-even
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N = Z nucleus, the DCA has an important consequence,
which will become obvious when writing the pair-correlated
ground-state solution |�〉 as

|�〉 = a0 |�0〉 + |�SP〉 + |�DP〉 + |�TP〉, (39)

where |�SP〉, |�DP〉, and |�TP〉 contain, respectively, all the SP,
DP, and TP pair excitations. For each category of multiple-pair
excitations generically noted MP, we can then decompose the
corresponding contribution |�MP〉 to |�〉 into the clusters k

of approximate good-isospin basis states |�(k)
MP,T ,i〉 (where i

labels the different quasi-eigenstates associated with the same
isospin T ) in the following way:

|�MP〉 =
∑
k,T ,i

a
(k)
MP,T ,i

∣∣�(k)
MP,T ,i

〉
, (40)

where the normalized state |�(k)
MP,T ,i〉 is an approximate

eigenstate of T̂2 such that

T̂2
∣∣�(k)

MP,T ,i

〉 ≈ λ
(k)
MP,T ,i

∣∣�(k)
MP,T ,i

〉
, (41)

with λ
(k)
MP,T ,i ≈ T (T + 1). It then follows that each subset MP

of pair excitations of a given order is approximately globally
invariant under the action of the T̂2 operator. Furthermore, the
expectation value of the T̂2 operator in the state |�MP〉 can be
approximated by a sum of diagonal matrix elements only,

〈�MP|T̂2|�MP〉 ≈
∑
k,T ,i

∣∣a(k)
MP,T ,i

∣∣2λ(k)
MP,T ,i . (42)

The isospin-mixing parameter of |�〉 can be split into the
contribution α0 of the quasivacuum |�0〉 and a contribution
Ccorr from the pairing correlations

α = α0 + Ccorr, (43)

As derived in Appendix D, the latter contribution takes the
following form in the DCA

Ccorr ≈
∑
MP

CMP, (44)

where the contribution CMP from the MP excitations is
defined by

CMP =
∑
T ,i

|aMP,T ,i |2
(
P�0 (0) − PMP,T ,i(0)

)
. (45)

Separating out the T = 0 terms and introducing the isospin-
mixing parameter αMP,0,i = 1 − PMP,0,i(0) of the quasi-
eigenstate |�MP,0,i〉, we can write the contribution to α from
the MP excitations as

CMP =
∑

i

|aMP,0,i |2(αMP,0,i − α0)

+
∑

T �1,i

|aMP,T ,i |2
(
P�0 (0) − PMP,T ,i(0)

)
. (46)

Whereas the second term of CMP in Eq. (46) is always positive,
the first term can be negative if some states |�MP,0,i〉 contain

a smaller isospin mixing than |�0〉. Therefore, CMP is not
necessarily positive.

Equation (46) reveals the two competing mechanisms by
which the pairing correlations bring isospin impurity in the
state |�〉. A combination |�MP,T ,i〉 of MP excitations alters
the isospin mixing with respect to that of |�0〉 when the
product of its weight |aMP,T ,i |2 by the probability difference
�PMP,T ,i(0) = P�0 (0) − PMP,T ,i(0) is large in absolute value.
This condition distinguishes two categories of states which can
contribute to the value of α: Those corresponding to T = 0 and
contributing to the first term of CMP and those corresponding
to other values of T which contribute to the second term of
CMP. On the one hand, the contributing states |�MP,0,i〉, which
are characterized by a small value of |αMP,0,i − α0|, are those
appearing with a large weight in the correlated state |�〉. On
the other hand, the states |�MP,T ,i〉 with T � 1, for which
�PMP,T ,i(0) is close to 1, can play a role in the isospin mixing
of |�〉 provided their weight |aMP,T ,i |2 is at least of the order
of a typical value of |αMP,0,i − α0|, which is a rather small
quantity. We can thus expect that the major contribution to
α will be brought by the SP quasi-eigenstates with T = 0
and T = 1.

III. ISOSPIN MIXING IN THE MEAN-FIELD SOLUTIONS

A. Conditions of the calculations

As mentioned above, our study is devoted to even-even
N = Z nuclei whose ground-state shapes calculated in the
HF + BCS approach are axially symmetric. Between A = 20
and A = 100 only five nuclei satisfy these conditions (re-
gardless of the Skyrme parametrization used): 28Si (oblate
ground state), 48Cr (prolate ground state), 68Se (oblate and
prolate minima), and 76Sr (prolate ground state). At this first
stage, the one-body effect of pairing correlations is taken
into account in the BCS approximation so as to generate a
single-particle spectrum as realistic as possible. As mentioned
in Sec. II B, the exchange Coulomb potential is treated exactly
in the HF + BCS calculations. In these calculations the SIII
parametrization [18] of the Skyrme force is used and the
single-particle wave functions are expanded in the axially
deformed harmonic oscillator basis including 11 oscillator
major shells (N0 = 10 in the notation of Ref. [34]). The
oscillator parameters ωz and ω⊥ are optimized for each nucleus
using the Slater approximation to the exchange Coulomb
potential because this adjustment is not significantly sensitive
to the treatment of the exchange Coulomb potential. The
BCS equations are self-consistently solved in a single-particle
window going from the lowest-energy state up to 6 MeV
above the Fermi level. To do so we use the seniority force of
Ref. [23] whose strengths are defined by gτ = G0/(11 + Nτ ),
where Nτ = {N,Z} and G0 = −17.7 MeV. This force is
supplemented by a smooth cutoff characterized by the width
parameter μ = 0.2 MeV in the notation of Ref. [23].

B. Calculation of the isospin-mixing parameter

In Fig. 1 we display the variation of the isospin-mixing
parameter of the quasivacuum Slater determinant |�0〉—called
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FIG. 1. Isospin-mixing parameter α0 in the particle-hole quasi-
vacuum |�0〉 for deformed even-even nuclei along the N = Z line as
a function of Z. The prediction of Bohr and Mottelson [1] is plotted
in a dotted line for comparison.

mean-field solution—as a function of Z for the above four
deformed even-even N = Z nuclei (including both local
minima in 68Se). They follow the Bohr and Mottelson Z8/3

trend of Eq. (2) but with a coefficient 2.6 times larger
(see Introduction and Ref. [16]).

We have tested the role of the treatment of the exchange
Coulomb potential in the mean-field solution by performing
calculations of the isospin-mixing parameter in |�0〉 for the
five considered solutions. As can be deduced from Table II the
relative error is very small and does not exceed 3.5%.

It can be easily shown that the isospin mixing parameter in
the quasivacuum |�0〉 of a N = Z nucleus can be expressed
as

α0 = −
n∑

j=1

�
(n)
0j 〈�0|T̂ j

−T̂
j
+|�0〉. (47)

One finds that each of the expectation values in Eq. (47)
depends only on partial overlaps of spin-space wave functions
of the occupied neutron and proton states in |�0〉. Let us show

TABLE II. Isospin-mixing parameter α0 (expressed in %) in the
particle-hole quasivacuum |�0〉 with the exchange Coulomb potential
treated exactly and in the Slater approximation.

Nucleus α0

Exact Slater

28Si (oblate) 0.235 0.239
48Cr (prolate) 0.784 0.785
68Se (oblate) 1.880 1.815
68Se (prolate) 1.673 1.635
76Sr (prolate) 2.255 2.227

this, as an example, for the lowest order (i.e., n = 1),

α0 ≈ 〈�0|T̂−T̂+|�0〉
2

≈ 1

2

⎛⎝Z −
∑

ν,π∈|�0〉
|〈〈ν|π〉〉|2

⎞⎠ , (48)

where ν and π denote the neutron and proton states occupied
in |�0〉 and 〈〈ν|π〉〉 their spin-space overlap.

The remarkably weak difference between the values of
α0 listed in Table II seems to indicate that the different
treatments of Coulomb terms (namely exact versus Slater
approximation) induce a very small difference in the overlap
of neutron and proton states. From this a very small difference
between neutron and proton spin-space wave functions in both
treatments can be inferred.

However, in a previous paper [32] (see also the references
quoted therein) we have shown that the treatment of the
Coulomb exchange potential at the mean-field level is of
noticeable consequence on the proton single-particle energies.
Even if this effect does not imply a difference in the isospin-
mixing parameter α0 for |�0〉, it will be very important, as we
see in Sec. V C, when we treat pairing correlations within the
HTDA approach.

IV. STRUCTURE OF THE PAIR-CORRELATED
GROUND STATES

To interpret the results of isospin-mixing calculations
presented in the next section, in particular the role of
pairing correlations, we need first to study the structure of
the pair-correlated ground states calculated in the HTDA
framework.

As is well known, in HF + BCS or HTDA pairing calcu-
lations in even-even nuclei away from the N = Z line, the
ground state is dominated by the HF solution and Tz = ±1
(nn and pp) pair excitations of a relatively low order. In
the studied N = Z nuclei we expect, in contrast, the np-
pair excitations to play an important role in the correlated
GS wave function. This is why our residual interaction
includes the neutron-proton contribution in the T = 0 channel
(characterized by the strength parameter V

(T =0)
0 of V̂δ) in

addition to the full T = 1 channel (i.e., including the Tz = 0
component) with the strength parameter V

(T =1)
0 .

A. Convergence of the correlated wave functions

First, we investigate the convergence of the GS wave
function as a function of the maximum pair-excitation order in
three different truncation schemes: SP excited configurations
beyond the quasivacuum (noted |�0〉 + SP), SP and DP
excitations (noted |�0〉 + SP + DP), and all pair excitations
up to three pairs (noted |�0〉 + SP + DP + TP). In Fig. 2, the
weights of the quasivacuum a2

0 , SP excitations 〈�SP|�SP〉 and
DP excitations 〈�DP|�DP〉, obtained in the three truncation
schemes, are displayed as functions of V

(T =1)
0 (left column)

and, for a fixed value of V
(T =1)

0 = −200 MeV fm3, as functions
of x (right column) in the representative 48Cr nucleus. As can
be seen the contribution of the SP configurations to the GS
wave function is very well converged in the |�0〉 + SP + DP
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FIG. 2. Convergence of the ground-state structure as a function
of the number of pair-excitations in the 48Cr nucleus. The weights
of the components of the correlated wave function (up to the DP
excitations) are plotted as a function of V

(T =1)
0 (left panels) and as a

function of x (right panels) for V
(T =1)

0 = −200 MeV fm3.

truncation scheme for all considered values of V
(T =1)

0 and
for all values of x in the (physically most relevant) range
0 � x � 1.25. In this truncation scheme, the weight of DP
excitations is converged to within about 1% for all considered
values of V

(T =1)
0 and in the range 0 � x � 1. However, the role

of TP excitations ceases to be negligible for x � 1.25. Because
these configurations can be included at a reasonable price
in computation time, we choose the |�0〉 + SP + DP + TP
truncation scheme in all subsequent calculations.

B. Structure of the correlated wave functions
in the particle-hole excitation basis

In Fig. 3 we show for all the nuclei under study the variation
of the weights of SP, DP, and TP excitations in the correlated
ground state as functions of |V (T =1)

0 | (left column) and as
functions of x for V

(T =1)
0 = −300 MeV fm3 (right column).

As an overall trend we observe that the SP, DP, and TP
contributions are increasing functions of |V (T =1)

0 | and x as
expected. For x = 0, the TP contribution is negligible over
the considered range of V

(T =1)
0 in all the studied nuclei, and

the weight of DP excitations is about one order of magnitude
smaller than the SP contribution. This hierarchy among the MP
configurations is preserved as a function of x up to x ∼ 0.75.
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FIG. 3. Contributions of the quasivacuum (thick solid lines), SP
(thin solid lines with open circles), DP (thin solid lines with solid
triangles), and TP (thin solid lines with open squares) excitations to
the correlated ground state for the four selected N = Z deformed
even-even nuclei [28Si, 48Cr, 68Se (oblate and prolate solutions), and
76Sr from top to bottom], as functions of |V (T =1)

0 | (left panels) and as
functions of x for V

(T =1)
0 = −300 MeV fm3 (right panels).

For larger values of x, the contribution of SP excitations tends
to saturate and decrease in conjunction with a sharp rise of
the DP contribution. The TP contribution are also negligible
over the considered range of x except for the 48Cr where these
excitations start to play a sizable role for x � 1.

034332-8



EFFECT OF PAIRING CORRELATIONS ON THE . . . PHYSICAL REVIEW C 86, 034332 (2012)

C. Structure of the correlated wave functions
in the approximate good-isospin basis

Before turning to the isospin mixing in the correlated
ground state |�〉, let us analyze the structure of |�〉 in the
approximate good-isospin basis, BT , spanned by the states
|�MP,T ,i〉, as a function of the strengths V

(T )
0 . Because the

isospin symmetry is weakly broken in nuclear states, we
expect the ground state |�〉 of an even-even N = Z nucleus
to have an isospin content easier to analyze in the BT basis
than in the basis spanned by |�0〉 and its MP excitations.
We postpone to the next section the test of the DCA which
will establish the approximate good-isospin character of the
BT basis.

As discussed above, the pairing correlations are driven
by the SP configurations as long as the T = 0 channel
does not dominate over the T = 1 channel, even though
the DP excitations are essential to obtain the correct weight
of SP excitations. We thus focus on the SP subset of the
BT basis. Figure 4 presents the total weights of the four
different types of SP states defined by Eqs. (35) to (38)
for the representative 48Cr nucleus. As clearly shown by the
logarithmic scale, the SP excitations are, in the absence of the
T = 0 residual interaction, largely dominated by the |�(k)

02 〉
states. Interestingly, one observes that the contribution from
T = 1 quasi-eigenstates of T̂2 is about one order of magnitude
larger than the contribution from |�(k)

01 〉 states. When the T = 0
channel is included, one progressively evolves from a regime
driven by the |�(k)

02 〉 states (x � 1 region) to a regime where
the |�(k)

01 〉 states dominate (x � 1 region). Moreover, the total
weight of the |�(k)

1 〉 states generally drops when x becomes
close to 1. Over the considered ranges of V

(T =1)
0 and V

(T =0)
0 ,

the |�(k)
2 〉 states contribute so little that their total weight is not

visible even on the logarithmic scale of Fig. 4.
The variations of these weights with the two channels of

the residual interaction can be qualitatively understood from
a perturbative argument. Let us expand the SP component
of the correlated ground-state solution |�〉 to first order of
many-body perturbation theory (MBPT) in V̂res around the
quasivacuum |�0〉. The resulting correction |δ�SP〉 can be
written as

|δ�SP〉 =
∑

k

∣∣δ�(k)
SP

〉
, (49)

where the un-normalized contribution |δ�(k)
SP 〉 from the cluster

k is given by∣∣δ�(k)
SP

〉 = x0

∣∣�(k)
01

〉+ 1√
3

[(
1 + ελ

1 − ε2
+ 1 + μ1

2

)
x1 + μ0x0

]
× ∣∣�(k)

02

〉− 1√
2

ε + λ

1 − ε2
x1

∣∣�(k)
1

〉
+ 1√

6

[(
ε(ε + λ)

1 − ε2
− μ1

)
x1 − 2μ0x0

]∣∣�(k)
2

〉
. (50)

The dimensionless quantities ε, λ, μT , and xT (with T = 0
or 1) appearing in Eq. (50) depend on the cluster label k.
However, to simplify the notation we do not carry this index
along. These quantities are defined by

ε = �e(k)
p − �e(k)

n

�e
(k)
p + �e

(k)
n

, (51)

x1 =
〈
�

(k)
20

∣∣V̂res|�0〉 + 〈
�

(k)
02

∣∣V̂res|�0〉
�e

(k)
p + �e

(k)
n

, (52)

λ =
〈
�

(k)
20

∣∣V̂res|�0〉 − 〈
�

(k)
02

∣∣V̂res|�0〉
x1
(
�e

(k)
p + �e

(k)
n

) , (53)

x0 =
〈
�̃

(k)
11

∣∣V̂res|�0〉 + 〈
�̃′(k)

11

∣∣V̂res|�0〉√
2
(
�e

(k)
p + �e

(k)
n

) , (54)

μ0 =
〈
�̃

(k)
11

∣∣V̂ (T =0)
res |�0〉 − 〈

�̃′(k)
11

∣∣V̂ (T =0)
res |�0〉√

2x0
(
�e

(k)
p + �e

(k)
n

) , (55)

μ1 =
√

2

〈
�̃

(k)
11

∣∣V̂ (T =1)
res |�0〉 − 〈

�̃′(k)
11

∣∣V̂ (T =1)
res |�0〉

x1
(
�e

(k)
p + �e

(k)
n

) − 1, (56)

where �e(k)
n (�e(k)

p ) is the difference between the energies of
the particle and hole levels for neutrons (protons). These six
quantities vanish in the limit of exact isospin symmetry. The
T = 1 channel of V̂res is the only one contributing to x1 and
λ, whereas only the T = 0 channel contributes to x0. Because
both channels can contribute to the difference 〈�̃11|V̂res|�0〉 −
〈�̃′

11|V̂res|�0〉, a superscript is added to V̂res to specify the
isospin channel.

Because the isospin symmetry is weakly broken, all the
quantities λ, ε, and μT are very small in each SP cluster.
Therefore, the hierarchy of the terms contributing to the
total weight of SP excitations, observed in Fig. 4, emerges

0.01

0.1

1

10

100

 500 400 300 200 100

W
ei

gh
ts

 [%
] 

|V0
(T=1)| [MeV fm3]

total SP

Σk |a01|2

Σk |a02|2

Σk |a1|2

Σk |a2|2

0.01

0.1

1

10

100

0  0.5 1  1.5 2

x = V0
(T=0) / V0

(T=1)

48Cr

V0
(T=1) = -300 MeV fm3
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solution |�〉 as functions of |V (T =1)

0 | (left panel)
and as functions of x (right panel). Solid squares,
circles, triangles, and diamonds correspond to
the sums over clusters of the weights of |� (k)

01 〉,
|� (k)

02 〉, |� (k)
1 〉, and |� (k)

2 〉 states, respectively. The
latter contribution is not visible with the chosen
scales.

034332-9



LE BLOAS, BONNEAU, QUENTIN, BARTEL, AND STROTTMAN PHYSICAL REVIEW C 86, 034332 (2012)

0

 0.2

 0.4

 0.6

 0.8

1

 1.2

 500 400 300 200 100

P
Ψ

(T
=

2)
 / 

α
 [%

]

|V0
(T=1)| [MeV fm3]

0

 0.2

 0.4

 0.6

 0.8

1

 1.2

0  0.5 1  1.5 2

x = V0
(T=0) / V0

(T=1)

V0
(T=1) = -300 MeV fm3

28Si
48Cr

68Se (p)
68Se (o)

76Sr
FIG. 5. Variation of the relative T = 2 con-

tribution to the isospin-mixing parameter with
the strength V

(T =1)
0 of the residual interaction in

the T = 1 channel (left panel) and with x (right
panel) for the four selected N = Z deformed
even-even nuclei [28Si, 48Cr, 68Se (oblate and
prolate solutions), and 76Sr].

from Eq. (50). By decreasing order of importance, the T = 1
channel, governed by the dimensionless strength x1, populates
essentially the |�(k)

02 〉 quasi-eigenstates, then the |�(k)
1 〉 terms

(proportional to ε) and with a negligible contribution the |�(k)
2 〉

terms (proportional to ε2). The |�(k)
01 〉 contribution does not

appear in the T = 1 channel at order 1 of the MBPT. On the
contrary, the T = 0 channel strongly favors the |�(k)

01 〉 states
and to a much lesser extent the other quasi-eigenstates. The
|�(k)

1 〉 states do not, in particular, contribute to |�〉 at first order
of MBPT in the presence of the T = 0 channel alone.

V. ISOSPIN MIXING IN THE CORRELATED
GROUND STATES

We now calculate the isospin-mixing parameter α in the
correlated ground-state solutions of the previous section.

A. Role of the T = 2 component

First we investigate the influence of the truncation order
n introduced in Sec. II C by comparing the isospin-mixing
parameters given by Eq. (27) when truncating at n = 1 and by
Eq. (28) when the truncation order is n = 2.

The relative deviation between the different evaluations
of the isospin-mixing parameter is driven by the relative

contribution of the T = 2 component to α(n=2):

α(n=2) − α(n=1)

α(n=2)
= −2

P
(2)
� (T = 2)

α(n=2)
. (57)

The ratio P
(2)
� (T = 2)/α(n=2) is displayed for each nucleus

in Fig. 5. As expected, this quantity is very small, one or two
orders of magnitude smaller than the P

(2)
� (1) contribution. This

holds for all studied nuclei and regardless of the strength of
the residual interaction in each isospin channel. The relative
contribution of P

(2)
� (2) to the isospin admixture increases with

Z but never exceeds 1% in the considered nuclei. In the
following, we therefore neglect the T = 2 contribution to α

which is then calculated from the expectation value of T̂2 only
according to Eq. (27).

B. Contribution of pairing correlations to α

Let us now discuss the amount of isospin mixing brought
by the T = 1 and T = 0 pairing correlations. In Fig. 6 the
relative contribution to α from correlations, namely Ccorr/α =
(α − α0)/α, is plotted for the five studied HTDA solutions
as a function of |V (T =1)

0 | (left column) for x = 0 and as a
function of x for the typical strength V

(T =1)
0 = −300 MeV fm3

(right column). Manifestly, the response of the isospin-mixing
parameter to the residual interaction strongly depends on the
isospin channel. Whereas Ccorr/α increases significantly with
|V (T =1)

0 | for all HTDA ground-state solutions, it varies with a
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FIG. 6. Variation of the correlation contri-
bution to the isospin-mixing parameter (cal-
culated without the T = 2 component) with
the strength V

(T =1)
0 of the residual inter-

action in the T = 1 channel (left panel)
and with x (right panel) for the four se-
lected N = Z deformed even-even nuclei [28Si,
48Cr, 68Se (oblate and prolate solutions),
and 76Sr].
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cording to Eq. (44) resulting from the DCA in-
cluding the SP (CSP) and DP (CDP) contributions
only. (Left) Variation with V
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0 and x = 0.

(Right) Variation with x for V
(T =1)

0 = −300
MeV fm3.

much smaller amplitude as a function of V
(T =0)

0 and depends
significantly on the considered nucleus.

To explain in simple terms the behavior of α with the
strength of the residual interaction, we need to rely on the
DCA presented in Sec. II D. Let us first assess the quality of
this approximation.

Figure 7 presents the analysis of the isospin-mixing param-
eter in the framework of the DCA with SP and DP contributions
for two typical examples, the 28Si ground state and the prolate
solution of the 68Se nucleus. The left column shows the
variations of the SP and DP contributions to Ccorr as functions
of |V (T =1)

0 | and the right column corresponds to their variations
with x. The roles of TP configurations and cross terms beyond
the DCA appear, by definition, as the difference between the
value of Ccorr (represented by the open circles) and the DCA
value up to DP excitations CSP + CDP (shown by the thick solid
line). The latter value is referred to as the DCA(SP + DP)
value in the following. Overall, in the considered ranges
of T = 1 and T = 0 strengths, the SP contribution largely
dominates and the terms beyond DCA(SP + DP) are negligible
for all the HTDA solutions (with one exception in the prolate
solution of 68Se for x � 1). More precisely, an excellent
agreement between the full α value and the DCA(SP + DP)
approximation is systematically obtained for all considered
nuclei in the absence of T = 0 pairing correlations. This shows
at the same time that the TP excitations and the cross terms
play a negligible role. As a result, matrix elements of the
forms 〈�0|T̂2|�SP〉, 〈�SP|T̂2|�DP〉, and 〈�DP|T̂2|�TP〉 can be
neglected. Because they depend only on the single-particle
states associated with the quasivacuum |�0〉, the cross terms
are also negligible in the presence of T = 0 pairing. This
validates the DCA and the expression (44) of the correlation
contribution to α. Therefore, any visible deviation of the
DCA(SP + DP) results from the full calculation of α can be

attributed to the missing TP contribution in the DCA result.
It is then interesting to note that an overestimation by the
DCA(SP + DP) calculation occur in some cases. As discussed
at the end of Sec. II, this means that the TP excitations
responsible for this deviation have, overall, a purer isospin
content than the SP and DP configurations.

We can now investigate the mechanisms by which the
T = 1 and T = 0 pairing correlations bring isospin mixing
into the correlated ground state.

In Fig. 8 the CSP and CDP contributions to α in 76Sr, chosen
here as a typical example, are plotted with open circles as
functions of |V (T =1)

0 | with x = 0 (left column) and as functions
of x with V

(T =1)
0 = −300 MeV fm3 (right column). They are

decomposed into additive contributions from quasi-eigenstates
of T̂2 with different T values, as in Eq. (45). The SP and DP
excitations bring isospin mixing into the correlated ground-
state solution through the same mechanisms.

In the absence of a T = 0 residual interaction, the isospin
mixing is essentially brought by the T = 1 quasi-eigenstates
and to a much lesser extent by the T = 0 quasi-eigenstates.
According to Eq. (46), this means that the two mechanisms
predicted at the end of Sec. II D are simultaneously at work
but the one involving the T = 1 quasi-eigenstates dominates.
In particular for the SP contribution, the |�(k)

1 〉 states, despite
their small weights, introduce T ≈ 1 impurities in |�SP〉 in a
more efficient way than do the T = 0 quasi-eigenstates.

When the T = 0 channel comes into play, a change of
regime operates around x = 1. While the contributions from
the T = 1 quasi-eigenstates to CSP and CDP decrease with
increasing x and vanish between x = 1 and x = 2, the role
of the T = 0 quasi-eigenstates (actually |�(k)

01 〉 states for SP
contributions, corresponding to np pairs only) becomes more
and more important as x increases.
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As expected from the negligible contribution of P (2) to α,
the T � 2 quasi-eigenstates never contribute in a sizable way
over the whole considered range of strengths.

C. Influence of the treatment of the Coulomb interaction

Finally, we investigate the effects of the treatment of the
Coulomb interaction on the isospin admixture of the correlated
ground states.

On the one hand, we have calculated α in the HTDA
solutions with the Slater approximation to the exchange terms
of the mean-field potential. For the 76Sr nucleus, Fig. 9
compares the resulting isospin admixtures (thin solid lines with
open circles) with those calculated with an exact treatment of
exchange Coulomb terms (thick solid lines), as functions of
|V (T =1)

0 | with x = 0 in the left panel and as functions of x with
V

(T =1)
0 = −300 MeV fm3 in the right panel.

Overall, the Slater approximation leads to smaller isospin
impurities. Using the results of Ref. [32], this can be explained
by an underestimation of proton particle-hole excitation

energies within the Slater approximation, the neutron particle-
hole excitation energies being virtually unaffected. This
translates into smaller values of the quantities ε and, according
to Eq. (50), to smaller contributions of the |�(k)

1 〉 quasi-
eigenstates to CSP. It is thus no surprise to observe that the
difference between the isospin admixtures obtained using the
Slater approximation and the exact Coulomb exchange terms
increases with |V (T =1)

0 |. However, it decreases with the strength
in the T = 0 channel. This can be understood from the fact that,
when the T = 0 channel dominates in the residual interaction,
the contributions to α from the |�(k)

1 〉 states practically vanish
in both calculations, whereas the contribution from the |�(k)

01 〉
states, insensitive to ε according to Eq. (50), becomes dominant
in |�SP〉.

However, we have studied the effect on α of the Coulomb
contribution to the residual interaction as defined in Eq. (14).
In addition to the δ interaction, we use the bare Coulomb
interaction. In Fig. 9 we present also the variation of α with the
two channels of the δ residual interaction calculated without
(thick solid lines) and with (thin solid lines with open squares)
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the Coulomb contribution to V̂res for the 76Sr nucleus. In both
cases the exact Coulomb interaction is included in the mean
field. In general, the full treatment of the Coulomb interaction
produces additional isospin mixing, a trend that is found to
increase with the proton number.

The difference between the α values calculated with
and without the residual Coulomb interaction increases, as
expected, when the T = 1 channel becomes stronger, but
decreases to zero when the T = 0 channel dominates over
the T = 1 channel. The DCA analysis of the SP contribution
to α offers a simple explanation. When the T = 0 pairing
correlations dominate, the weights of |�(k)

02 〉 and |�(k)
1 〉 states

vanish (see Fig. 4). Therefore, the SP contribution is driven by
the |�(k)

01 〉 states which appear in the perturbed expression (50)
with a coefficient independent of λ and ε. In this regime
dominated by the T = 0 pairing, the Coulomb residual
interaction is thus unable to induce isospin mixing in the
pair-correlated wave function.

Before concluding, it is worth keeping in mind that the
above-discussed residual Coulomb interaction is not renor-
malized to the HTDA model space. In this context one can
expect that using the bare Coulomb interaction in the HTDA
calculations underestimates the effect of the residual contribu-
tion to the isospin-mixing parameter. However, assuming that
renormalizing the Coulomb interaction in the residual channel
amounts to a mere multiplying factor in the coupling strength,
which would not exceed an order of magnitude, one would
still obtain a weak impact of V̂C,res on α.

VI. CONCLUSION AND PERSPECTIVES

In this work we have performed HTDA calculations of the
isospin-mixing parameter α in the ground states of 28Si, 48Cr,
and 76Sr (all prolate deformed), as well as in the oblate and
prolate local minima of 68Se. We have used the Skyrme SIII
effective interaction in the mean-field channel and a density-
independent δ interaction in the pairing channel. At the mean-
field level, we have calculated exactly the exchange Coulomb
contribution to the Hartree-Fock Hamiltonian and in the HTDA
Hamiltonian we have included the Coulomb contribution to the
residual interaction.

First we have studied in details the influence of both isospin
channels of the pairing residual interaction V̂res on the structure
of the HTDA ground state. As an overall trend the amount of
pairing correlations increases as a function of the strength
of the T = 1 channel through an increasing weight of the
one-pair excitations, slightly renormalized by the presence of
higher-order pair excitations. This is also the case with the
T = 0 channel up to a threshold |V (T =0)

0 | ∼ |V (T =1)
0 | beyond

which the one-pair excitations saturate and hand over to the
DP excitations.

Then we have calculated explicitly the T = 2 contribution
to the isospin-mixing parameter α. It has been found rapidly
increasing as a function of Z but always negligible (less than
1% of α) as already known.

Moreover, we have shown that the unitary transformation
which diagonalizes the T̂2 operator in the absence of the
Coulomb interaction keeps this property to a good approx-

imation even in the presence of the Coulomb interaction.
This transformation assumes a simple block-diagonal form
in clusters of the multipair excitations of given order, char-
acterized by a set of hole and particle levels, and makes it
possible to easily express the correlation contribution to the
isospin-mixing parameter as the sum of the difference between
the isospin admixtures of the quasivacuum and the approxi-
mate good-T states. In this approach, which call the DCA,
we have found that the pairing correlations bring isospin
mixing in the ground state through a competition of approx-
imate good-T states with T = 1 for the residual interaction
in the T = 1 channel and T = 0 for the T = 0 channel. More
precisely, the approximate good-T states contributing the most
to α involve neutron-proton one-pair excitations for T = 0
and the difference between neutron-neutron and proton-proton
one-pair excitations for T = 1.

Finally, we have shown that the Slater approximation signif-
icantly underestimates the α parameter and that the Coulomb
contribution to the residual interaction has a negligible impact
on α (of the same order of magnitude as the contribution of the
T = 2 component). In quantitative studies of isospin mixing,
the Coulomb interaction should thus be treated exactly at the
mean-field level but can be omitted in the residual interaction
within the HTDA framework.

In the light of the present work we expect that the ob-
servables sensitive to isospin-symmetry breaking—essentially
along the N = Z line—require a good treatment of T = 1
as well as T = 0 pairing correlations. This is substanti-
ated by our recent studies of superallowed 0+ → 0+ Fermi
transitions [35] and magnetic moments in odd-mass nuclei
near the N = Z line [36]. We shall investigate further the
impact of pairing correlations on these quantities in future
papers.

In addition to the pairing correlations, we expect the
vibrational correlations to play a role in the structure of the
correlated ground state, especially in spherical nuclei, and to
bring an additional contribution to the ground-state isospin
mixing. These correlations can be described on the same foot-
ing as the pairing correlations in the HTDA framework [24].
In the future it remains to design a realistic and tractable
residual interaction to describe simultaneously both kinds of
correlations in the HTDA framework. As a first step a finite-
range residual interaction of a Gaussian form (as the central
Gogny interaction) would be straightforward to implement
given that the matrix elements of the Coulomb interaction have
been calculated analytically through a Gaussian expansion of
the 1/r function. In a longer term a more consistent way
to treat those correlations in HTDA would be to perform a
self-consistent calculation allowing us to take into account the
effect of the correlations into the mean field as it has been
proposed in Ref. [21].
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APPENDIX A: MATRIX ELEMENTS OF THE δ

RESIDUAL INTERACTION

If we denote the space-spin-isospin basis by {|rστ 〉, r ∈
R3, σ, τ = ± 1

2 } (τ = 1
2 for a neutron state, τ = − 1

2 for a
proton state), we can write the single-particle state |k〉, which
is an eigenstate of T̂z with the eigenvalue τk , as

|k〉 =
∫

d3r
∑

σ

ϕ
(σ )
k (r)|rστk〉. (A1)

With the assumption of axial symmetry, |k〉 is, in addition, an
eigenstate of the third component Ĵz of the angular momentum
operator, with the eigenvalue �kh̄, and can be expanded in the
cylindrical harmonic-oscillator basis {|Nnz�στ 〉}, with the
notation of Ref. [34] to which we add the isospin quantum
number, as

|k〉 =
∑

N,nz,σ

C
(k)

Nnz�
(σ )
k σ τk

∣∣Nnz�
(σ )
k σ τk

〉
, (A2)

where �
(σ )
k = �k − σ (σ = ±1/2). The action of the time-

reversal operator T̂ on |σ 〉 implies that

T̂ |σ 〉 = (−1)
1
2 −σ | − σ 〉, (A3)

and the wave function of the time-reversed state |k〉 is therefore
given by

ϕ
(σ )
k

(r) = (−1)
1
2 +σ

(
ϕ

(−σ )
k

)∗
. (A4)

Because we are describing an even-even nucleus, we can
choose the single-particle states to be even or odd under
time-reversal symmetry and restrict to the former. Therefore,
the expansion coefficients C

(k)
Nnz�στ are real and the spin-σ

component of the single-particle wave function ϕ
(σ )
k (r) takes

the form

ϕ
(σ )
k (r) = f

(σ )
k (ρ, z)

ei�
(σ )
k θ

√
2π

, (A5)

where the function f
(σ )
k (ρ, z) is real. From Eq. (A4) we obtain

f
(σ )
k

(ρ, z) = (−1)
1
2 +σ f

(−σ )
k (ρ, z), that is,

f +
k

(ρ, z) = −f −
k (ρ, z), (A6)

f −
k

(ρ, z) = f +
k (ρ, z). (A7)

The matrix elements of the δ interaction in the T = 0 and
T = 1 channels for any single-particle states |i〉, |j 〉, |k〉, |�〉
can thus be written in cylindrical coordinates (ρ, z) as

〈ij |V̂ (T =0)
δ |k̃l〉 = V

(T =0)
0

4π
δ�i+�j ,�k+��

(
δτiτk

δτj τ�
− δτiτ�

δτj τk

)
×
∫ ∞

−∞
dz

∫ ∞

0
dρ ρ [(f +

i f −
j +f −

i f +
j )(f +

k f −
� + f −

k f +
� ) + 2 (f +

i f +
j f +

k f +
� + f −

i f −
j f −

k f −
� )], (A8)

〈ij |V̂ (T =1)
δ |k̃l〉 = V

(T =1)
0

4π
δ�i+�j ,�k+��

(
δτiτk

δτj τ�
+ δτiτ�

δτj τk

) ∫ ∞

−∞
dz

∫ ∞

0
dρ ρ (f +

i f −
j − f −

i f +
j )(f +

k f −
� − f −

k f +
� ), (A9)

where we have omitted the ρ and z dependence in the notation of the integrated functions. The two-body matrix elements of V̂δ

are therefore real, and so are the many-body matrix elements of V̂res.

APPENDIX B: MATRIX ELEMENTS OF THE COULOMB INTERACTION IN THE CYLINDRICAL
HARMONIC-OSCILLATOR BASIS

Apart from the spin degree of freedom, the quantum numbers characterizing the cylindrical harmonic-oscillator basis states
considered in Appendix A are chosen here to be nz, α = (n⊥ + �)/2, and β = (n⊥ − �)/2, where n⊥ = N − nz. Using
the method described in detail in Ref. [31], we can write the matrix element of the Coulomb interaction in the cylindrical
harmonic-oscillator basis in the form〈

nzi
αiβi, nzj

αjβj

∣∣ e2

|r1 − r2|
∣∣nzk

αkβk, nzl
αlβl

〉
=
√

2

π
e2c3

0

nzi
+nzj∑

n=nmin

fn

(
nzi

, nzj
, nzk

, nzl

) n+n′∑
p=|n−n′ |

C(n, n′, p)A(p)
αi+αj∑
a=amin

βi+βj∑
b=bmin

ga,b(αi, βi, αj , βj , αk, βk, αl, βl) δa−b,a′−b′

× (a + b′)!√
a! a′! b! b′!

kmax∑
k=0

(
b

k

)(
b′
k

)(
a+b′

k

) I
cz,c⊥
p/2,|a−b|,k,a+b′+1−k, (B1)

with e2 = 1.439 965 MeV fm, and

nmin = max
(
0, nzi

+ nzj
− nzk

− nzl

)
, (B2)

amin = max(0, αi + αj − αk − αl), (B3)

bmin = max(0, βi + βj − βk − βl), and (B4)

kmax = min

(
a + b − |a − b|

2
,
a′ + b′ − |a′ − b′|

2

)
. (B5)
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The expression (B1) is obtained using a Moshinsky trans-
formation [37] from the coordinate system of two particles
|nz1α1β1, nz2α2β2〉 to the one of center-of-mass (c.m.) and
relative coordinates |nab,NAB〉.

The Moshinsky coefficients 〈n1n2||nN〉 can be written in
terms of Wigner’s reduced rotation matrix as

〈n1n2||nN〉 = δn1+n2,n+N d
(n1+n2)/2
(n−N)/2,(n1−n2)/2

(
π

2

)
, (B6)

which takes the explicit form

d
(n1+n2)/2
(n−N)/2,(n1−n2)/2

(
π

2

)

=
√

n1! n2! n! N !

2n1+n2

min(n2,n)∑
�=max(0,n2−N)

× (−1)�

(n2 − �)! (N − n2 + �)! �! (n − �)!
. (B7)

The conservation of the phonon number imposed by the
Moshinsky coefficients and the fact that the Coulomb inter-
action does not act in the c.m. coordinate system implies the
following relation between the quantum numbers n′, a′, b′ and
n, a, b:

n′ = n − nzi
− nzj

+ nzk
+ nzl

, (B8)

a′ = a − αzi
− αzj

+ αzk
+ αzl

, (B9)

b′ = b − βzi
− βzj

+ βzk
+ βzl

. (B10)

The functions fn and ga,b are products of Moshinsky
coefficients given by

fn = 〈
nzi

nzj

∣∣|nN〉〈nzk
nzl

∣∣|n′N〉, (B11)

ga,b = 〈αiαj ||aA〉〈βiβj ||bB〉〈αkαl||a′A〉〈βkβl||b′B〉.
(B12)

In addition, the positive constant c0 is such that c3
0 = czc

2
⊥,

where cz = √
mωz/h̄ and c⊥ = √

mω⊥/h̄ are the oscillator
constants associated, respectively, with the oscillator fre-
quencies ωz along the symmetry axis z and ω⊥ along the
perpendicular direction. In the definitions of cz and c⊥, m is

the average nucleon mass. The coefficients ( i

j
) are the usual

binomial coefficients, and C(n, n′, k) and A(�) are defined by

C(n, n′, k) =
√

n! n′! k!(
n+n′−k

2

)
!
(

n′+k−n
2

)
!
(

k+n−n′
2

)
!
, (B13)

A(�) =
{

(−)�/2
√

�!
2�/2(�/2)! if � is even,
0 otherwise.

(B14)

Finally, the I
cz,c⊥
k,�,m,n integrals are defined by

I
cz,c⊥
k,�,m,n =

∫ +∞

0

(c2
⊥σ 2)�(c2

⊥σ 2 − 1)mσ dσ

(1 + c2
⊥σ 2)n

√(
1 + c2

zσ
2
)2k+1

(B15)

and have to be used with the following restrictions: (i) k, �,
and m are non-negative integers and n � 0; (ii) � + m < n.

Reference [31] provides a complete analytical method
based on recursive expressions to evaluate the I

cz,c⊥
k,�,m,n inte-

grals, but this method is extremely sensitive to the computa-

tional accuracy for the quantum numbers nz, α, and β involved
in this work (we include 11 major oscillator shells in our
basis). In practice, to evaluate these integrals with a sufficient
precision and in a tractable way, we express c2

⊥ I
cz,c⊥
k,�,m,n on the

[0; 1] range as

c2
⊥ I

cz,c⊥
k,�,m,n

= 1

2

∫ 1

0

(
x

x + 1

)� (
x − 1

x + 1

)m
dx

(x + 1)n(1 + qx)k+ 1
2

+
∫ 1

0

(
1

1 + x2

)� (1 − x2

1 + x2

)m
x2(k+n−1) dx

(1 + x2)n(x2 + q)k+ 1
2

,

(B16)

where q = (cz/c⊥)2. We then interpolate the functions to be
integrated using a cubic spline and integrate the resulting
functions.

APPENDIX C: MATRIX ELEMENTS OF THE T̂4

OPERATOR IN THE MANY-BODY BASIS

Let us start from the following form of the T̂2 operator:

T̂2 = T̂z(T̂z + 1) + T̂−T̂+, (C1)

where T̂− and T̂+ are the usual isospin ladder operators defined
by T̂± = T̂x ± iT̂y . Because the product T̂−T̂+ commutes with
any function of the T̂z operator, and using the commutation
relations

[T̂+, T̂−] = 2T̂z, (C2)

[T̂z, T̂±] = ± T̂±, (C3)

we can express the T̂4 operator as a function of powers of T̂−
and T̂+,

T̂4 = (T̂z + 1)2
(
T̂ 2

z + 2T̂−T̂+
)+ T̂ 2

− T̂ 2
+ . (C4)

The product T̂ 2
−T̂ 2

+ is the sum of two-body, three-body, and
four-body operators:

T̂ 2
−T̂ 2

+ = 2
∑
i 
=j

(t̂− t̂+)(i) ⊗ (t̂− t̂+)(j )

+
∑

i 
=j 
=k

(t̂− t̂+)(i) ⊗ t̂−(j ) ⊗ t̂+(k)

+
∑

i 
=j 
=k 
=�

t̂−(i) ⊗ t̂−(j ) ⊗ t̂+(k) ⊗ t̂+(�). (C5)

Its nonvanishing matrix elements between Slater determinants
|�〉 and |�′〉 built from the same single-particle basis involve
five different cases.

(i) |�′〉 = |�〉 (diagonal matrix element):

〈�|T̂ 2
−T̂ 2

+|�〉 = 2(Z − 1)
(
Z − 〈�|F̂ |�〉)

+ 1
2 〈�|F̂ |�〉2 − 〈�|F̂ ρ̂�F̂ |�〉, (C6)

where the one-body operator F̂ is defined in terms of
the reduced one-body density ρ̂� associated with the
Slater determinant |�〉 and the single-particle isospin
ladder operators t̂± by

F̂ = t̂−ρ̂�t̂+ + t̂+ρ̂�t̂−. (C7)
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(ii) |�′〉 = â†
αâ

†
β âbâa|�〉 (2p2h relative excitation):

〈�|T̂ 2
−T̂ 2

+|�′〉 = 4[(Z − 1 − 1
2 〈�|F̂ |�〉)〈ab|Ĝ|α̃β〉

+ 〈ab|F̂ ⊗ F̂ |α̃β〉 + 〈ab|F̂ ρ̂�Ĝ|α̃β〉],
(C8)

with the two-body operator Ĝ = t̂− ⊗ t̂+ + t̂+ ⊗ t̂− and
|α̃β〉 = |αβ〉 − |βα〉.

(iii) |�′〉 = â†
αâ

†
β â†

γ â
†
δ âd âcâbâa|�〉 (4p4h relative excita-

tion):

〈�|T̂ 2
−T̂ 2

+|�′〉 = 4 〈abcd|(Ĝ ⊗ Ĝ) + (t̂− ⊗ t̂−) ⊗ (t̂+ ⊗ t̂+)

+ (t̂+ ⊗ t̂+) ⊗ (t̂− ⊗ t̂−)| ˜αβγ δ〉, (C9)

with

| ˜αβγ δ〉 = |α̃β〉 ⊗ |γ̃ δ〉 − |α̃γ 〉 ⊗ |β̃δ〉 + |α̃δ〉 ⊗ |β̃γ 〉
+ |β̃γ 〉 ⊗ |α̃δ〉 − |β̃δ〉 ⊗ |α̃γ 〉 + |γ̃ δ〉 ⊗ |α̃β〉.

(C10)

APPENDIX D: ISOSPIN PROBABILITIES
IN THE DCA FRAMEWORK

Let us start with the normalized state |�〉
|�〉 = a0 |�0〉 +

∑
MP,k,T ,i

a
(k)
MP,T ,i

∣∣�(k)
MP,T ,i

〉
, (D1)

satisfying thus the condition

a2
0 +

∑
MP,k,T ,i

∣∣a(k)
MP,T ,i

∣∣2 = 1. (D2)

In the DCA framework one has

〈�|T̂2j |�〉 = a2
0 〈�0|T̂2j |�0〉

+
∑

MP,k,T ,i

∣∣a(k)
MP,T ,i

∣∣2 〈�(k)
MP,T ,i

∣∣T̂2j
∣∣�(k)

MP,T ,i

〉
.

(D3)

Starting from Eq. (23), one can write the general probability
P

(n)
� (T ) in the form

P
(n)
� (T ) = δT T0 +

n∑
j=1

�
(n)
T −T0,j

[〈�|T̂2j |�〉 − T
j

0 (T0 + 1)j
]

(D4)

= δT T0 +
n∑

j=1

�
(n)
T −T0,j

[
a2

0 〈�0|T̂2j |�0〉 +
∑

MP,k,T ′,i

∣∣a(k)
MP,T ′,i

∣∣2 〈�(k)
MP,T ′,i

∣∣T̂2j
∣∣�(k)

MP,T ′,i
〉− T

j

0 (T0 + 1)j
]

(D5)

= δT T0 +
n∑

j=1

�
(n)
T −T0,j

[〈�0|T̂2j |�0〉 − T
j

0 (T0 + 1)j
]

+
∑

MP,k,T ′,i

∣∣a(k)
MP,T ′,i

∣∣2 n∑
j=1

�
(n)
T −T0,j

[〈
�

(k)
MP,T ′,i

∣∣T̂2j
∣∣�(k)

MP,T ′,i
〉− 〈�0|T̂2j |�0〉

]
. (D6)

The result (D6) is obtained thanks to the normalization relation (D2).

Noting that
n∑

j=1

�
(n)
T −T0,j

〈
�

(k)
MP,T ′,i

∣∣T̂2j
∣∣�(k)

MP,T ′,i
〉 = P

(n)

�
(k)
MP,T ′ ,i

(T ) − δT T0 −
n∑

j=1

�
(n)
T −T0,j

T
j

0 (T0 + 1)j

and
n∑

j=1

�
(n)
T −T0,j

〈�0|T̂2j |�0〉 = P
(n)
�0

(T ) − δT T0 −
n∑

j=1

�
(n)
T −T0,j

T
j

0 (T0 + 1)j , (D7)

one can finally write the contribution P (n)
corr(T ) coming from the correlations to the probability P

(n)
� (T ) as

P (n)
corr(T ) =

∑
MP,k,T ′,i

∣∣a(k)
MP,T ′,i

∣∣2 (P (n)

�
(k)
MP,T ′,i

(T ) − P
(n)
�0

(T )
)
. (D8)

The isospin-mixing parameter α = 1 − P� (Td ) finally becomes

α = α0 + Ccorr, (D9)

with

α0 = 1 − P
(n)
�0

(Td ) (D10)

and

Ccorr =
∑

MP,k,T ′,i

∣∣a(k)
MP,T ′,i

∣∣2 (P (n)
�0

(Td ) − P
(n)

�
(k)
MP,T ′,i

(Td )
)
. (D11)

034332-16



EFFECT OF PAIRING CORRELATIONS ON THE . . . PHYSICAL REVIEW C 86, 034332 (2012)
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