
PHYSICAL REVIEW C 86, 034328 (2012)

Large-scale continuum random-phase approximation predictions of dipole strength for
astrophysical applications

I. Daoutidis and S. Goriely
Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, B-1050, Belgium
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Large-scale calculations of the E1 strength are performed within the random phase approximation (RPA)
based on the relativistic point-coupling mean field approach in order to derive the radiative neutron capture
cross sections for all nuclei of astrophysical interest. While the coupling to the single-particle continuum
is taken into account in an explicit and self-consistent way, additional corrections like the coupling to
complex configurations and the temperature and deformation effects are included in a phenomenological
way to account for a complete description of the nuclear dynamical problem. It is shown that the
resulting E1-strength function based on the PCF1 force is in close agreement with photoabsorption data
as well as the available experimental E1 strength data at low energies. For neutron-rich nuclei, as well
as light neutron-deficient nuclei, a low-lying so-called pygmy resonance is found systematically in the
5–10 MeV region. The corresponding strength can reach 10% of the giant dipole strength in the neutron-rich
region and about 5% in the neutron-deficient region, and is found to be reduced in the vicinity of the shell
closures. Finally, the neutron capture reaction rates of neutron-rich nuclei is found to be about 2–5 times larger
than those predicted on the basis of the nonrelativistic RPA calculation and about a factor 50 larger than obtained
with traditional Lorentzian-type approaches.
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I. INTRODUCTION

The investigation of the isovector giant dipole resonance
(GDR) is one of the fundamental problems in nuclear physics
and astrophysics. These collective excitations can be studied
experimentally by photoabsorption processes and provide
essential nuclear inputs for the understanding of reaction
mechanisms taking place during the synthesis of chemical
elements in stars.

Despite new successes of recent large accelerator facilities,
the information we get on the GDR properties is still limited
to about hundred nuclei in the valley of β stability. All the
remaining few thousands exotic proton- or neutron-rich nuclei
can be accessed by nuclear theory only. The aim is therefore
to provide the necessary theoretical tools towards a universal
description of the nuclear structure phenomena, up to the limit
of the nuclear stability.

Over the years, a lot of effort has been devoted to improve
the theoretical description of the main collective properties,
such as the γ -ray strength function. In particular, the random-
phase approximation (RPA), based on the relativistic mean
field (RMF) theory, has proven to be a robust theory [1–3].
Pairing correlations for the study of open-shell nuclei as well
as the self-consistent description of the residual interaction [4]
have also been included over the years.

However, a complete and coherent description of the
dynamical properties of the nuclei over the entire nuclear chart
remains an open problem and additional corrections beyond
the conventional RPA problem are necessary, as discussed the
present work.

At first, the coupling to the positive-energy continuum
has to be taken into account explicitly. This is important,
because the alternative approach, namely the discretization of
the continuum, though simpler, requires a basis truncation,

which eventually leads to a mixing between spurious and
physical states of the excitation spectrum. In addition, this
discretized RPA includes a large amount of states which
increases considerably the numerical effort.

In fact, the exact treatment of the continuum using the
Green’s function representation not only can solve these
two problems simultaneously, but also allows for a direct
calculation of the escape width of the giant resonance.
Although this so-called continuum RPA (CRPA) is known
to be a powerful approach, it has been rarely applied in the
past [5–9]. Only recently has a continuum QRPA approach
been successfully developed within a relativistic framework to
study giant multipole resonances for spherical nuclei [10,11].

Furthermore, many applications, such as nuclear astro-
physics, require the estimate of the γ -ray strength function
for deformed nuclei. Recently, microscopic calculations with
axially deformed RPA approaches [12–14] have been able
to study medium and heavy deformed nuclei showing a
considerable success in the prediction of the GDR properties.
In particular they confirm an important effect, namely the
splitting of the resonance peak into two components.

Unfortunately, the axially deformed RPA faces several
difficulties, mostly related to the numerical effort and the
isolation of the spurious state. For this reason the deformation
effect is still treated in all large-scale calculations in a
phenomenological way. A similar approach is followed in the
present work.

The CRPA approach [11] is developed in such a way that
only one-particle one-hole (1p1h) configurations are taken into
account, so that the coupling to more complex configurations,
such as 2p2h, is not described in an explicit way. These
couplings can be taken into account in the framework of
the relativistic or nonrelativistic time-blocking approximation
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[15–17]. However, such a method cannot be applied to
large-scale calculations yet, essentially due to the numerical
effort it represents, so that alternative phenomenological
approximations need to be considered [18,19]. A similar
approach is followed in the present work, as described in
Sec. III.

Regarding calculations of astrophysical interest, it is of
importance to describe not only the photoabsorption processes,
but also the reverse radiative particle-capture processes.
Reaction theory relates the γ -transmission coefficient for
excited states to the ground state photoabsorption assuming
the giant resonance to be built on each excited state. The
description of the photo-deexcitation requires however the
introduction of a temperature dependence due to collisions
between quasiparticles. As traditionally done, a temperature-
dependent GDR width can be applied and has been shown to
improve the predictions [20,21].

Finally, as far as pairing correlations are concerned, it
has been extensively discussed in the past that the Hartree-
Fock-Bogoliubov (HFB) [22,23] or the relativistic Hartree-
Bogoliubov (RHB) approximation [24] give a reliable descrip-
tion of both the ground state and the collective excitations of
open shell nuclei. A proper treatment of the pairing correlations
is even more important in nuclei close to the drip lines
where the pairing gap becomes of the order of the particle
emission threshold. However, this approach is not yet available
within the relativistic CRPA [11], so that open shell nuclei
are still treated within the BCS model applied in the mean
field as well as the dynamical system. Until an RHB plus
CRPA is developed, the BCS model can be regarded as a
useful approximation of the pairing effect on the γ -ray strength
function.

The purpose of the present paper is to determine system-
atically the CRPA E1 strength function for the entire nuclear
chart within the relativistic mean field approach. For practical
applications, all the above mentioned corrections (correct
description of the continuum, spreading width, deformation ef-
fects, temperature effects) are included for a proper prediction
of the reaction cross section. The paper is organized as follows.
In Sec. II we briefly describe the relativistic quasiparticle RPA,
where the continuum is explicitly included. In Sec. III the
damping of the collective motion, the impact of deformation
on the GDR and the temperature dependence are included in
the model and the new strength is compared with experimental
data. In Sec. IV a large-scale calculation for about 8000 nuclei
is shown to give interesting properties of the nuclear collective
motion. The proton pygmy resonance of neutron deficient nu-
clei is extensively studied in Section V. Finally, in Sec. VI we
use the final strength to study the radiative neutron capture rates
for all the 8000 nuclei and report our conclusions in Sec. VII.

II. RELATIVISTIC CONTINUUM QRPA

As in all the relativistic models, the nucleons are described
as point like Dirac particles, which move inside a nuclear
mean field. This mean field is phenomenological and can be
described by the exchange of effective mesons, as is done
in the Walecka model [25] or by using the zero range or

point coupling terms. This latter description of the RMF
introduced in the early nineties1990s [26,27] has since been
improved substantially and is used in our work to describe
the ground state and collective properties. This approach has
the main advantage of simplifying considerably the numerical
calculations without loosing in predictive power as compared
to the meson exchange mean field.

In this work, we use the point coupling Lagrangian PCF1
[28] expanded in powers of the nucleon scalar (S), vector (V),
and isovector-vector (TV) fields:

L = ψ̄(iγ · ∂ − m)ψ −
∑

c

1

2
αc[ρ](ψ̄�̂cψ)(ψ̄�̂cψ)

− 1

2
δc(∂νψ̄�̂cψ)(∂νψ̄�̂cψ)

− eψ̄γ · (1 − τ3)

2
ψ, (c = S, V, T V ), (1)

where the Dirac vertices �̂c have the explicit form

�̂S = 1 �̂V = γμ �̂TV = γμ�τ . (2)

For the PCF1 force, the index c takes just seven values, namely
one scalar S, three isoscalars V, and three isovector-vectors
TV. The gradient terms δc(∂νψ̄�̂cψ) in the Lagrangian L are
used to simulate the finite range of the nuclear interaction and
consequently improve the description of the nuclear surface
properties. The energy functional deduced from Eq. (1) is
sufficient to describe the nuclear ground state, the single-
particle Hamiltonian being given by

hαβ = δE[ρ̂]

δρ̂αβ

. (3)

To describe the nuclear response to an external field F

induced by a particle or by photoabsorption, the strength
function

S(E) = − 1

π
Im

∑
αβα′β ′

F ∗
αβRαβα′β ′(E)Fα′β ′ (4)

needs to be estimated. The Greek indices α, β indicate the
various degrees of freedom of a nucleon (r, s, t, d), where s

is the spin, t the isospin coordinate, and d = 1, 2 labels the
large and small components. If we consider the case of a weak
external field and thus a small amplitude variation of the static
solution, the response function Rαβα′β ′(E) can be deduced from
the linearized Bethe-Salpeter equation

Rαβα′β ′ (E) = R 0
αβα′β ′(E) (5)

+
∑

γ δγ ′δ′
R0

αβγ ′δ′(E)V ph
γ δγ ′δ′Rγ ′δ′α′β ′ (E).

The residual interaction V
ph
γ δγ ′δ′ of Eq. (5) is connected to

the static problem via the second derivative of the energy
functional

V
ph
γ δγ ′δ′ = δ2E[ρ̂]

δρ̂γ δδρ̂γ ′δ′
. (6)

This expression of V
ph
γ δγ ′δ′ includes in addition to the linear

time-like fields, the space-like terms, the Coulomb part and the
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rearrangement terms, as a result of the second derivation [11].
In this way, a self-consistent solution is ensured, which is of
particular importance for the description of exotic nuclei for
which no data exists.

In coordinate representation, the indices α,β, . . . in Eq. (5)
are abbreviations for the “coordinates” 1 = (r1, s1, t1, d1).
The simplicity of the point coupling Lagrangian allows us
to express the effective interaction of Eq. (6) as a sum of
separable terms, i.e.,

V ph(1, 2) =
∑

c

Q∗(1)
c (r)υc(r)Q(2)

c (r) (7)

with the local channel operators Q(1)
c (r) defined by

Q̂(1)
c (r) = (−)Sc

δ(r − r1)

rr1
�̂(1)

c YL(�1). (8)

These single-particle operators are characterized by the chan-
nel index defined in the spin-isospin space (c) as well as the
coordinate space (r). Therefore, assuming a coordinate mesh
r of 50 points and having c = 7, the size of the interaction
matrix is typically smaller than 350 × 350 which significantly
reduces the numerical effort.

Finally, by inserting the effective interaction of Eq. (7) into
the Bethe-Salpeter equation (5), we get the expression

Rcc′ (E) = R 0
cc′ (E) +

∑
c′′

R 0
cc′′ (E)υc′′ (r)Rc′′c′ (E), (9)

where the reduced response function is given by

Rcc′ (E) = Q∗(1)
c R(E)Q(2)

c′ . (10)

Equation (9) has the same formal solution as Eq. (5), but is
simpler to solve. At the end, one has to calculate the free
response function R 0

cc′ (E) which corresponds to the basic
quantity of the CRPA approach.

According to [10,11], in order to treat the coupling to the
continuum exactly, the nonspectral representation R0

cont needs
to be estimated from

R0
cont =

∑
k

v2
k 〈k(r)|Qcg(r, r ′; E − Ek + λ) (11)

+ g(r ′, r; −E − Ek + λ)Q†
c′ |k(r ′)〉.

The Green’s function is defined here as

g(r1, r2; εκ ) = 1

W

∑
κ

{ |wκ (r)〉〈u∗
κ (r ′)| r > r ′

|uκ (r)〉〈w∗
κ (r ′)| r < r ′, (12)

where the Wronskian W acts as a renormalization factor. The
two-dimensional spinors |uκ (r)〉 and |wκ (r)〉 are the regular
and irregular wave functions of an excited state κ .

The nonspectral method [Eq. (12)] has several advantages.
First, for energies above the εκ = 0 continuum limit, the
function |wκ (r)〉 is a plane wave with complex values. In
other words, for E > λ (which accounts for all excitation
energies above the particle emission threshold) the strength
function [Eq. (4)] is always nonzero. This finite distribution
of S(E) is a direct source of information for the escape
width �↑ of the giant resonance [10]. Furthermore, all levels
embedded in the continuum and included in the Green’s
function [Eq. (12)] are characterized by the quantum number

κ and not by the principal quantum number n, as done in the
discrete approximation. In other words, there is no distinction
between, e.g., states 2p3/2 and 3p3/2. In this way, the sum
over a large number of unbound states is reduced to a sum
of only a few κ states. In addition, the excitations to the
Dirac sea (which includes the antiparticle states) are taken into
account automatically and thus their calculation is redundant.
Both these characteristics can lead not only to a substantial
reduction of the numerical effort but also to the absence of
a corresponding cut-off parameter, as required in the discrete
RPA approach [4].

As discussed before, for open-shell nuclei, the BCS
approximation is used at both the RMF and the RPA levels
in order to take the pairing correlations into account. As
a consequence, the bound states in the pairing active space
are described by an occupation factor, i.e., as quasiparticles.
However, since the continuum states above E = 0 remain pure
particle states, the bound and unbound states are not treated
on an equal footing anymore. For this reason, the response
function [Eq. (11)] cannot be properly described within the
quasiparticle CRPA model which needs to be extended to
account for the two-quasiparticle excitation in the pairing
active space. This is done by adding the term

R0
2qp(E) =

<Epair∑
k�k′

ηS+S ′
kk′

1 + δkk′
〈k||Qc||k′〉r〈k||Qc′ ||k′〉r ′

×
(

1

Ẽ − Ekk′
− 1

Ẽ + Ekk′

)

+
<Ep∑
k�k′

1

1 + δkk′
〈k||Qc||k′〉r〈k||Qc′ ||k′〉r ′

×
{

v2
k

Ẽ − �k,k′
− v2

k

Ẽ + �k,k′

+ v2
k′

Ẽ − �k′,k
− v2

k′

Ẽ + �k′,k

}
, (13)

where Ekk′ = Ek + Ek′ is the two quasiparticle energy, Ẽ =
E + i�/2, and �kk′ = Ek − εk′ − λ. In Eq. (13), the first
part corresponds to two-quasiparticle excitations, while the
second part is a correction term to prevent the excitations
in the pairing active space from being counted twice (see
Refs. [8,11] for more details). Equation (13) does not imply any
significant additional numerical effort since the sum applies
only in the pairing active space of a few quasiparticle exci-
tations. Consequently, a quasiparticle CRPA requires that the
extended response function is properly treated only after the
use of

R0(E) = R0
cont(E) + R0

2qp(E) (14)

in Eq. (9). The cross section for the photoabsorption processes
is then derived from the strength function of Eq. (4) according
to

σ (E) = 16π3e2

9h̄ c
E SRPA(E) [fm2]

= 4.022 E SRPA(E) [mb]. (15)
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III. CORRECTION TO THE CRPA STRENGTH

A. Damping of the E1 strength

Although the escape width �↑ is estimated microscopically
within the CRPA, its value remains small, especially for heavy
nuclei. This is mainly due to the high centrifugal and Coulomb
barriers, which prevent the excited nucleon from escaping.
For that same reason, in light nuclei, where the Coulomb and
centrifugal barriers are smaller, the escape width �↑ dominates
the total width [10].

The remaining part of the total width corresponds to the
coupling of the resonance to more complex configurations
(2p-2h, 3p-3h, etc.) and its contribution to heavy nuclei is
large. One way to deal with the damping width is to calculate
it in the second-RPA (SRPA) framework [18] or by particle
vibration coupling [15–17].

Formally, self-energy insertions on particle and hole states
spread the resonances and shift their centroids. In a first
approximation, this can be done by folding the RPA strength
with a Lorentzian function

fL(E,E′) = 2

π

�(E)E2

[E2 − (E′ − �(E′)2]2 + �(E)2E2
, (16)

so that

S(E) =
∫ ∞

0
dE′SRPA(E′)fL(E,E′). (17)

Here E′ is the excitation energy of the CRPA response, and
�(E) and �(E) the real and complex part of the self-energy,
respectively [18]. The energy-dependent width �(E) can be
calculated from the measured decay width of particle (γp) and
hole (γh) states [18]

�(E) = 1

E

∫ E

0
dε[γp(E) + γh(−E)]

(
1 + C

(�)
ST

)
. (18)

This empirical way of determining �(E) has the advantage
of including, in principle, contributions from the excitation
beyond 2p-2h [19]. The resulting resonance width can be
compared with experimental data, such as photoabsorption
cross sections. Finally, the real part �(E) of the self-energy is
obtained from �(E) by a dispersion relation [18], where the
interference factor C

(E)
ST is allowed to differ from C

(�)
ST affecting

the Lorentzian width of Eq. (18).
This method, though empirical, avoids important SRPA

difficulties [29] related to the large deviation of the GDR
energy and the need to renormalize the residual interaction
in order to deal with the spurious components [30].

B. Comparison with the experimental GDR

While the GDR of spherical nuclei can be well described by
a Lorentzian-type function [Eq. (16)], the situation for nuclei
with a deformed ground state is different. In particular, in the
case of deformed nuclei with axial symmetry, the GDR is
known to split into two major resonances which correspond
to oscillations of protons against neutrons along the principal
axes, with frequencies inversely proportional to the length of
these axes [13]. In the phenomenological approach, the GDR

peak energy is split according to the following rule [33]:

E
(1)
GDR + 2E

(2)
GDR = 3EGDR,

(19)
E

(2)
GDR/E

(1)
GDR = 0.911η + 0.089,

where η is the ratio of the diameter along the axis of symmetry
to the diameter along an axis perpendicular to it. Consequently,
the folding process of Eq. (17) takes place twice for each
energy, with the two Lorentzians corresponding to the two
energy peaks of Eq. (19), leading to the final strength

S(E) =
∫ ∞

0
dE′SRPA(E′)

[
1

3
f

(1)
L (E,E′) + 2

3
f

(2)
L (E,E′)

]
.

(20)

This procedure is applied to all nuclei, the parameter η being
derived from the HFB mass model of Ref. [34].

The two interference factors C
(E)
ST and C

(�)
ST related to the

energy shift and the resonance width of the E1 strength,
respectively, are calculated in a way similar to the parameter
set of the Lagrangian, i.e., they are adjusted through a
minimization procedure to reproduce at best the measured
GDR energy and width of experimentally known nuclei. In
particular, the rms deviation factors

f (E)
rms =

[
1

Ne

Ne∑
i=1

[
Ei

GDR(th) − Ei
GDR(exp)

]]1/2

, (21)

f (�)
rms =

[
1

Ne

Ne∑
i=1

[
�i

GDR(th) − �i
GDR(exp)

]]1/2

(22)

are used for the GDR energies and the GDR widths, re-
spectively. The best fit to experimental data is obtained for
C

(E)
ST = −0.85 and C

(�)
ST = −0.59, leading to f (E)

rms = 0.66 MeV
and f (�)

rms = 1.81 MeV. This result is illustrated in Fig. 1, where
the GDR energy and width are given for about 80 nuclei and
compared with existing experimental measurements.

In Fig. 2, we illustrate the E1 photoabsorption cross
sections (normalized to unity) for several spherical nuclei
all over the nuclear chart. We see that globally, the GDR
widths and energies are in good agreement with experimental
data (represented by a Lorentzian function) [31,32]. When the
deformation effect becomes important, it can be seen in Fig. 3
that the folded CRPA strength [corrected with the prescription
of Eq. (19)] predicts rather well not only the GDR width, but
also the splitting into the two observed peaks.

C. Temperature dependence

As already discussed, when dealing with practical applica-
tions and more precisely radiative captures, the deexcitation
strength function needs to be estimated. For low-energy
incident particles, a reliable description of the tail of the GDR
close to the particle threshold is required.

The excitation of a nuclear state in this energy range is
followed by a subsequent decay to the ground state which takes
place via multiple intermediate states of finite lifetime. The
observation that in many nuclei the deexcitation γ -strength
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FIG. 1. (Color online) (a) Comparison between the experimental
GDR energies for spherical and deformed nuclei (black squares)
and the GDR peak energies (red cycles) obtained after folding the
CRPA distribution and including the deformation effects. (b) Similar
comparison between experimental and calculated GDR widths.

at E → 0 is nonzero [21] suggests that the level density in
this region is high and that the E1 strength function depends
on the nuclear temperature [43,46]. To provide a qualitative
agreement with γ -decay measurements, a temperature depen-
dence is traditionally introduced in the expression of the GDR
width [21,43,46], i.e.,

�′(E, T ) = �(E)
1

E2
GDR

[
E2 + α4π2T 2EGDR

E + δ

]
, (23)

where T is interpreted as the nuclear temperature of the final
state and is estimated by Tf ∝ √

Ef . The constant parameter

0
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FIG. 2. (Color online) Comparison between the experimental
photoabsorption cross section approximated by a simple Lorentzian
curve (black dashed line) and the CRPA predictions obtained with the
PCF1 force (red solid line), for nine representative spherical nuclei
given by (Z, A). All cross sections are normalized to a peak cross
section of unity. Experimental data are taken from [31,32].
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FIG. 3. (Color online) Comparison of the CRPA predictions
(solid red line) with the experimental photoneutron cross sections
(black dashed line) for several nuclei with well-deformed ground
state. The experimental data are taken from [35–40] for the nuclei
150Nd, 168Er, 172Yb, 181Ta, 237Np, and 238U, respectively.

δ = 0.1 MeV is introduced to ensure a nondivergent width at
E → 0 [21].

Available data on thermal capture measurements from Mg
to U have been used as a benchmark for the validity of the
model and also as a way to derive the parameter α. In Fig. 4 the
corresponding strength functions fγ (E) are shown at energies
ranging between 4 and 8 MeV depending on the corresponding
binding energies. It is found that the value α = 2.30 gives the
best overall agreement with the experimental strength. We see
that the temperature dependence improves the prediction, as
compared to the T = 0 strength.

The importance of the temperature dependence can be
even more apparent for nuclei with enhanced E1 strength
at low excitation energies, as for instance in the deexcitation

0 40 80 120 160 200 240
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) [
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-3
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T-indep. Width
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FIG. 4. (Color online) Comparison of the T -dependent and T -
independent low-energy E1-strength functions deduced from the
CRPA with the experimental compilation [32] including resolved-
resonance and thermal-captures measurements, as well as photonu-
clear data for nuclei from 25Mg up to 239U at energies ranging from
4 to 8 MeV.
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FIG. 5. (Color online) CRPA γ -ray strength of 96Mo, 98M,
and 144Nd, obtained with a T -independent (blue dotted line) and
T -dependent (red solid line) width. The results are compared with
experimental data for the Mo [41,42] and 144Nd isotopes [43–45].
The CRPA calculations corresponds to a temperature T = 0.50 MeV.

strength of 96Mo, 98Mo, or 144Nd (Fig. 5). After a proper
renormalization of the position of the GDR, the experimental
strength at E ∼ 0 is found to be well reproduced by the
convoluted strength function with the temperature-dependent
width of Eq. (18).

IV. LARGE SCALE CALCULATIONS

Large-scale calculations based on the extended CRPA have
been performed for all 8 � Z � 110 nuclei lying between the
proton and neutron drip lines, i.e., some 8000 nuclei. For all
the even-even nuclei, the CRPA E1 distribution is folded by
a Lorentzian-type function which properly takes into account
the effect of the interference factors, the deformation and the
temperature dependence, as described in Sec. III. Interpolation
techniques are used to calculate the strength of the odd-A
and odd-odd nuclei. This interpolation is based on a simple
linear averaging between the two closest even-even nuclei,
with respect to the GDR energies, i.e., for an odd nucleus
(Z,N), the E1 strength is given by

S(N)(E) = S(N−1)(E + λ/2) + S(N+1)(E − λ/2)

2
,

where the quantity λ = E
(N−1)
GDR − E

(N+1)
GDR corresponds to the

difference in the GDR centroid energies between the nuclei
(Z,N − 1) and (Z,N + 1). Despite the empirical nature of
this method, experimental results on low-lying E1 strength
[47] and GDR data [32] suggest that it can be adequately used
in medium and heavy nuclei. A proper microscopic treatment
of odd nuclei has been developed [48], but remains numerically
too heavy to be applied to large scale calculations.

In Fig. 6, the GDR centroid energies and widths are plotted
with respect to the neutron number N for all even-even nuclei.
It can be seen that the GDR energy decreases with the atomic
mass while the GDR width reaches local minima in the vicinity
of magic numbers, thus being sensitive to shell effects. For
extremely neutron-rich nuclei with N > 200, the GDR width
appears to remain rather constant around 8 MeV.
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FIG. 6. (Color online) CRPA centroid energies (a) and widths
(b) of even-even A nuclei with 8 � Z � 110 and 10 � N � 240.

Apart from the GDR properties which dominates the
photoabsorption cross section, a second weaker mode appears
at low energy, especially for nuclei with a large neutron
excess. This pygmy dipole resonance (PDR), which has been
extensively studied in the last decade (see, e.g., [49–51]), is
found at low energies, typically around 9 MeV for nuclei
around the valley of β stability and at even lower energies
for nuclei close to the drip lines (Fig. 7). Since this excitation
mode lies in the low-energy tail of the GDR, it is expected to
have a significant impact on the determination of the radiative
neutron capture rates of exotic neutron-rich nuclei [49,50,52].

In the upper panel of Fig. 8 the energy of the pygmy
resonance is shown for all even-even nuclei up to N = 240. We
see that the PDR energy decreases as we move to more neutron
rich nuclei, a pattern similar to the one characterizing the GDR.
This decrease is however slower and for superheavy nuclei,
EPDR remains rather constant. In Fig. 8(b), the integrated PDR
strength relative to the full E1 strength is given as a function
of the neutron number N . The PDR strength is obtained
by integrating over the energy region around the PDR peak
energy and up to about 10 MeV, where the GDR contribution
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FIG. 7. (Color online) CRPA E1 strength function for the Sn
isotopes with A = 116 to A = 160 by steps of 4 as a function of the
energy.
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FIG. 8. (Color online) Same as Fig. 6 for the position of the PDR
(a) and the ratio of PDR strength to the full E1 strength (b).

dominates. The behavior of the PDR strength shown in Fig. 8
demonstrates the shell effects affecting the pygmy mode; close
to the neutron magic numbers N =20, 50, 82, and 126 a
significant decrease of the PDR strength is observed, while
far from the magic numbers, this strength can become as large
as 15% of the total strength. Finally, for the neutron-rich nuclei
with N > 200, the PDR strength remains constant at about 5%
of the GDR strength.

V. PROTON PYGMY MODES

The nature of the PDR in neutron-rich nuclei, as discussed
in the previous section, refers to the well-accepted picture of a
neutron skin vibration with respect to a neutron-proton core.

In principle such a picture can be generalized to neutron-
deficient nuclei for which an oscillation of the weakly bound
proton skin could take place against the isospin-saturated
proton-neutron core. This idea is of course not new and has
been studied in the past, though essentially on a theoretical
ground [53,54].

While many neutron-rich system exist, neutron-deficient
nuclei are restricted to Z < 50 elements, the Coulomb barrier
preventing the creation of heavier proton-rich systems. In
light neutron-deficient nuclei, the proton excess remains rather
small, so that a proton PDR is expected to be rather weak, at
least in comparison with the neutron PDR on the neutron-rich
side of the valley of β stability. In addition, the E1 strength
in light nuclei is quite spread, blending a possible proton PDR
contribution.

On the basis of our theoretical approach, we can identify
and study the properties of the proton PDR. As shown in Fig. 9,
the neutron-deficient 28Ar and 34Ti isotopes reveal an enhanced
E1 strength around 6.9 MeV and 7.4 MeV, respectively, which
could be identified as a proton PDR. The first indication for
this is that the low-lying strength disappears, as we reach
the N = Z isotopes, i.e., for 36Ar and 44Ti. Furthermore, the
proton and neutron transition densities (lower panels of Fig. 9)
clearly show no contribution of any neutrons in the surface
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FIG. 9. (Color online) (Upper panels) E1 strength of the light Ar
and Ti isotopes, showing a pronounced proton skin, as compared to
the N = Z isotopes (dot-dashed lines). (Lower panels) 28Ar (left) and
34Ti (right) proton and neutron transition densities at the PDR.

region; instead, we observe the existence of a proton skin
which oscillates against the proton-neutron core, as suspected
in the first place.

In Fig. 10, we estimate the proton PDR strength relative to
the GDR strength for the even-even neutron-deficient nuclei
with Z � 50. The quantity mPDR corresponds to the integrated
E1 strength in the 5–10 MeV region. For each isotopic chain,
we observe a rapid decrease of the PDR strength, as the
mass number increases towards the N = Z line or the magic
numbers N = 20, 28, or 50. This is a common behavior for
all light and medium nuclei, except for some specific chains
around Z � 32. This deviation from the general trend is also
found for the neutron PDR strength for nuclei around N = 50,
N = 82, and N � 144, as seen in Fig. 8.

VI. RADIATIVE NEUTRON CAPTURE RATES

The Maxwellian-averaged radiative neutron capture rates
of astrophysical interest (see, e.g., the review [55] on the
r-process nucleosynthesis) are estimated within the statistical
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FIG. 10. (Color online) Ratio of the PDR to GDR strength with
respect to the neutron number N for the even-even proton-rich nuclei,
from the proton drip line up to the N = Z isotopes.
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FIG. 11. (Color online) Ratio of the Maxwellian-averaged (n,γ )
rates (at a temperature of 109K) for the Sn isotopes obtained with the
CRPA E1 strength to the one using the HFB+QRPA [20] (squares)
or the GLO model [43] (circles).

model of Hauser-Feshbach at a typical stellar temperature
of 109 K, making use of the TALYS code [56,57]. This
version benefits in particular from an improved description
of the nuclear ground state properties derived from the
nonrelativistic Hartree-Fock-Bogoliubov (HFB) method [58],
as well as from a nuclear level density prescription based on the
combinatorial model [59]. The direct capture contribution as
well as the possible overestimate of the statistical predictions
for resonance-deficient nuclei are effects that could have a
significant impact on the radiative neutron captures by exotic
nuclei [49], but are not included in the present analysis.

In Fig. 11, we compare the radiative neutron capture rates
〈σv〉 for the Sn isotopes obtained with our T -dependent CRPA
with both the nonrelativistic HFB+QRPA predictions [20] and
the widely used phenomenological generalized Lorentzian
model (GLO) of Ref. [43]. Although all three models lead to
reaction rates within a factor of 2 for Sn nuclei below N = 82,
this is not the case for exotic neutron-rich nuclei, for which
the CRPA model gives rise to radiative neutron capture rates
about 10 to 60 times larger than those obtained with the GLO
model. This can be explained by the presence of a strong
low-lying CRPA strength for neutron-rich nuclei, as shown in
Figs. 7 and 8.

A similar, though less pronounced, pattern is observed with
respect to the nonrelativistic HFB+QRPA approach [20]. In
fact, in the region between 132Sn and 142Sn, reaction rates larger
by a a ratio of about 5 is found with our CRPA approach. This
is due to the fact that the neutron threshold for these nuclei lies
at energies close to the pygmy resonance, which is generally
more pronounced in the relativistic model. In contrast, heavier
isotopes, i.e., 146Sn or above have a neutron threshold below
3 MeV and are less affected by the PDR, which, although
stronger, lies at higher energies. For this reason, both models
tend to give rise to similar reaction rates for the most exotic
neutron-rich Sn isotopes. Calculations based on a relativistic
[60] or nonrelativistic [17] QTBA description of the Sn
isotopes show a similar behavior when compared to the
HFB+QRPA approach [20], although the low-lying strength
obtained within the time-blocking approximation appears to
be more fragmented [15–17].

FIG. 12. Ratio of the Maxwellian-averaged (n,γ ) rate (at a
temperature of 109K) obtained with the CRPA E1 strength to the
one using the HFB+QRPA [20] for all nuclei with 8 � Z � 92 lying
between the proton and neutron drip lines.

The ratio of the CRPA neutron capture rates to those
calculated with the nonrelativistic HFB+QRPA are shown in
Fig. 12 for all nuclei with 8 � Z � 92. Globally, the CRPA
calculation tends to predict larger E1 strength at low energies
mainly due to the lower energies at which the PDR dominates.
In some very neutron-rich nuclei the rates calculated with
the CRPA strength can be about 10 times larger. Finally note
that the T -dependence introduced on the CRPA strength in
Eq. (23) plays a minor role on the neutron capture rates of
exotic neutron-rich nuclei since their low neutron separation
energy implies a low temperature of the deexciting levels.

VII. CONCLUSIONS

Starting from a point coupling Lagrangian with the param-
eter set PCF1 [28], we have used the relativistic continuum
QRPA approach to study the E1 collective excitation spectra of
all nuclei between the neutron and proton drip lines. The RMF
equations are solved in the coordinate space self-consistently.
For open-shell nuclei, the BCS model is applied to treat the
pairing correlations.

The residual particle-hole interaction used in the RPA
calculations is derived from the same Lagrangian in a fully
self-consistent way. A set of two interference factors C

(E)
ST and

C
(�)
ST is additionally introduced in order to adjust systematically

the damping width and the centroid energy of the GDR energy
on all photoabsorption data. In addition, the deformation and
temperature effects are included to account for a complete
description of the nuclear dynamical problem. This extended
CRPA model has been tested for nuclei for which experi-
mental information is available and a satisfactory quantitative
agreement is found. In particular, the predicted GDR peak
energies globally reproduce experimental data within only a
few hundred keVs.

On this basis, the extended CRPA model is used to perform
a large-scale calculation of the E1 strength for all nuclei with
8 � Z � 110 lying between the proton and neutron drip lines.
As far as the collective dipole excitation is concerned, a clear
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pattern around magic numbers is observed on the GDR width
and the PDR strength, both being affected by the shell effects.
The temperature dependence of the width also appears to affect
the strength in the low-energy region.

For neutron-rich as well as light neutron-deficient nuclei,
a low-lying PDR strength is found systematically in the
5–10 MeV region. The corresponding strength can reach 10%
of the GDR strength in the neutron-rich region and about 5%
in the neutron-deficient region, and is found to be significantly
reduced in the vicinity of the shell closures. Finally, the neutron
capture reaction rates of neutron-rich nuclei determined with
the CRPA strength can be about 2–5 times larger than those
predicted on the basis of the nonrelativistic HFB+QRPA
strength and up to about 50 times larger than classically
determined with the GLO model.

We have shown that the present approximation can de-
scribed rather successfully the collective properties of stable

nuclei for which experimental data are available. However, for
more exotic nuclei, in particular close to the drip lines, some of
the phenomenological corrections used in the present approach
need to be replaced by sounder models. More specifically, an
improved treatment of the pairing correlations can be achieved
within the Relativistic Hartree-Bogoliubov model [24] and the
effects linked to the spreading of the GDR strength beyond
the 1p-1h excitations as well as the ground state deformation
and odd number of particles need to be tackled following the
recent works of [11,14,16,48].
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