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Lithium isotopes within the ab initio no-core full configuration approach
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We perform no-core full configuration calculations for the lithium isotopes 6Li, 7Li, and 8Li with the
realistic nucleon-nucleon interaction JISP16. We obtain a set of observables, including spectra, radii, multipole
moments, and transition probabilities, and compare with experiment where available. We also present one-body
density distributions for selected states. Convergence properties of these density distributions shed light on the
convergence properties of one-body observables. We obtain underbinding by 0.5, 0.7, and 1.0 MeV for 6Li, 7Li,
and 8Li, respectively. Magnetic moments are well converged and agree with experiment to within 20%.
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I. INTRODUCTION AND MOTIVATION

The rapid development of ab initio methods for solving
finite nuclei has opened a range of nuclear phenomena that
can be evaluated to high precision using realistic internucleon
interactions. Here we investigate three Li isotopes through
direct solution of the nuclear many-body problem with the
JISP16 nucleon-nucleon (NN) interaction [1–3] by diago-
nalization in a sufficiently large basis space that converged
binding energies are accessed by simple extrapolation. The
many-body approach we adopt is referred to as the no-core full
configuration (NCFC) method [4–6], which yields uncertainty
estimates for binding energies.

We adopt the traditional harmonic oscillator (HO) basis,
which enables us to isolate and remove spurious effects of
center of mass (cm) motion from all observables and from
the one-body density matrices (OBDMs) to high precision.
Since we address light nuclei, we feel that this capability
is an important ingredient. A further advantage in using the
(HO) basis is its ease in performing analytical evaluations and
straightforward matrix element calculations, though certain
alternative basis choices also have these advantages [7,8]. In
this context, the NCFC approach is similar to the no-core
shell model (NCSM) [9]. The main differences are that in the
NCFC approach we do not use the Lee-Suzuki renormalization
procedure [10], which is commonly employed in the NCSM;
and, more importantly, we estimate the numerical accuracy of
our results based on the rate of convergence and dependence
on the basis space parameters [5,6].

We use a set of finite single-particle HO bases, char-
acterized by two basis space parameters, the HO energy
h̄� and the many-body basis space cutoff Nmax. Nmax is
defined as the maximum number of total oscillator quanta
allowed in the many-body basis space above the minimum
for that nucleus. Independence of the two parameters h̄� and
Nmax signals numerical convergence; for bound states, true
convergence is generally expected to be reached in the limit of
a complete (infinite-dimensional) basis. For the binding energy
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we use an extrapolation to the complete basis space, with error
bars reflecting the uncertainty due to the extrapolation.

In this work, we look at the actual nucleon densities, in
addition to observables such as spectra, radii, and multipole
moments. In order to do so, we introduce a technique for
unfolding the cm motion from the one-body density. This
allows us to obtain the translationally invariant (ti) densities,
without any smearing effects from the cm motion. Indeed,
salient details of the density are often enhanced in the ti density,
compared to the single-particle densities that are commonly
used in configuration interaction calculations, as we will show.

II. METHODS AND INGREDIENTS

A. Nuclear Hamiltonian

We begin with the translationally invariant Hamiltonian for
the A-body system in relative coordinates:

HA = Trel + V = 1

A

∑
i<j

( �pi − �pj )2

2m

+
∑
i<j

VNN (�ri − �rj ) +
∑
i<j

VC(�ri − �rj ), (1)

where mc2 is the nucleon mass times the speed of light (c)
squared (taken to be 938.92 MeV, the average of the proton
and neutron masses), VNN is the NN interaction, and VC is the
Coulomb interaction, which acts between the protons only. We
adopted the NN interaction JISP16, a realistic NN interaction
initially developed from NN data using inverse scattering
techniques. It is then adjusted with phase-shift-equivalent
unitary transformations to describe light nuclei without explicit
three-body interactions [1–3].

JISP16 provides good convergence rates for the ground
state (gs) energies of nuclei with A � 16. We investigate
convergence rates for a selection of additional observables
in the present work, in particular the spectra, radii, and
multipole moments. We use the naive pointlike operators for
these observables; we do not take effects such as meson-
exchange currents into account. However, it is known that
these effects can cause significant corrections to observables
such as magnetic moments [11]. We should therefore expect
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similar deviations from experiments for our calculations of
these observables.

B. No-core full configuration calculations

In the many-body framework that we are using, we expand
the nuclear wave function � in a basis of Slater determinants
of single-particle HO states. Note that we use single-particle
coordinates, rather than relative coordinates, in the nuclear
wave function. That means that our wave functions, and
therefore our OBDMs calculated as expectation values of
one-body operators, will include cm motion.

All many-body basis states are included with HO quanta up
to and including the amount governed by the Nmax truncation.
Thus, if the highest HO single-particle state for the minimal
HO configuration has N0 HO quanta, then the highest allowed
single-particle state in the truncated basis will have N0 + Nmax

HO quanta. Furthermore, our calculations are “no-core”
configuration interaction calculations. This means that all
nucleons participate in the interactions on an equal footing.
As we increase Nmax, and approach convergence, we expect
physical observables to become independent of both the HO
parameter h̄� and the truncation parameter Nmax. However,
due to current limits to our finite basis, our calculations do
show some parameter dependence, even in the largest basis
spaces. We apply previously established extrapolation tools to
take the continuum limit of the binding energy as we discuss
shortly.

The HO basis for single-particle states, in combination with
this many-particle Nmax truncation, leads to exact factorization
of the nuclear wave functions into a cm wave function and a ti
wave function:

�(�ri) = ��
cm( �R) ⊗ φti, (2)

where �R = ( 1
A

)
∑A

i=1 �ri and φti depends only on internucleon
coordinates. The actual Hamiltonian that we are using involves
adding and subtracting Hcm so that HA takes the form

HA =
A∑

i<j

[
( �pi − �pj )2

2mA
+ Vij

]

=
A∑

i=1

[
p2

i

2m
+ 1

2
m�2r2

i

]

+
A∑

i<j

[
Vij − m�2

2A
(�ri − �rj )2

]
− Hcm. (3)

In order to separate the cm excited states from the low-lying
states of interest, we adopt the Lawson method [12] whereby
we add a Lagrange multiplier term, λ(H�

cm − 3
2h̄�), to the

many-body Hamiltonian, Eq. (3), giving

H = HA + λ

(
Hcm − 3

2
h̄�

)
. (4)

With λ positive, states with cm excitations are separated
by multiples of λh̄� from the states with the lowest HO
cm motion. Since the Lagrange multiplier term acts only
on the cm coordinate, it is independent of the internucleon
coordinates and it does not affect the energy eigenvalues

or the translationally invariant wave functions φti of the
low-lying states. Indeed, observables for the low-lying states
are independent of λ, as long as λh̄� is much larger than the
excitation energy of the highest state of interest.

In the truncated basis space, we can now write the many-
body Schrödinger equation as a finite matrix equation with
a real, symmetric, sparse matrix. The eigenvalues of this
matrix give us the binding energy, and the corresponding
eigenvectors give us the wave functions. In any finite basis
space, the eigenenergies satisfy the variational principle and
show uniform and monotonic convergence from above with
increasing Nmax, allowing for extrapolation to the infinite basis
space. To obtain the extrapolated gs energy Egs(∞), we use a
fitting function of the form

Egs(Nmax) = a exp(−c Nmax) + Egs(∞). (5)

This is an empirical method [4–6] that is valid within estimated
uncertainties that we now define. We assign equal weight to
each of three successive values of Nmax at a fixed h̄� and
perform a regression analysis. The difference between extrap-
olated results from two consecutive sets of three Nmax values is
used as the estimate of numerical uncertainty associated with
the extrapolation. The optimal h̄� value for this extrapolation
appears to be the h̄� that minimizes the difference between
the extrapolated energy and the result at the largest Nmax.
Typically, this corresponds to an h̄� value slightly above
the variational minimum. Of course, the extrapolated results
should be independent of h̄�, within their numerical error
estimates, and we do check for such consistency. Furthermore,
we often adjust our numerical error estimate by considering
the results over a range of 5 MeV in h̄�.

For other observables, we do not have a robust and
reliable extrapolation method; we therefore use the degree of
(in)dependence from the basis space parameters h̄� and Nmax

as a measure for convergence as we describe further below on
a case-by-case basis.

For nuclei with mass A > 4, it is challenging to obtain
convergence (independence of both Nmax and �) for all
observables within the NCFC approach with realistic
interactions. As Nmax increases, the dimension of the
many-body basis increases exponentially, and there is a clear
need for high-performance computing. For the Li isotopes we
investigate here, we have limited the basis space to about 109:
for 6Li the largest basis space is Nmax = 16, with a dimension
of 805,583,856; for 7Li the largest basis space is Nmax = 14,
with a dimension of 1,244,131,981; and for 8Li the largest
basis space is Nmax = 12, with a dimension of 1,222,330,036.
We use the code MFDn (Many Fermion Dynamics for nuclear
structure) [13,14], which is a state-of-the-art numerical
code for no-core configuration interaction calculations. The
calculations were performed on the Cray XT4 and XE6 at the
National Energy Research Supercomputer Center (NERSC),
using up to 8000 processors (4 or 6 cores/processor) with 8
GB of memory each.

C. One-body density matrix

The OBDM represents, in a compact form, sufficient
information about quantum states of a system to evaluate all
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observables that can be expressed by one-body operators. For
example, a single wave function of 6Li at Nmax = 16 has a size
of 5 GB, while the OBDM for a single state in that same basis
is less than 5 MB. The OBDMs also provide the necessary
information for visualizing nuclear density distributions, as
we demonstrate below.

The nonlocal one-body density in coordinate space for
an initial A-body wave function �i and final A-body wave
function �f is defined as

ρf i(�r1, �r ′
1) =

∫
��

f (�r1, �r2, . . . , �rA)

×�i(�r ′
1, �r2, . . . , �rA) d3r2 · · · d3rA. (6)

The limit �r1 = �r ′
1 of Eq. (6) gives the local one-body density.

For �f = �i this corresponds to the probability of finding a
nucleon at position �r1 when the system is in that state. That is,
the local one-body density distribution is given by

ρ�
sf (�r1) =

∫
ρ(�r1, �r ′

1)δ(�r1 − �r ′
1) d3r ′

1, (7)

where we suppress the state labels for simplicity and insert a
superscript � to signify the dependence on the HO basis space
used in the evaluation of the eigenfunctions. Since it depends
on the single-particle coordinates, we refer to this density as
the space-fixed (sf) density.

Note that, due to our use of single-particle coordinates,
rather than relative coordinates, our wave functions �(�ri)
include cm motion. The resulting one-body density distribu-
tions will therefore include contributions from the cm motion.
However, because of the exact factorization of the cm wave
function and the ti wave function [see Eq. (2)] this density is
actually a convolution of the cm density ρ�

cm and the ti density
ρti(�r) describing the probability of finding a nucleon at position
�r relative to the cm of the entire nucleus:1

ρ�
sf (�r1) =

∫
ρti(�r1 − �R) ρ�

cm( �R) d3 �R. (8)

For the HO basis, ρ�
cm is a simple Gaussian (the gs density of

Hcm) with explicit dependence on � that smears out ρti. This
smearing can obfuscate interesting details of ρti. Furthermore,
it introduces a spurious dependence on the basis parameter �

into ρ�
sf that masks the convergence. Even in the limit of a

completely converged calculation, the single-particle density
ρ�

sf depends on �, whereas ρti becomes independent of the
basis.

In order to eliminate these smearing effects and to help
develop a physical intuition for the ab initio structure of a
nucleus, it would be helpful to see the coordinate space density
distributions free of spurious cm motion. This can be achieved
by a deconvolution of the cm density and the ti density using

1Note that our ti density is not the same as the one-body density
in Jacobi coordinates, σ (�ξ ) as defined in Ref. [16], which describes
the probability of finding one nucleon at �ξ relative to the cm of the
remaining A − 1 nucleons. Both these densities are translationally
invariant, and they are related to each other via rescaling factors A

A−1 .

standard Fourier methods [15]:

ρti(�r1) = F−1

[
F

[
ρ�

sf (�r1)
]

F
[
ρ�

cm( �R)
]
]
, (9)

where F [f (�r)] is the three-dimensional Fourier transform of
f (�r). At convergence, the dependence on � should cancel on
the right-hand side of this equation. That means that after this
deconvolution, we can better investigate the convergence of
the physically relevant ti density.

In addition to the three-dimensional ti densities, we also
show results for different multipoles of the ti density, ρ

(K)
ti (r),

defined with the same initial and final states, having total
angular momentum J and magnetic projection M , as

ρti(�r) =
2J∑

K=0

〈JMK0|JM〉√
2J + 1

Y �0
K (r̂) ρ

(K)
ti (r). (10)

These multipoles allow for a better assessment of the numerical
convergence of the densities, as we will illustrate below.
Another advantage of the multipole expansion is that it allows
for a straightforward determination of the ti density for any
M: the multipoles ρ

(K)
ti (r) are independent of M . However,

some features of the density, in particular clustering, are more
apparent from the three-dimensional plots of ρ(�r) than from
plots of the different multipole components.

The results we present here for densities of the Li isotopes
are all translationally invariant unless we state otherwise. An
alternative method to isolate the ti density has been developed
in [17].

D. Observables

In HO space, the space-fixed OBDM is specified by its
matrix elements

ρ
f i

βα = 〈�f |a†
αaβ |�i〉, (11)

where α and β stand for a set of single-particle quantum num-
bers (nα, lα, jα,mα, τz,α) and (nβ, lβ, jβ,mβ, τz,β ), and we use
the Dirac bra-ket notation to represent the total many-body
state vector. Once we have obtained the one-body density ma-
trix elements ρβα (OBDMEs), we can easily calculate observ-
ables that can be expressed as one-body operators. For initial
and final states with total angular momentum Ji,f and possibly
additional quantum numbers λi,f , but with the same magnetic
projection M , the E2 matrix elements using the canonical
one-body electromagnetic current operator are given by

M
f i

E2 = 〈λf Jf M|E2|λiJiM〉
=

∑
αβ

ρ
f i

βα 〈α|
∫

r2Y 0
2 (r̂)d3r|β〉, (12)

with α and β restricted to the protons only (τz = 1
2 ). Note that

the fact that the OBDM includes cm motion does not matter
for E2 matrix elements (nor for M1 matrix elements discussed
below): the cm wave function is a normalized s wave, and it
does not contribute to the integral due to the factor Y 0

2 (r̂).
For comparison with experiments, it is more convenient to

convert these M-dependent matrix elements to reduced matrix
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elements using the Wigner-Eckart theorem [18]. For a proper
tensor operator TKk the reduced matrix element is defined by

〈λf Jf ||TK ||λiJi〉 = 〈λf Jf Mf |TKk|λiJiMi〉

×
√

2Jf + 1

〈Jf Mf Kk|JiMi〉 (13)

provided that the Clebsch-Gordan coefficient in the denomina-
tor, 〈Jf Mf Kk|JiMi〉 (following the conventions of Ref. [18]),
is not zero. In terms of the reduced E2 matrix elements,
reduced E2 transition probabilities are given by [19]

B(E2; i → f ) = 1

2Ji + 1
〈λf Jf || E2 ||λiJi〉2 (14)

in units of e2 fm4. The quadrupole moment is conventionally
defined through the E2 matrix element for M = J as

Q =
(

16π

5

)1/2

〈λJM = J | E2 |λJM = J 〉 (15)

and can also be expressed in terms of the reduced matrix
element as [19]

Q =
(

16π

5

)1/2 〈JJ20|JJ 〉√
2J + 1

〈λJ || E2 ||λJ 〉 (16)

in units of e fm2.
The matrix elements for the M1 transitions and magnetic

moments receive contributions both from the proton and neu-
tron intrinsic spins and from the proton orbital motion. Again,
we consider only the canonical one-body electromagnetic
current operator, in which case they can be calculated from
the OBDMEs as

M
f i

M1 = 〈λf Jf M|M1|λiJiM〉
=

∑
αβ

ρ
f i

βα 〈α|1

2
(1 + τz)(L + gpσ )

+ 1

2
(1 − τz)gnσ |β〉,

where gp = 5.586 and gn = −3.826 are the proton and
neutron gyromagnetic ratios in nuclear magneton (μN ) units;
the quantities L, σ , and τ represent the conventional orbital
angular momentum, spin, and isospin operators. In terms of
the reduced M1 matrix element, the reduced M1 transition
probabilities are given as [19]

B(M1; i → f ) = 1

2Ji + 1
〈λf Jf || M1 ||λiJi〉2 (17)

in units of μ2
N , and the magnetic moment is defined as

μ =
(

4π

3

)1/2 〈JJ10|JJ 〉√
2J + 1

〈λJ || M1 ||λJ 〉 (18)

in units of μN .
We also present results for the point-proton root-mean-

square (RMS) radius, 〈r2
pp〉1/2. This can be calculated either

from the translationally invariant local density, ρti, or directly,
as a two-body operator, from the wave function in single-
particle coordinates, �(�ri). We performed the calculations
with both approaches and confirmed that the results were

identical to within the numerical precision of four significant
figures.

In order to convert measured nuclear charge radii, 〈r2
c 〉1/2,

to point-proton radii, we use [20]

〈
r2
pp

〉 = 〈
r2
c

〉 − R2
p − N

Z
R2

n − 3h̄2

4M2
pc2

. (19)

Here, R2
p = 0.769(12) fm2 is the RMS proton charge radius,

R2
n = −0.177(4) fm2 is the RMS neutron charge radius, Mp is

the proton mass, and 3h̄2

4M2
pc2 ≈ 0.033 fm2 is the Darwin-Foldy

correction.
In addition to these correction terms there is also a spin-

orbit contribution to the charge radius, but this contribution
is model dependent and (for the nuclei discussed here) less
than 1% for realistic wave functions [21]. Hence we neglect
it. For the experimental radii we use the values of Ref. [21],
which were obtained from high-precision laser spectroscopy
measurements of isotope shifts in combination with the 6Li
charge radius as absolute reference. Using the 7Li charge radius
as reference in combination with the same isotope shifts gives
radii that are about 2% to 3% smaller than the ones we have
listed in the tables below [22].

III. RESULTS

A. 6Li

In Fig. 1, we compare the gs energy and excitation energies
at a sequence of Nmax values and as a function of the HO
energy h̄�. We also provide the extrapolated gs energy as a
function of h̄� along with the assessed uncertainties (error
bars) as described above.

The gs energy for 6Li is rapidly converging, as indicated
by the emerging independence of the two basis parameters
(Nmax, h̄�). The convergence is most rapid around h̄� = 17.5
to 20 MeV, where the variational upper bound on the energy is
minimal. Our extrapolated gs energy [5] shows that the system
is underbound by 0.50 MeV. Excitation energies are well
converged at higher Nmax (12 and above) values, at least for
3+ and 0+ states. Note that these states are narrow resonances:
the experimental width of the 3+ state is 24 keV and the width
of the first excited 0+ state is 8 eV.

The excitation energy of the first 2+ state is much less
converged and shows a systematic increase with increasing
h̄�. Such h̄� dependence of the excitation energy is typical for
wide resonances, as observed in comparisons of NCSM results
with inverse scattering analysis of α-nucleon scattering states
[4,23]. In light of these previous analyses, the significant h̄�

dependence seems commensurate with the large experimental
width of 1.3 MeV for this 2+ state.

In Fig. 2, we show the dependence of the RMS point-proton
radius on the basis space parameters Nmax and h̄� for 6Li. It
appears that this radius is converging less rapidly than the
gs and excitation energies. Furthermore, the convergence is
neither monotonic nor uniform: at small values of the HO
energy the radius tends to decrease with increasing Nmax,
whereas at larger values of h̄� the radius increases with
increasing Nmax; around h̄� = 10 to 12.5 MeV the RMS radius
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FIG. 1. (Color online) The gs energy (top) and excitation spec-
trum (bottom) of 6Li for a sequence of Nmax values (indicated in
the legend) and as a function of the HO energy. The extrapolated gs
energy is shown at specific values of h̄� with uncertainties (defined
in the text) indicated as error bars.

is nearly independent of Nmax. Because of this, it is difficult
to make realistic estimates of uncertainties for radii and other
long-range observables such as quadrupole moments which
exhibit similar patterns.

The convergence patterns shown in Fig. 2 may be under-
stood from the following observation: since the HO wave
functions fall off like a Gaussian, e−cr2

, while the true nuclear
wave function falls off like an exponential, e−dr , observables
whose calculations are weighted towards the tail of the wave
function, such as the RMS radius, will converge slower than
those observables that depend less on the tails, such as the
energy and the magnetic moment (see below). Furthermore, it
is well known that the RMS radius and also other long-range
operators such as the quadrupole moment are minimally
affected by the short-range correlations [24,25]. And the value
of h̄� that minimizes the gs energy is not necessarily the value
of h̄� that best represents the long-range behavior of the wave
function.
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FIG. 2. (Color online) The RMS point-proton radius of the gs of
6Li as a function of HO energy at various Nmax values (top) and as a
function of Nmax at various values of the HO energy (bottom).

In Fig. 3 we show the radial density distribution for two
sets of finite basis spaces, with h̄� = 10 and 17.5 MeV,
respectively. The lower panel shows that the exponential tail
is much better represented in a HO basis with h̄� = 10 MeV
than in a HO basis with 17.5 MeV and that the long-range
behavior of the one-body density is therefore converging
much more rapidly in a HO basis with h̄� = 10 MeV and
rather poorly converging in the HO basis that minimizes the
gs energy. That is, the radial density calculated with h̄� =
10 MeV shows much more consistent long-range behavior
at the three highest Nmax values than the density calculated
with h̄� = 17.5 MeV. This leads us to the conclusion that
while the value of h̄� that minimizes the gs energy is an
appropriate value when calculating gs and excitation energies,
as well as magnetic observables, this value is not necessarily
optimal for calculations of observables that depend primarily
on long-range correlations, even in the moderately large basis
spaces considered here.

Therefore we will quote results for long-range observables
at the h̄� value where the RMS radii for various Nmax values
intersect, as seen in the top portion of Fig. 2, rather than at
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FIG. 3. (Color online) The angle-averaged density of the 6Li gs
for various Nmax values at h̄� = 10 MeV (blue curves) and 17.5 MeV
(red curves) on linear (top) and semilogarithmic (bottom) scales.

the h̄� value that minimizes the gs energy. To be specific,
for the Li isotopes under discussion here, we simply take the
results at h̄� = 10 to 12.5 MeV (where the Nmax dependence
appears to be minimal) as our approximation to the converged
value of the RMS radius. In a similar fashion, we will cite
results for the region of minimal Nmax dependence for other
observables that depend primarily on long-range correlations.
Such observables include RMS radii, E2 moments, and B(E2)
transitions. Robust extrapolations to the infinite basis space and
reliable error estimates for these observables remain an open
question.

In Fig. 4 we show the radial quadrupole component of the
6Li gs density distribution, ρ

(2)
ti (r), at h̄� = 17.5 MeV for

several Nmax values. From this figure it is evident that the
quadrupole moment

Q = 4

5

√
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FIG. 4. (Color online) The radial quadrupole density ρ
(2)
ti (r) of

the 6Li gs for various Nmax values at h̄� = 17.5 MeV on linear (top)
and semilogarithmic (bottom) scales.

receives both positive and negative contributions. For Nmax =
4, the positive contributions are significantly larger than the
small negative contribution around 2 fm, but as Nmax increases,
this negative region becomes more pronounced. At Nmax = 16
the quadrupole density is nearly converged inside about 3 fm.
The corresponding quadrupole moment, Q = −0.075 e fm2,
appears to approach convergence. The small positive region
inside 0.9 fm contributes less that 1% to this value, but about
half of the contribution from the negative region between 0.9
and 3.4 fm is cancelled by the positive tail of the quadrupole
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TABLE I. Selected 6Li observables calculated up through Nmax = 16. The energies are in MeV, the RMS point-proton radius is in
femtometers, the quadrupole moments are in e fm2, the magnetic moments are in μN , the reduced B(E2) transition probabilities are in e2 fm4,
and the reduced B(M1) transition probabilities are in μ2

N . All listed transitions are to the ground state. The energies are obtained from
extrapolations to the infinite basis space, with error estimates as discussed in the text; the dipole observables as well as the gs quadrupole
moment are converged within the quoted uncertainty; the other quadrupole observables and the RMS point-proton radius are evaluated at
h̄� = 12.5 MeV. We used Ref. [21] for the experimental value of the RMS radius and Ref. [26] for the Gamow-Teller (GT) matrix element;
the other experimental values are from Refs. [27,28]. AV18/IL2 results are from Refs. [11,29–31] and include meson-exchange corrections
for the dipole observables; CD-Bonn and INOY results are from Ref. [32] calculated at Nmax = 16 and h̄� = 11 and 14 MeV, respectively,
with the INOY gs energy extrapolated to the infinite basis space.

6Li Expt. JISP16 AV18/IL2 CD-B INOY

Eb(1+, 0) 31.994 31.49(3) 32.0(1) 29.07 32.3(2)

〈r2
pp〉1/2 2.45(5) 2.3 2.39(1) 2.25 2.14

Ex(3+, 0) 2.186(2) 2.56(2) 2.2(2)
Ex(0+, 1) 3.56(1) 3.68(6) 3.4(2)
Ex(2+, 0) 4.312(22) 4.5(3) 4.2(2)
Ex(2+, 1) 5.366(15) 5.9(2) 5.5(2)

Q(1+, 0) −0.082(2) −0.077(5) −0.32(6) −0.066 0.080
Q(3+, 0) – −4.9

μ(1+, 0) 0.822 0.839(2) 0.800(1) 0.843 0.843
μ(3+, 0) – 1.866(2)

B(E2; (3+, 0)) 10.7(8) 6.1 11.65(13)
B(E2; (2+, 0)) 4.4(23) 7.5 8.66(47)
B(M1; (0+, 1)) 15.43(32) 14.2(1) 15.02(11)
B(M1; (2+, 0)) – <0.001 0.002(1)
B(M1; (2+, 1)) 0.1 (3) 0.05(1)

MGT 2.170 2.227(2) 2.18(3)

distribution: their contributions are −0.167 and +0.092 e fm2,
respectively. Note that this positive tail is well outside the
charge radius.

Table I presents a capsule view of selected spectral and
other observables for 6Li. In principle, we can extrapolate
not only the gs energy but also the binding energies of the
excitated states to the infinite basis space. We can then calculate
the excitation energy as the difference between the extrapo-
lated binding energies, treating the numerical error estimates
as independent. For the excitation energies that appear to
be converged (in particular the 3+ state in Fig. 1), such a pro-
cedure leads to an overestimate of the numerical uncertainty
in the excitation energy: part of the numerical error is common
to the ground state and the excited state. For such states we
reduce the obtained numerical error estimates based on the
apparent convergence of the excitation energies in finite basis
spaces. On the other hand, for states with excitation energies
that show a significant h̄� dependence (such as the 2+ state
in Fig. 1), we increase our numerical error estimate based on
this h̄� dependence.

In general, magnetic dipole observables tend to converge
rapidly. Indeed, the magnetic moments of the gs and first
excited state, as well as the B(M1) transitions to the gs, are
well converged, with, at Nmax = 16, a residual dependence on
the basis space parameters that is of the same order as the
overall accuracy of our lowest eigenvalue.

For the RMS point-proton radius, as well as the B(E2)
transitions to the gs, we list our results from the largest basis

space, Nmax = 16, at h̄� = 12.5 MeV, as discussed above. The
electric quadrupole moment of the gs is in excellent agreement
with the experimental value—perhaps better than might be
expected due to basis space limitations and long-range nature
of the quadrupole moment operator.

Both the gs binding energy and the excitation energies
calculated with JISP16 compare favorably to those calculated
with alternative realistic NN interactions, i.e., Argonne V18,
CD-Bonn, INOY, and SRG evolved next-to-next-to-next-to-
leading-order (N3LO) interactions [25,30,32,33]. However,
with the addition of appropriate three-body interactions, such
as Illinois-2 (IL2) [30,31] or chiral three-body forces [34–36],
one can obtain somewhat better agreement with data than with
the NN-only interaction JISP16.

The obtained RMS point-proton radius is similar to that
obtained with CD-Bonn: both are about 10% too small
compared to experiment. INOY [32] gives an even smaller
radius, whereas AV18 plus Illinois-2 leads to a radius [31]
that is closer to the experimental value. Note however that
the gs quadrupole moment obtained with that interaction is
significantly larger than the experimental value [31].

Also the calculated magnetic moment and reduced M1 tran-
sition probabilities with JISP16 compare well with available
experimental data for all the cases shown in Table I.

The (0+, 1) excited state of 6Li is the isobaric analog of the
ground state of 6He, and it can be used to calculate the Gamow-
Teller transition between 6Li and 6He. Under the assumption
of isospin symmetry, the Gamow-Teller matrix element MGT
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FIG. 5. (Color online) The y = 0 slice of the translationally
invariant matter density in the x-z plane for the gs of 6Li (top, J = 1)
contrasted with the density for the first excited state (bottom, J = 3).
These densities were calculated at Nmax = 16 and h̄� = 12.5 MeV.

is to good approximation given by

MGT =
∑
α,β

ρ
f i

βα 〈α|στ+|β〉 (21)

and is related to the half-life [26] through

|MGT|2 = 1
fA

fV
g2

A

2π3 ln 2/(G2|Vud |2)

(f T1/2)tm5
e

, (22)

where gA = 1.2695(29) is the axial constant, fA

fV
= 1.00529

accounts for the difference in the statistical rate function of
the vector and axial-vector transitions, me is the mass of
the electron, G = 1.166371(6) × 10−11 MeV−2 is the Fermi
coupling constant, and Vud = 0.9738(4) is the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element that mixes the
quarks involved in the decay. Our MGT result, presented
in Table I, compares quite well to that calculated in [26]
using the hyperspherical-harmonic expansion method with the
same (JISP16) interaction; the authors of [26] also obtained a
value of MGT = 2.227. It is interesting to note that in Ref. [26]
the exchange current corrections to the GT matrix element
were found to be of the order of a few percent. Reference [26]
also presents the extrapolated gs binding energy of 6Li with
JISP16 as 31.46(5) MeV, which is in excellent agreement of
our 31.49(3) MeV result presented in Table I.
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FIG. 6. (Color online) The y = 0 slice of the translationally
invariant matter density in the x-z plane for the first excited 3+ state
of 6Li with Mj = 3, 2, 1, 0 from top to bottom.
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FIG. 7. (Color online) Excitation energies for selected excited
states of 7Li shown as a function of h̄� at various Nmax values, as
indicated in the legend, and compared to experiment.

B. Density distributions

A closer look at the three-dimensional one-body densities,
free of spurious cm effects, would help us to develop a

physical intuition for the ab initio structure of a nucleus.
Although it is easier to perform the deconvolution of the
cm density after integrating out all angle dependence one
can also deconvolute the full three-dimensional density (see
the Appendix for details). However, a detailed investigation
of the numerical convergence is impractical for these three-
dimensional densities. We therefore present all our three-
dimensional density distributions in the largest basis space
at h̄� = 12.5 MeV only, where the RMS radius, as well as the
quadrupole moments (which are closely related to the shape
of the wave function), appears to be reasonably converged.

In order to produce the density that represents the actual
shape of a specific state of a nucleus in a translationally in-
variant (inertial) frame, we set MJ = J for all our calculations
of the local density. That is, we select the maximal positive
angular momentum projection along the axis of quantization,
the z axis. This seems like the natural choice since the
quadrupole moment Q is defined as the E2 matrix element at
J = MJ (or, equivalently, to the reduced E2 matrix element).
Note that even though we calculate three-dimensional density
distributions, our results are symmetric under rotations around
the z axis: the wave functions have azimuthal symmetry.

Figure 5 shows the matter density for the lowest two states
of 6Li. Both states are oblate, though the (1+, 0) state is
nearly spherical whereas the (3+, 0) state is strongly oblate.

TABLE II. Selected 7Li observables calculated up through Nmax = 14, with the same units as in Table I. The energies are obtained from
extrapolations to the infinite basis space, and the magnetic dipole observables are nearly converged, with error estimates as discussed in
the text; the RMS point-proton radius and electric quadrupole observables are evaluated at h̄� = 12.5 MeV. Experimental values are from
Refs. [21,27,28]. AV18/IL2 results are from Refs. [11,29–31] and include meson-exchange corrections for the dipole observables; CD-Bonn
and INOY results are from Ref. [32], and were calculated at Nmax=12 and h̄� = 11 and 16 MeV, respectively, for CD-Bonn and INOY, with
the INOY gs energy extrapolated to the infinite basis space.

7Li Expt. JISP16 AV18/IL2 CD-B INOY

Eb( 3
2

−
) 39.244 38.57(4) 38.9(1) 35.56 39.6(4)

〈r2
pp〉1/2 2.30(5) 2.2 2.25(1) 2.22 2.05

Ex( 1
2

−
) 0.477 0.52(6) 0.2(1)

Ex( 7
2

−
) 4.630(1) 5.25(5) 4.9(1)

Ex( 5
2

−
1

) 6.680(50) 7.1(2) 6.6(1)
Ex( 5

2

−
2

) 7.460(10) 8.1(1) 7.2(1)

Q( 3
2

−
) −4.06(8) −3.2 −3.6(1) −3.20 −2.79

Q( 7
2

−
) – −5.0

Q( 5
2

−
1

) – −6.0
Q( 5

2

−
2

) – 2.3

μ( 3
2

−
) 3.256 2.954(5) 3.168(13) 3.01 3.02

μ( 1
2

−
) – −0.76(1)

μ( 7
2

−
) – 3.3(1)

μ( 5
2

−
1

) – −0.90(2)
μ( 5

2

−
2

) – −0.39(5)

B(E2; 1
2

−
) 15.7(10) 10.2 16.2(5)

B(E2; 7
2

−
) 3.4 5.1 9.92(14)

B(E2; 5
2

−
1

) – 1.5
B(E2; 5

2

−
2

) – <0.1
B(M1; 1

2

−
) 4.92(25) 3.89(2) 4.92(7)

B(M1; 5
2

−
1

) – 0.002(1)
B(M1; 5

2

−
2

) – 0.02(1)
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FIG. 8. (Color online) Dipole moment (top) and B(M1) transition
to the gs (bottom) as a function of the basis h̄� for selected excited
states of 7Li at various Nmax values as indicated in the legend. The
experimental value for the B(M1) transition from the excited 1

2

−
state

to the ground state is indicated on the left side of the lower panel and
is about 20% larger than the theoretical result.

Indeed, the relative deformation of the translationally invariant
densities for the gs and first excited state is implied by the
results in Table I for their respective quadrupole moments.
The gs has a negative calculated quadrupole that is near zero,
in close agreement with experiment. On the other hand, the
first excited state has a large negative calculated quadrupole
moment.

It is worth commenting that our use of the terms “prolate”
and “oblate” characterize the shapes in the inertial frame, not
a body-fixed axis as is common for discussions of shapes
in the collective model [19]. In the inertial frame of reference
positive quadrupole moments correspond to prolate shapes and
negative quadrupole moments correspond to oblate shapes.

Figure 6 illustrates the effect of MJ on the density
distribution, as we see the oblate shape of the density at
MJ = 3 (top panel) morph into the prolate shape at MJ = 0
(bottom panel). Calculating the density when J �= MJ gives a
density whose azimuthal symmetry axis is not aligned with the
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FIG. 9. (Color online) The y = 0 slice of the gs matter density
of 7Li before (top) and after (bottom) deconvolution of the spurious
cm motion. These densities were calculated at Nmax = 14 and h̄� =
12.5 MeV.

spin. For example, at MJ = 0 the symmetry axis lies in the x-y
plane, perpendicular to the z axis. The oblate shape we found
at MJ = 3 is now also perpendicular to the z axis. On the other
hand, we do have an azimuthal symmetry around the z axis.
Therefore, what we obtain is an oblate shape perpendicular to
the z axis, but with its principle axis (symmetry axis) averaged
over all directions in the x-y plane. This results in a prolate
shape at MJ = 0, as we see in the bottom panel of Fig. 6. Note
that we see the same for, e.g., the E2 matrix element: with
MJ = 0, the E2 matrix element for this state is positive, but
the corresponding quadrupole moment, shown in Table I, is
negative (and independent of MJ ).

C. 7Li

For 7Li we evaluated the low-lying states in basis spaces up
to Nmax = 14. We only consider isospin 1

2 states—the lowest
isospin 3

2 has more than 10 MeV excitation energy. The lowest
five states in the excitation energy spectrum compare well
with experiment and the correct level ordering is preserved,
as shown in Fig. 7. The excitation energy of four of these
five states shows rapid numerical convergence with Nmax

and stability with respect to variations in the HO energy.
However, the convergence of the lower of the two 5

2

−
states

is significantly slower. Indeed, experimentally this state has a

034325-10



LITHIUM ISOTOPES WITHIN THE AB INITIO . . . PHYSICAL REVIEW C 86, 034325 (2012)

x (fm)

z 
(f

m
)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3 0

0.02

0.04

0.06

0.08

0.1

0.12

x (fm)

z 
(f

m
)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3 0

0.02

0.04

0.06

0.08

0.1

0.12

FIG. 10. (Color online) The y = 0 slices of the translationally
invariant proton densities for the first excited 5

2

−
state (top) and for the

second excited 5
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−
state (bottom) of 7Li. These densities were

calculated at Nmax = 14 and h̄� = 12.5 MeV.

large width of 0.88 MeV, whereas the width of the other states
is less than 0.1 MeV. Thus, as in 6Li, we again observe a good
correlation between experimental width and convergence rate
of excitation energies.

Our results with JISP16 for selected spectral and other
observables of 7Li are summarized in Table II and compared
with experiment when available. The error estimates for the
excitation energies are calculated as discussed above. From
this table we see that the gs energy is underbound by about
0.67 MeV. The gs energy and excitation energies compare
favorably to other methods and interactions [30,37]. For
the RMS radius and the quadrupole observables (which are
not converged) we list our results from the largest basis
space, Nmax = 14, at h̄� = 12.5 MeV; they are in reasonable
agreement with the available experimental data, given the basis
space limitations and long-range nature of these operators.

Figure 8 displays the magnetic dipole moments and reduced
magnetic dipole transition probabilities to the gs for selected
states of 7Li. These observables converge quickly, and for
calculations at Nmax = 14, are almost independent of the HO
energy. In fact, most of the magnetic observables are already
reasonably well converged (to within 10%) at Nmax = 8, with
the noticeable exception of the two 5

2

−
excited states. This is

partially due to a strong state mixing between these two states.
We require larger basis spaces to fully differentiate these states,

because they are close together in energy, and their quantum
numbers are identical.

Our estimate for the infinite basis space results for magnetic
dipole observables is based on the residual dependence on
Nmax and h̄� over a 10-MeV window in h̄�. This window
does include the optimal h̄� for the extrapolations and the
variational upper bound but is not necessarily centered around
these values. Our numerical error estimate is the RMS sum of
the variation with h̄� over this window and the difference
between the results in the two largest Nmax calculations
(rounded up), i.e., treating the variation with each of the two
basis space parameters as independent sources of numerical
uncertainties.

With JISP16, the magnetic moment of the gs is about
10% too low compared to experiment. This could easily arise
from our neglect of meson-exchange currents in our current
calculations. GFMC calculations with AV18 plus Illinois-2
three-body forces [11] found that the magnetic moment of
the 7Li gs receives a 10% correction from meson-exchange
currents, changing the magnetic moment from 2.9μN to
3.2μN . It is quite remarkable that our result for the magnetic
moment, with the naive pointlike M1 operator, is in fact
quite close to the results obtained with CD-Bonn, with INOY,
and with AV18 plus Illinois-2, all about 10% below the
experimental datum. Apparently, this observable is not very
sensitive to the details of the interaction. (Note that the
exchange current correction to the 6Li gs magnetic moment
was only 2% in Ref. [11].)

The B(M1) value from the 1
2

−
state to the gs is about 20%

too low compared to experiment. Again, this is in qualitative
agreement with the findings of Ref. [11]: with AV18 plus
Illinois-2 there is about a 10% increase in the M1 transition
matrix element due meson-exchange currents, which results in
a 20% increase in the corresponding B(M1) value.

The effect of the cm motion on the density is shown in Fig. 9
for the gs of 7Li. The top panel shows the sf density including
the cm motion, ρ�

sf (�r), whereas the bottom panel shows the
translationally invariant density, ρti(�r). The smearing of the
density due to the cm motion leads to a diminished central
density; the sf density has a central value of 0.204 nucleons/fm3

while the ti density has a central value of 0.233 nucleons/fm3.
The cm motion smearing spreads out the sf density, leading

to a slower falloff and a larger radius than the ti density.
Furthermore, the ti density has a more pronounced oblate
shape than the sf density, as would be expected from smearing
with a spherically symmetric function that averages out the
nonspherical details. In order to characterize the degree of
deformation, we compare the ratio of the long axis to the short
axis of the elliptical density slices. The ratio of the long to
short axes at half central density is 1.78 for the ti density and
1.60 for the sf density. Note that the extent of the smearing
effect from cm motion depends on the HO energy of the basis.
The sf density depends on h̄�, even in the limit Nmax → ∞,
whereas the ti density becomes independent of the basis in this
limit.

Figure 10 contrasts proton densities of the fourth and
fifth excited states of 7Li. Although their quantum numbers
are equal, (Jπ , T ) = ( 5

2

−
, 1

2 ), they have other features that
make them quite distinct. Experimentally, the first excited
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TABLE III. Selected 8Li observables calculated up through Nmax = 12, with the same units as in Table I. The energies are obtained from
extrapolations to the infinite basis space, and the magnetic dipole observables are nearly converged, with error estimates as discussed in
the text; the RMS point-proton radius and electric quadrupole observables are evaluated at h̄� = 12.5 MeV. Experimental values are from
Refs. [21,38,39]. AV18/IL2 results are from Refs. [30,31] and do not include meson-exchange corrections for the magnetic moment; CD-Bonn
and INOY results are from Ref. [32] and were calculated at Nmax = 12 and h̄� = 12 and 16 MeV, respectively, for CD-Bonn and INOY, with
the INOY gs energy extrapolated to the infinite basis space.

8Li Expt. JISP16 AV18/IL2 CD-B INOY

Eb(2+) 41.277 40.3(2) 41.9(2) 35.82 41.3(5)

〈r2
pp〉1/2 2.21(6) 2.1 2.09(1) 2.17 2.01

Ex(1+) 0.981 1.5(2) 1.4(3)
Ex(3+) 2.255(3) 2.8(1) 2.5(3)
Ex(4+) 6.53(2) 7.0(3) 7.2(3)

Q(2+) 3.27(6) 2.6 3.2(1) 2.78 2.55
Q(1+) – 1.2
Q(3+) – −2.0
Q(4+) – −3.4

μ(2+) 1.654 1.3(1) 1.65(1) 1.24 1.42
μ(1+) – −2.2(2)
μ(3+) – 2.0(1)
μ(4+) – 1.84(1)

B(E2; 1+) – 1.9
B(E2; 3+) – 4.6
B(E2; 4+) – 1.9
B(M1; 1+) 5.0(16) 3.7(2)
B(M1; 3+) 0.52(23) 0.25(5)

5
2

−
state is broad, whereas the second excited 5

2

−
state is

narrow: their widths are 0.88 and 0.09 MeV, respectively.
Indeed, our calculated excitation energy is better converged for
the higher of these two states. Furthermore, our calculations
show significant differences in their structure: the first excited
5
2

−
state has a large negative quadrupole moment, whereas

the second has a moderate positive quadrupole moment (see
Table II). Indeed, the density in the top panel of Fig. 10 is
strongly oblate, whereas the bottom panel shows a moderately
prolate shape (where we note again that the densities are
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FIG. 11. (Color online) Excitation energies for select excited
states of 8Li as a function of h̄� at various Nmax values as indicated
in the legend.

symmetric around the azimuthal axis, which is the vertical
axis is these plots). Another noteworthy difference is observed
in the magnitude of the central proton density: the more
diffuse ( 5

2

−
, 1

2 )1 state has a central proton density of only

0.08 protons/fm3 while the ( 5
2

−
, 1

2 )2 state has a central proton
density of 0.12 protons/fm3 (50% higher).

D. 8Li

Table III presents a capsule view of selected spectral
and other observables for 8Li calculated with JISP16 and
compared with experiment when available. The error estimates
for the excitation energies and magnetic dipole observables
are calculated as discussed above. For the RMS point-proton
radius and the charge quadrupole observables (which are not
converged) we list our results from the largest basis space,
Nmax = 12, at h̄� = 12.5 MeV. From this table we see that the
gs energy is underbound by about 1.0 MeV.

In addition to the gs, we examined several narrow low-lying
states: the lowest two excited states, which are narrow states,
with a width of 33 keV or less, as well as a narrow low-lying 4+
state at 6.53 MeV with a width of 35 keV. We do not consider
isospin 2 states since the lowest isospin 2 has more than
10 MeV excitation energy. The excitation energies obtained
with JISP16 compare reasonably well with the experimental
excitation energies, though the level splittings are a bit too large
(see Fig. 11). The convergence of the spectrum is similar to for
the other Li isotopes, though the convergence of the 4+ state
is somewhat slower than expected based on its small width.
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In our calculations there are several additional states below
this 4+ state, which is typically the 8th state in our calculated
spectrum, depending on the basis space; experimentally, it is
the 7th observed state.

The convergence properties of the calculated magnetic
dipole observables are similar to those for 6Li and 7Li
discussed above. Because we can only go up to Nmax = 12,
the numerical error estimates are slightly larger than for 6Li
and 7Li. The gs magnetic moment is approximately 20% lower
than the experimental value. It seems reasonable, in light of our
discussions of magnetic moments above, that this discrepancy
is at least partially due to the fact that we do not incorporate
meson-exchange currents.

Note that CD-Bonn gives a magnetic moment similar
to that of JISP16, but that INOY provides a moment that
is slightly closer to the experimental value, and AV18/IL2
gives a magnetic moment in excellent agreement with data;
however, the contributions of meson-exchange currents were
not evaluated for this magnetic moment.

The reduced B(M1) transition probabilities from the 1+ and
3+ states to the gs are 20% and 50% lower than experiment, but
the experimental error bars are large. The magnetic moment of
the 4+ state is remarkably well converged, despite its excitation
energy not being very well converged.

The quadrupole moments and reduced B(E2) transition
probabilities are not well converged due to basis space
limitations, as discussed above. In spite of these limitations,

the electric quadrupole moments allow us to qualitatively
understand the shape of the proton densities of these states:
prolate for the 2+ gs and the first excited 1+ but oblate for the
first excited 3+ and 4+ states. Indeed, that is what we see in
the left-hand panels of Fig. 12, where we plot these densities
for the gs and for the 4+ state.

Interestingly, the neutron density differs by more than a
simple scale change from the proton density for these two
states, as can be seen from the right-hand panels of Fig. 12. In
the 2+ state, the deformation of the neutrons is significantly
larger than that of the protons, whereas in the 4+ state, the
deformation of the neutrons is much smaller than that of the
protons.

A case of special interest can be seen in the top right panel of
Fig. 12, or in more detail in Fig. 13. In the left panel of Fig. 13
we clearly see nontrivial neutron clustering that is obfuscated
in the sf frame (right), highlighting the importance of the
deconvolution procedure and the significance of the ti density.
Furthermore, the ti density (left panel) has a significantly
higher density in the central region than the sf density (right
panel). Both the ti and the sf densities are normalized to give
the same integrated density of five neutrons, so that means that
the sf density is smeared out over a larger region and falls off
to zero slower than the ti density. This is also evident in Fig. 9,
where we contrasted the sf and ti matter density of the gs of
7Li: the ti central density is significantly higher than the sf
central density.
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FIG. 12. (Color online) The y = 0 slice of the translationally invariant proton (left) and neutron (right) densities of the 2+ gs (top) and the
first excited 4+ state (bottom) of 8Li. These densities were calculated at Nmax = 12 and h̄� = 12.5 MeV.
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for the same state is on the right. The contour labels give the density in neutrons/fm3. These densities were calculated at Nmax = 12 and
h̄� = 12.5 MeV.

Another way of visualizing these ti densities is by plotting
their multipole components, ρ(K)(r) (where we omit the “ti”
subscript for compactness of notation). In order to exhibit
their long-distance features, we present the magnitudes of
the ρ(K)(r) in Fig. 14 for the 2+ gs and the first excited 4+ state
of 8Li as semilog plots out to a radius of 6 fm. To illustrate
the radial and angular nodal structure together out to 4 fm, we
present in Fig. 15 the y = 0 slices of the multipole components
for the gs proton density (left panels) and gs neutron density
(right panels) defined as their full contribution to the total
density. That is, Fig. 15 displays slices of the respective full
terms contributing to the sum given in Eq. (10). Hence, the
sum of the proton (neutron) multipoles in Fig. 15 produces the
top left (top right) panel of Fig. 12 out to 4 fm.

Let us consider Fig. 14 in more detail. Qualitatively, the
multipole components look very similar for the gs protons and
gs neutrons. The main difference seems to be that the proton
densities fall off more rapidly with r than the neutron densities
for all three multipole components. This is understandable
since this is a neutron-rich system and the single-neutron
removal energy is less than that of the single-proton removal
energy. Note however that the clustering of the neutrons in
the gs of 8Li (left panel of Fig. 13) is not evident from the
multipole components ρ(K) of the neutron density displayed
in the top right panel of Fig. 14. That is, even though the
radial multipole densities of the protons and neutrons look
qualitatively similar, the corresponding three-dimensional
densities look qualitatively different. Apart from the overall
difference in the asymptotic behavior, the biggest difference
between the proton and neutron multipole densities is in the
interior of the nucleus, below 2.5 fm, where the magnitude
of the proton hexadecapole density is up to 60% larger than
that of the neutron hexadecapole density. On the other hand,
in the exterior region, beyond 4 fm, the neutron hexadecapole
density is more than an order of magnitude larger than the
proton density.

The monopole proton and neutron densities of the first
excited 4+ state of 8Li seen in Fig. 14 are similar to those

of the ground state, with the proton density falling off more
rapidly than the neutron density. On the other hand, the higher
multipole components ρ(K)(r) of the first excited 4+ state of 8Li
look qualitatively quite different than those of the ground state.
In addition, the protons and the neutrons of the excited 4+ state
differ from each other in their higher multipole components.
The quadrupole density of the neutrons in the 4+ state has
a node, in contrast to that of the protons. Neither the proton
nor the neutron hexadecapole density has a node in the 4+
state, whereas both the proton and the neutron hexadecapole
densities have a node in the ground state.

We turn our attention now to the nodal structures of the
multipole components of the charge-dependent density distri-
butions for the gs of 8Li in Fig. 15. Since each panel represents
a term contributing to Eq. (10), we observe the angular
nodal structure governed by the respective spherical harmonic
factor. The radial nodes arise from the radial functions ρ(K)(r)
displayed in Fig. 14. The significant differences between the
proton and the neutron magnitudes at each multipolarity reflect
the differences in the magnitudes of the radial distributions of
the multipoles seen above in the top two panels of Fig. 14.

From both Figs. 14 and 15, one observes that the gs proton
monopole density has a slightly higher central value than the
neutron gs monopole density, but it falls off much more rapidly
with r than the neutron density. On the other hand, the gs
neutron quadrupole density has larger (in magnitude) features
than the gs proton density, both at small and large distances.
And again, the gs hexadecapole densities have the most
interesting features, including the nodal structure at about 3 fm.
In the interior region of the nucleus, the gs proton hexadecapole
density has more pronounced features, whereas in region
beyond 3 fm the gs neutron hexadecapole density has more
pronounced features. However, none of these multipole density
plots show any hint of clustering of the neutrons; nevertheless,
the plots of the three gs neutron multipole densities of Fig. 15
add up to give the total translationally invariant density of the
left panel of Fig. 13, which does indicate two neutron clusters,
with their centers separated by about 1.5 fm.
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FIG. 14. (Color online) The multipole components ρ
(K)
t i (r) of the proton (left) and neutron (right) densities of the 2+ gs (top) and the first

excited 4+ state (bottom) of 8Li. These densities were calculated at Nmax = 12 and h̄� = 12.5 MeV. Monopole and quadrupole distributions
for the gs are all positive. The K = 4 distributions for the gs are negative in the interior and positive in the tail region. For the 4+ state, the
monopoles are positive while the quadrupole is negative for the protons and negative for the interior of the neutrons. Both K = 4 distributions
are positive for the 4+ state.

Although these densities are not (yet) fully converged, we
feel that the qualitative features will persist in the limit of
a complete basis. In particular, salient differences between
different states and/or between the proton and neutron densities
are likely to survive in that limit.

IV. SUMMARY AND OUTLOOK

We have performed no-core full configuration calculations
for the lithium isotopes 6Li, 7Li, and 8Li with the realistic NN
interaction JISP16. Several observables obtained (gs energies,
excitation energies, magnetic dipole moments, and reduced
magnetic dipole transition probabilities) compare well with
both experiment and alternate methods and interactions. For
certain observables that are more sensitive to long-range
correlations (the RMS radius, electric quadrupole moments,
and reduced quadrupole transition probabilities) we were
unable to obtain full convergence, though they also compare
favorably with alternate methods and interactions.

One-dimensional and three-dimensional translationally in-
variant one-body density distributions were calculated for
various ground and excited states of 6Li, 7Li, and 8Li. These
one-body density distributions provide an excellent framework
for visualization of nuclear shape distortions and clustering
effects. The associated one-body density matrix in the HO

basis provides a compact form of all the quantum one-body
information for a given nuclear state.

To improve our convergence, especially for matrix elements
of long-range operators, we would require significant increases
in basis space sizes (increased Nmax) and/or alternatives to the
HO single-particle basis. Recent advances in the importance-
truncated no-core shell model [40,41], the symmetry-adapted
no-core shell model [42], and the no-core Monte Carlo shell
model [43,44] offer promising new methods for accessing
much larger basis spaces.

Further advances in NN interactions, as well as three-body
forces, could also help resolve some of the residual differences
between theory and experiment. Of course, there is also the
possibility that four-body forces may play a significant role.
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FIG. 15. (Color online) The y = 0 slices of the translationally invariant proton (left) and neutron (right) densities of the 2+ gs of 8Li. From
top to bottom, we present the monopole, quadrupole, and hexadecapole densities, respectively. These densities were calculated at Nmax = 12
and h̄� = 12.5 MeV.

APPENDIX: DECONVOLUTION OF THE
ONE-BODY DENSITY

In our many-body framework, we use the Slater determi-
nants of a single-particle harmonic oscillator basis. In this
basis, we can define a space-fixed one-body density matrix by
its matrix elements

ρ
f i

βα = 〈�f |a†
αaβ |�i〉, (A1)

where α and β stand for a set of single-particle quantum
numbers (nα, lα, jα,mα, τz,α) and (nβ, lβ, jβ,mβ, τz,β ). These
matrix elements ρ

f i

βα , together with the expressions for the
single-particle wave functions ψα(�r), completely determine

the OBDM in coordinate space:

ρf i(�r, �r ′) =
∑
α,β

ρ
f i

βα ψ�
α(�r) ψβ(�r ′). (A2)

The local one-body density becomes

ρ�
sf (�r) =

∑
α,β

ρβα ψ�
α(�r) ψβ(�r), (A3)

where

ψα(�r) = �〈r|α〉
=

∑
ml,ms

〈lαmlsαms |jαmjα〉φnαlαml
(�r)χsαms

(A4)
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with φnαlαml
(�r) as the usual three-dimensional HO coordinate-

space wave function and χsαms
as the Pauli spinor for the

nucleon. While we retain the same basis functions ψα for
neutrons and for protons (subject to potentially different
single-particle state cutoffs as dictated by Nmax), our many-
body states treat the neutrons and protons independently, so
isospin is not a conserved quantity. The one-body density
distribution is normalized to the number of nucleons,∫

ρ�
sf (�r) d3r = A. (A5)

This local one-body density distribution includes contribu-
tions from the cm (center of mass) motion of the many-body
wave functions �(�r1, . . . , �rA), and hence we use the subscript
sf (space-fixed). However, because of the exact factorization
of the cm wave function and the ti wave function, the sf density
can be expressed as a convolution of the ti density distribution
ρti with the cm density distribution ρcm via

ρ�
sf (�r) =

∫
ρti(�r − �R) ρ�

cm( �R) d3 �R. (A6)

For a HO basis, ρ�
cm is a simple Gaussian (the gs density of Hcm)

that smears out any nonspherical features of ρti. This smearing
also introduces into ρ an undesired dependence on the basis
parameter h̄� that could mask the convergence of ρti. Given
our expansion in a HO basis, we have analytically evaluated
Eq. (A7) using our OBDMs with MATHEMATICA [45]. This
produces an analytic expression for the ti OBDM.

In order to display properties of the density ρti, as well as
investigate its convergence, we deconvolute the spurious cm
density using well-known Fourier methods [15]. The ti density
is given by

ρti(�r) = F−1

[
F

[
ρ�

sf (�r)
]

F
[
ρ�

cm( �R)
]
]
, (A7)

where F [f (�r)] is the three-dimensional Fourier transform of
f (�r).

For an A-nucleon eigenstate with total angular momentum
J and projection M , and possibly additional quantum numbers
λ, denoted by |AλJM〉, we can evaluate the local space-fixed
density by evaluating the matrix element [46]

ρsf(�r) = 〈AλJM|ρ̂sf(�r)|AλJM〉 (A8)

(where, henceforward, we omit the superscript “�” for
compactness of notation) using the local density operator

ρ̂sf(�r) =
A∑

k=1

δ3(�r − �rk)

=
A∑

k=1

δ(r − rk)

r2

∑
lm

Y �m
l (r̂k)Ym

l (r̂), (A9)

where r̂ is the unit vector in the direction �r , and Ym
l (r̂) is a

spherical harmonic. Note that it has the property

Y−m
l (r̂) = (−1)mY �m

l (r̂). (A10)

To efficiently perform the deconvolution of the spurious cm
density and the ti density, we make a multipole expansion of

the local density [46],

ρsf(�r) =
∑
K

〈JMK0|JM〉√
2J + 1

Y �0
K (r̂) ρ

(K)
sf (r), (A11)

where ρ
(K)
sf (r) is the Kth multipole of the sf density. The same

equation with “sf” replaced by “ti” provides the corresponding
expansion for the local ti density. For initial and final states
with spin J , the multipoles range from K = 0 to K = 2J .
This multipole expansion greatly simplifies the Fourier trans-
forms needed for the deconvolution, as we will see at the end
of this Appendix.

With a HO single-particle basis, each multipole is given by

ρ
(K)
sf (r) =

∑
Rn1l1 (r)Rn2l2 (r)

−1

K̂

〈
l1

1

2
j1

∣∣∣∣|YK |
∣∣∣∣l2 1

2
j2

〉

×〈AλJ ||(a†
n1l1j1

ãn2l2j2 )(K)||AλJ 〉, (A12)

where K̂ = √
2K + 1. The Rnl(r)’s are the radial components

of the HO wave function,

Rnl(r) =
[

2(2ν)l+3/2�(n + 1)

�
(
n + l

2 + 3
2

) ]1/2

e−νr2
L

l+ 1
2

n (2νr2), (A13)

with L
l+ 1

2
n the associated Laguerre polynomials and ν =

mc2h̄�/(2h̄2c2). The reduced matrix element of a spherical
harmonic in Eq. (A12) can be written as

〈
l1

1

2
j1

∣∣∣∣|YK |
∣∣∣∣l2 1

2
j2

〉
= 1√

4π
ĵ1ĵ2 l̂1 l̂2(−1)j1+ 1

2 〈l10l20|K0〉

×
{

j1 j2 K

l2 l1
1
2

}
(A14)

using a Wigner-6J coefficient. (We use the Conden-Shortley
convention for the Clebsch-Gordan coefficients, defined in
Ref. [18].)

Finally, 〈AλJ ||(a†
n1l1j1

ãn2l2j2 )(K)||AλJ 〉 in Eq. (A12) repre-
sents a reduced matrix element of the Kth multipole of the
OBDM. The Kth multipole operator for initial and final states
with the same Mj can be written as

(
a
†
n1l1j1

ãn2l2j2

)(K) =
∑
mj

(−1)j2+mj 〈j1mjj2 − mj |K0〉

× a
†
n1l1j1mj

an2l2j2mj
. (A15)

Note that in Eq. (A12) we use Mj -independent reduced matrix
elements, defined by the Wigner-Eckart theorem. For a generic
operator TKk the reduced matrix element is defined by

〈λf Jf ||TK ||λiJi〉 = Ĵf

〈λf Jf Mf |TKk|λiJiMi〉
〈Jf Mf Kk|JiMi〉 (A16)

provided that the Clebsch-Gordan coefficient in the denomi-
nator is not zero. Thus the reduced matrix elements of the Kth
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multipole of the OBDM are given by

〈AλJ ||(a†
n1l1j1

ãn2l2j2 )(K)||AλJ 〉

=
√

2J + 1

〈JMK0|JM〉
∑
mj

(−1)j2+mj 〈j1mjj2 − mj |K0〉

×〈AλJM|a†
n1l1j1mj

an2l2j2mj
|AλJM〉, (A17)

where 〈AλJM|a†
n1l1j1mj

an2l2j2mj
|AλJM〉 are the OBDMEs

in HO space defined in Eq. (A1). Note that the factor√
2J + 1/〈JMK0|JM〉 in this expression cancels against the

same factor in the expression for ρsf(�r), Eq. (A11).
We can now efficiently perform the deconvolution, by using

the Fourier transform properties of the multipole expansion of
the local density,∫

d3�r exp(i �q · �r) ρ
(K)
sf (r) iKY �0

K (r̂) = ρ̃
(K)
sf (q) Y �0

K (q̂),

(A18)

where the multipole component of the density in momentum
space is expressed as

ρ̃
(K)
sf (q) = 4π

∫
jK (qr) ρ

(K)
sf (r) r2 dr (A19)

with jK the spherical Bessel functions of the first kind.
Thus the deconvolution of each multipole gives

ρ
(K)
ti (r) = 1

2π2

∫
jK (qr)

ρ̃
(K)
sf (q)

ρ̃cm(q)
q2 dq, (A20)

where

ρ̃cm(�q) = ρ̃(0)
cm(q)

2
√

π
= 8

√
2√

π
ν3/2

∫ ∞

0

e−2νR2
sin(qR)

qR
R2 dR

= e−q2/8ν . (A21)

For spherically symmetric nuclei, this deconvolution sim-
plifies even further because we only have one term in the
multipole expansion, K = 0:

ρ
(0)
ti (r) = 1

2π2

∫ ∞

0

sin(qr)

qr

ρ̃
(0)
sf (q)

ρ̃cm(q)
q2 dq, (A22)

and the three-dimensional ti density is simply

ρti(�r) = ρ
(0)
ti (r)

2
√

π
(A23)

without any angular dependence.
Another advantage of the multipole expansion is that it

allows for a straightforward calculation of the (sf or ti) density
for any magnetic projection M , once the multipoles ρ(K)(r)
are known. The multipoles ρ(K)(r) are completely determined
from reduced matrix elements, which do not depend M .
The only dependence of ρsf(�r) on M is entirely through
the explicitly M-dependent Clebsch-Gordan coefficients in
Eq. (A11).

Finally, the expressions here are specific for the local static
density (the same final and initial state), but the extension to
local transition densities is straightforward.
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