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Continuum particle-vibration coupling method in coordinate-space representation for finite nuclei
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In this paper we present a new formalism to implement the nuclear particle-vibration coupling (PVC) model.
The key issue is the proper treatment of the continuum that is allowed by the coordinate space representation.
Our formalism, based on the use of zero-range interactions such as the Skyrme forces, is microscopic and fully
self-consistent. We apply it to the case of neutron single-particle states in 40Ca, 208Pb, and 24O. The first two
cases are meant to illustrate the comparison with the usual (i.e., discrete) PVC model. However, we stress that the
present approach allows one to calculate properly the effect of PVC on resonant states. We compare our results
with those from experiments in which the particle transfer in the continuum region has been attempted. The latter
case, namely 24O, is chosen as an example of a weakly-bound system. Such a nucleus, being double magic and
not displaying collective low-lying vibrational excitations, is characterized by quite pure neutron single-particle
states around the Fermi surface.
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I. INTRODUCTION

The accurate description of the single-particle (s.p.)
strength in atomic nuclei is, to a large extent, an open issue (for
a recent discussion see, e.g., Ref. [1]). Whereas in light nuclei
either ab initio or shell model calculations are feasible, in the
case of medium-heavy nuclei we miss a fully microscopic
theory that is able to account for the experimental findings.
Modern self-consistent models (either based on the mean-field
Hamiltonians or on some implementation of density functional
theory) do not reproduce, as a rule, the level density around
the Fermi surface. The reader can see, as a recent example, the
results shown in Ref. [2]. Moreover, the fragmentation of the
s.p. strength is by definition outside the framework of those
models.

In the past decades, much emphasis has been put on the
impact on the s.p. properties provided by the coupling with
various collective nuclear motions. The basic ideas leading to
particle-vibration coupling (PVC) models in spherical nuclei,
or particle-rotation coupling models in deformed systems,
have been discussed in textbooks [3]. These couplings provide
dynamical content to the standard shell model, in keeping with
the fact that the average potential becomes nonlocal in time or,
in other words, frequency or energy dependent. We will call
self-energy, in what follows, the dynamical part of the mean
potential arising from vibrational coupling. This contribution
will be added to the static Hartree-Fock (HF) potential. In
this way, one may be able to describe the fragmentation
and the related spectroscopic factors of the s.p. states, their
density (which is proportional to the effective mass m∗ near
the Fermi energy), the s.p. spreading widths, and the imaginary
component of the optical potential.
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In, e.g., the review article Ref. [4] one can find a detailed dis-
cussion about the points mentioned in the previous paragraph,
together with the relevant equations and the results of many
calculations performed in the 1980s for the single-particle
strength (mainly in 208Pb). These calculations are mostly not
self-consistent and it is hard to extract from them quantitative
conclusions because of the various approximations involved.
Certainly, they all agree qualitatively in pointing out that PVC
plays a decisive role to bring the density of levels near the
Fermi energy in better agreement with experiment or, in other
words, the effective mass m∗ close to the empirical value
m∗ ≈ m.

This enhancement of the effective mass around the Fermi
energy, as compared to the HF value, is only one example
of a phenomenon that can be explained by assuming that
single-particle and vibrational degrees of freedom are not
independent. Other examples, although not treated in the
current work, are worth mentioning here. Several works
have identified the exchange of vibrational quanta (phonons)
between particles as one important mechanism responsible
for nuclear pairing [5,6]. In the approach of Refs. [7,8] and
references therein, one aims at explaining the properties of
superfluid nuclei by taking into account both the pairing in-
duced by the phonon exchange and the self-energy mentioned
above. (Compare also the discussions in Refs. [9,10]. We also
remark that important developments are under way aiming
at implementing ab initio calculation schemes for open-shell
nuclei, based on self-consistent Green’s functions [11] or on
the unitary correlation operator method [12].) Along the same
line, more complicated processes can be explained by starting
from elementary single-particle and vibrational degrees of
freedom, and treating their coupling within the framework
of an appropriate field theory: the spreading width of nuclear
giant resonances, or the anharmonicity of two-phonon states
(to mention only a few examples). The development of
such a general many-body perturbation theory scheme could
not avoid, so far, resorting to various approximations. In
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particular most of the calculations have employed simple,
phenomenological coupling Hamiltonians.

Recently, in order to calculate the s.p. strength, microscopic
PVC calculations have become available, either based on
the nonrelativistic Skyrme Hamiltonian [13] or on relativistic
mean-field (RMF) paramterizations [14,15]. The results seem
to be satisfactory, in a qualitative or semiquantitative sense,
as they point to an increase of the effective mass around
the Fermi energy. The results are clearly sensitive to the
collectivity of the low-lying phonons produced by the self-
consistent calculations. It is still unclear whether the results
will eventually be improved by a refitting of the effective
interactions or by the inclusion of higher-order processes.

One of the limitations of all the PVC models that have
been introduced so far lies in the fact that they discretize the
s.p. continuum (clearly, this means that the description of the
vibrations themselves relies on the same approximation). The
phenomenological model used in Refs. [16–18] implemented
the proper continuum treatment. However, in the framework
of microscopic models—although in Ref. [19] a scheme to
calculate the self-energy in coordinate-space representation
had been proposed—there is at present no available result for
the s.p. strength (let alone more complex physical observables)
that avoids the continuum discretization. Consequently, the
goal of the present work is to introduce a consistent description
of PVC with a proper treatment of the continuum. In order to
achieve this, the coordinate space representation is used. The
current work is based on previous experience on how to treat
the continuum within the linear response theory or random
phase approximation (RPA) (see Refs. [20–24]).

The outline of the paper is as follows. In Sec. II, we describe
our formalism starting from the general formulation and
stressing the implementation of proper continuum treatment.
The main goal of the section is to display the equations that
we have implemented and solved, and discuss the s.p. level
density. In Sec. III, the results for our three nuclei of choice
are presented and discussed; whenever possibile, they are
compared with experimental data. Finally, we summarize the
paper and draw our conclusions in Sec. IV. Some details of
the calculations are shown in a few Appendices.

II. FORMALISM

A. Dyson equation in coodinate space representation.

The particle-vibration coupling (PVC) Hamiltonian [4,25,
26] in coordinate space can be written as

ĤPVC =
∫

d r δρ̂(r)κ(r)
∑

σ

ψ̂†(rσ )ψ̂(rσ ). (1)

The density variation operator δρ̂(r) ≡ ρ̂(r) − 〈ρ̂(r)〉 (where
the brackets denote the ground-state expectation value) in
second-quantized form is given by

δρ̂(r) =
∑
nλ

[δρnλ(r)�̂†
nλ + δρ∗

nλ(r)�̂nλ], (2)

where �̂
†
nλ and �̂nλ are the creation and annihilation operators,

respectively, of a phonon n having multipolarity λ, and δρnλ is

the corresponding transition density, whereas κ is the residual
force.

If the total Hamiltonian is Ĥ = Ĥ0 + ĤPVC, where the
term Ĥ0 describes uncoupled s.p. states and vibrations, the
many-body perturbation theory [25,26] can be applied. In
particular, we assume that Ĥ0 includes the HF Hamiltonian
for the nucleons and the independent boson Hamiltonian for
the phonons (based on their RPA energies). We treat the term
ĤPVC as a perturbation using the interaction picture. We define
Green’s functions in space-time representation and we apply
standard tools such as Wick’s theorem to obtain the Dyson
equation in terms of the unperturbed HF Green’s function G0

and the perturbed Green’s functions G:

G(rσ t, r ′σ ′t ′) = G0(rσ t, r ′σ ′t ′)

+
∑
σ1σ2

∫∫
dt1dt2

∫∫
d r1d r2

×G0(rσ t, r1σ1t1)	(r1σ1t1, r2σ2t2)

×G(r2σ2t2, r ′σ ′t ′). (3)

The HF Green’s function satisfies (ω − ĥ0)G0 = 1, where ĥ0

is the s.p. HF Hamiltonian. The self-energy function is defined
by

	(r1σ1t1, r2σ2t2) = κ(r1)G(r1σ1t1, r2σ2t2)

× κ(r2)iR(r1t1, r2t2), (4)

where R(r1t1r2t2) is the RPA response function (or phonon
propagator) in the space-time representation, and is defined
by [25]

iR(rt, r ′t ′) = 〈�RPA|T{δρ̂(rt)δρ̂(r ′t ′)}|�RPA〉, (5)

where T denotes the time-ordered product and the formula
stresses that the phonons are defined using the RPA vacuum
|�RPA〉, since this is exactly the phonon vacuum. We also note
that the use of Wick’s theorem in the derivation of Eq. (3)
implies the use of the causal representation of the Green’s
functions G and G0, as well as of the RPA response function
R. The connection between the causal representation with
the retarded and advanced representations is outlined in the
Appendices, where the causal functions will be denoted by
GC and RC . This label will be omitted in the main text, where
we shall only make use of the causal functions.

The Fourier transform of Eq. (3) is given by

G(rσ, r ′σ ′; ω) = G0(rσ, r ′σ ′; ω)

+
∑
σ1σ2

∫∫
d r1d r2G0(rσ, r1σ1; ω)

×	(r1σ1, r2σ2; ω)G(r2σ2, r ′σ ′; ω), (6)

while the Fourier transform of the self-energy reads

	(rσ, r ′σ ′; ω) =
∫ ∞

−∞

dω′

2π
κ(r)G(rσ, r ′σ ′; ω − ω′)κ(r ′)

× iR(r r ′; ω′) (7)

due to the convolution theorem.
A self-consistent solution of the Dyson equation involves

the iteration of the two previous equations until convergence
is reached. In practice, this is almost never done. In our
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r r’
R(r r’)

r r’
G0(r r’)

κ(r) κ(r’)Σ(r r’)   =

FIG. 1. The Feynman diagram for the self-energy function which
corresponds to Eq. (7), in the approximation in which G0 replaces G.

work, since we explore for the first time the proper continuum
coupling, we limit ourselves to the first iteration by replacing
G with G0 in Eq. (7) as shown in Fig. 1.

We restrict our investigation to spherical systems in which
static pairing correlations vanish. By taking profit of the
spherical symmetry, one can use partial wave expansions and
arrive at

	(rσ, r ′σ ′; ω) =
∑
ljm

Yljm(r̂σ )

r
	lj (rr ′; ω)

Y∗
ljm(r̂ ′σ ′)

r ′ , (8)

G(rσ, r ′σ ′; ω) =
∑
ljm

Yljm(r̂σ )

r
Glj (rr ′; ω)

Y∗
ljm(r̂ ′σ ′)

r ′ , (9)

where Yljm(r̂σ ) ≡ [Yl(r̂) ⊗ χ1/2(σ )]jm. The latter equation
holds evidently for G0 as well. The Dyson equation can then
be written as

Glj (rr ′; ω) = G0,lj (rr ′; ω) +
∫∫

dr1dr2 G0,lj (rr1; ω)

×	lj (r1r2; ω)Glj (r2r
′; ω). (10)

Similarly, the RPA response function and the residual force
can be represented as

R(r r ′; ω) =
∑
LM

YLM (r̂)

r2
RL(rr ′; ω)

Y ∗
LM (r̂ ′)
r ′2 , (11)

κ(r) = κ(r), (12)

and consequently the self-energy can be calculated by

	lj (rr ′; ω) =
∑
l′j ′,L

|〈lj ||YL||l′j ′〉|2
2j + 1

×
∫ ∞

−∞

dω′

2π

κ(r)

r2
G0,l′j ′ (rr ′; ω − ω′)

× κ(r ′)
r ′2 iRL(rr ′; ω′). (13)

In our work, we start from the HF Green’s function and
RPA response function (together with the residual force κ)
and we obtain the self-energy from Eq. (13). Then, we also
solve numerically the Dyson equation in the form (10): for
every energy of interest this equation can be cast in matrix
form with respect to r and r ′ and solved as

G = (1 − G0	)−1G0. (14)

In this way, the perturbed Green’s function G contains the
PVC perturbation up to infinite order, in keeping with the fact

G
=

G0

+
G0 Σ G

= +
+ +...

FIG. 2. The Feynman diagrams associated with the perturbative
expansion of the Dyson equation [Eq. (3) or (6)].

that it can be expressed by the Feynman diagrams represented
in Fig. 2.

B. Implementation of the proper treatment of the continuum

1. Continuum HF Green’s function and continuum
RPA response function

As already mentioned, our goal is an implementation
of PVC that treats the continuum properly. In the case of
atomic nuclei, in particular when local functionals like those
based on the Skyrme interaction are used, considerable efforts
have been made in this direction as far as the HF-RPA
formalism is concerned. Indeed, the Green’s function RPA
has been formulated with Skyrme forces, with or without
[22,23] the continuum; the first self-consistent continuum
calculations have been presented in Ref. [24]. In this context,
proper treatment of the continuum means that the Schrödinger
equation including the HF mean field can be solved at any
positive energy with the correct boundary conditions and,
based on this, an exact representation of the HF Green’s
function G0 can be obtained.

This unperturbed HF Green’s function can be written as

G0,lj (rr ′; E) = 1

W (u, v)
ulj (r<; E)vlj (r>; E), (15)

where ulj (r; E) and vlj (r; E) are, respectively, the regular and
irregular solutions of the radial HF equation at energy E, r>

(r<) are the larger (smaller) between r and r ′, and W (u, v) is
the Wronskian given by

W (u, v; E) = h̄2

2m∗(r)

(
ulj (r; E)

∂vlj (r; E)

r

− vlj (r; E)
∂ulj (r; E)

r

)
. (16)

h̄2

2m∗(r) is the (radial-dependent) HF effective mass which is
defined as usual, in terms of the Skyrme force parameters, as

h̄2

2m∗
q(r)

= h̄2

2m
+ 1

4

{
t1

(
1 + 1

2
x1

)
+ t2

(
1 + 1

2
x2

)}
ρ(r)

− 1

8
{t1(1 + 2x1) + t2(1 + 2x2)}ρq(r). (17)

In order to properly take into account the continuum effects
also for the RPA phonons that lie above the threshold, the
RPA response function appearing in the self-energy function
will be calculated self-consistently, using the same Skyrme
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Hamiltonian used to compute the mean field. The details of
the continuum RPA calculation have been given in previous
papers [21,27]. We simply recall that two-body spin orbit
and Coulomb terms, as well as spin-dependent terms, are
dropped in the residual interaction. It is also necessary to
convert the continuum RPA response function into the causal
function, because normally the linear response theory (RPA)
is formulated in terms of the retarded functions. This point is
further discussed in Appendix B.

2. Contour integration in the complex energy plane.

Formally, the equations that appear in Sec. II A are defined
in a model space which does not have an upper bound: in
fact, the integrals over energy extend in principle from −∞
to +∞, and single-nucleon as well as phonon energies have
only a natural lower bound. However, the self-energy function
does not converge if the upper limit on ω′ [Eqs. (7) and (13)] is
extended to infinity, in keeping with the well known ultraviolet
divergence associated with the zero-range character of Skyrme
forces. To avoid this, one must introduce a cutoff Ecut.

In order to make sure that only states below that cutoff
contribute to the integrals in Eq. (7) and (13), one can use the
following procedure. By considering the expression (13) for
the self-energy function, one notices that the integral receives
contribution from the poles of the causal HF Green’s function
and the causal RPA response function. The positions of these
discrete and continuum (i.e., branch-cut) poles in the complex
energy plane are schematically shown in Fig. 3. The blue dots
and line represent the poles of the RPA response function,
while the black crosses and line represent the poles of the HF
Green’s function. In order to pick up correctly the contribution
of the poles below the cutoff, we must replace the integral

∫ ∞
−∞

in Eq. (13) by an integral
∫
C

over an appropriate contour path.
We have adopted the rectangular integration path displayed
in Fig. 3, which is similar to that employed in Ref. [20]. It
extends between −Ecut to Ecut on the real axis, and from 0
to -η′ on the imaginary axis. We remark that all the results
should be independent of η′, as long as this parameter is larger
than η. We have explicitly verified that this is the case in our
numerical applications.

It can also be shown that in this way one can reproduce the
correct spectral representation of the self-energy function [cf.
Eq. (D3)] in the limit of a discrete system.

Im ω

Re ω0

-iη

iη

-iη’

iη’

ω+eF
ω-eh

ω-ep

RPA
Green’s func.

C

Ecut-Ecut

FIG. 3. (Color online) Contour path C for the integration on ω′

in Eqs. (7) and (13). The blue dots and lines represent the poles of
the RPA response function. The black crosses and line represent the
poles of the HF Green’s function. For the parameters η, η′, and Ecut

see the text.

3. Single-particle level density

The level density associated with the HF single-particle
levels can be defined by using the HF Green’s function G0 as

ρ0,lj (ω) = ±1

π

∫ R

0
dr ImG0,lj (rr, ω), (18)

where R is the upper limit of the integration. For bound states
at negative energies, one is guaranteed that the result is stable
with respect to increasing R. The sign ± guarantees that the
level density is positive, i.e., the sign + (−) refers to particle
(hole) states. This is equivalent to the definition ρ0,lj (ω) =∑

n δ(ω − e0
nlj ) and is normalized to 1 for bound states. In the

absence of any potential, ρ0,lj (ω) reduces to the free-particle
level density ρfree,lj (ω), obtained by replacing G0,lj with the
Green’s function for the free particle which satisfies (ω −
p2

2m
)Gfree = 1. Gfree can be calculated either numerically or

analytically using the same definition of Eq. (15), but with the
use of the wave function for the free particle. This free-particle

level density is ρfree,lj (ω) ∝
√

2m

h̄2
R

2π
√

ω
for large values of ω.

For R → ∞, ρfree,lj diverges. On the other hand, ρ0,lj (ω) tends
to ρfree,lj for large values of ω. It is then useful to introduce a
new level density ρ̄0,lj (ω) by subtracting ρfree,lj (ω) [28], that is,

ρ̄0,lj (ω) = ±1

π

∫ R

0
dr Im[G0,lj (rr, ω) − GFree,lj (rr, ω)].

(19)

In this way, the dependence on R is eliminated also for positive
energies (cf. Fig. 5). For ω < 0, there is no contribution
associated with the free particles. As mentioned above, ρ̄0,lj

coincides with the usual definition of the level density for the
single-particle levels [28],

ρ̄0,lj (ω) =
⎧⎨
⎩

∑
n δ

(
ω − ε

(0)
nlj

)
for ω < 0,

1
π

dδ
(0)
lj

dω
for ω > 0.

(20)

In an analogous way, we define the perturbed (HF + PVC)
level density by using the solution of the Dyson equation Glj

as

ρ̄lj (ω) = ±1

π

∫
dr Im[Glj (rr, ω) − GFree,lj (rr, ω)]. (21)

The peaks of the perturbed level density provide renormalized
single-particle energies which include the effect of the particle-
phonon coupling. In fact, if this coupling is small one can
expect a simple shift of the HF peaks. Otherwise, the s.p.
strength can be quite fragmented: the associated widths reflect
the basic decay mechanisms that are the nucleon decay
(providing the so-called escape width, or �↑) and the spreading
into the complicated configurations made up with nucleons and
vibrations (providing the spreading width �↓).

III. RESULTS

We shall present results for three nuclei: 40Ca, 208Pb, and
24O. The effective Skyrme interaction SLy5 [29] is used to
calculate the HF mean field. The calculation of the RPA
response is carried out exactly as described in Ref. [21] in the
limit of no pairing, using all the terms of the SLy5 interaction,
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except for the two-body spin-dependent terms, the spin-orbit
terms, and the Coulomb term in the residual p-h force. In the
calculations, the angular momentum cutoff for the unoccupied
continuum states is set at lcut = 7h̄ for 40Ca, and lcut = 12h̄
for 24O and 208Pb. The radial mesh size is �r = 0.2 fm. The
values of the parameters used in the contour integrations (see
the discussion in Sec. II B2) are η = 0.2 MeV [cf. Eq. (13)]
and η′ = 2η [cf. Eq. (10)].

There are a few important issues that we wish to stress:

(i) Due specifically to the zero-range character of the
Skyrme interaction, the self-energy diverges logarith-
mically as a function of the maximum energy of the
phonons, as mentioned above. The first steps towards
a systematic renormalization procedure have only
recently been started to be worked out [30]. In this work,
we shall take the usual view that the important couplings
are those associated with the collective low-lying states
and giant resonances. We shall then include phonons
associated with the multipolarities 2+, 3−, 4+, and
5−, and set an upper cutoff on the phonon energies
given by Ecut = 60 MeV, because no strong peaks are
present above this value in the calculated RPA strengths.
The way in which this cutoff is implemented has been
described in detail in Sec. II B2.

(ii) In the present scheme, the price to be paid for the exact
continuum treatment is that one cannot discriminate
between the inclusion of collective and non-collective
phonons. Actually, the diagrams shown in Figs. 1
and 2 contain terms that violate the Pauli principle,
and these terms are larger when the phonons are non
collective. In other words, one could expect that in an
exact calculation the correction of the Pauli principle
violation cancels, to a large extent, the contributions
from non collective phonons. Although this point has
never been clarified in the available literature, to our
knowledge, on a quantitative basis, in most of the cases
the usual view has been to take into account only
the coupling to collective states. In the work that we
quoted already (the most similar to the present one),
namely in the recent calculation of particle-vibration
coupling in 40Ca and 208Pb of Ref. [13], only phonons
exhausting at least 5% of the isoscalar or isovector
non-energy-weighted sum rules have been taken into
account. Therefore, we can expect that the effect of
particle-vibration coupling is larger when we calculate
it with the present method, as compared with Ref. [13].
We shall come back to this issue below.

(iii) The momentum-dependent part of the particle-hole
interaction had previously been neglected in the cal-
culation of the particle-vibration coupling; then, in
Ref. [13] it was shown that its effect is important
(at least in the case of the SLy5 interaction), and
that it can be reasonably accounted for within the
Landau-Migdal (LM) approximation, by choosing
the Fermi momentum kF as 1.33 fm−1 (that is, at
the value associated with the nuclear matter saturation
density). The LM approximation will be adopted in the
following, with the same value of kF .

TABLE I. Neutron single-particle energies in 40Ca.

Nucleus Hole states (MeV) Particle states (MeV)

40Ca 1s 1
2 −48.3 1f 7

2 −9.7

1p 3
2 −35.0 2p 3

2 −5.3

1p 1
2 −31.0 2p 1

2 −3.1

1d 5
2 −22.1 1f 5

2 −1.3

2s 1
2 −17.3

1d 3
2 −15.2

A. Results for 40Ca

The first essential steps of our work consist in the
calculation of the HF spectrum and of the RPA strength
functions. The results are illustrated respectively in Table I (HF
single-particle spectrum) and in Fig. 4 (isoscalar and isovector
RPA strength functions associated with the multipolarities 2+,
3−, 4+, and 5−). In Table II we give the theoretical energies
and transition strengths for the low-lying collective 3− and 5−
states, comparing them with available data.

In Fig. 5 we compare the level densities ρ0,lj , ρFree,lj , and
ρ̄0,lj defined above [cf. Eqs. (18)–(21)], in the case of neutrons
and for the quantum number g9/2. The results are shown for
different values of the upper limit of integration, namely R =
15, 20, and 25 fm. The main goal of the figure is to illustrate the
effect of the removal of the free-particle level density that has
been formally introduced above (cf. Sec. II B3). In fact, it can
be seen in panels (a) and (b) that for each value of R the smooth
tails of ρFree,lj (ω) and ρ0,lj converge, for ω between 5 and

10 MeV, towards the asymptotic value
√

2m

h̄2
R

2π
√

ω
indicated by

the dashed lines and by the symbol f (R,ω) in the panels. In
panel (c) we show the level density ρ̄0,lj (ω) defined by Eq. (19).
The free level density is eliminated (and the dependence on R

with it) so that one can clearly identify the pure g9/2 resonance
in the continuum. The inclusion of PVC leads to a quite big
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FIG. 4. (Color online) Isoscalar (IS) and isovector (IV) RPA
strength functions in 40Ca for the multipolarities 2+, 3−, 4+, and 5−.
The IS 2+ and IS 3− strength functions are reduced by a factor of 10.

034318-5
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TABLE II. The theoretical values for the energy and the transition
strength B of the low-lying isoscalar 3− and 5− states in 40Ca are
compared with the experimental data, which are taken in the case
of the 3− state from Ref. [31] and in the case of the 5− state from
Ref. [32].

Nucleus J π Theory (RPA) Experiment

Energy B(Qτ=0
J ) Energy B(Qτ=0

J )
(MeV) (e2fm2J ) (MeV) (e2fm2J )

40Ca 3− 4.13 1.13 × 104 3.74 1.84 × 104

5− 5.25 2.22 × 106 4.49

fragmentation of the strength, as can be seen in panels (d) and
(e) of Fig. 5: panel (d) is meant to show mainly that the 3−
states are the most important to produce that fragmentation,
whereas in panel (e) we illustrate the effect of the subtraction
procedure on the perturbed level density.

The parameter η introduced in our definition of Green’s
functions and response functions is one of the numerical inputs
of our calculations. It defines the resolution scale of the peaks
appearing in the computed strength functions. An example is
shown in Fig. 6 where we compare the densities ρ̄lj obtained
with our standard choice of the the smearing parameter
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FIG. 5. (Color online) Neutron level density in the case of the g9/2

quantum numbers for 40Ca. These quantum numbers are associated
with a single-particle resonance in the HF mean field. In panels
(a), (b), and (c) we show respectively the quantities ρ0,lj , ρFree,lj ,
and ρ̄0,lj defined in Eqs. (18)–(21), for three different values of the
upper integration limit R, namely 15 fm (red solid curve), 20 fm
(green dashed curve), and 25 fm (blue dotted curve). The asymptotic

expression for the free particle level density, f (R, ω) =
√

2m

h̄2
R

2π
√

ω
,

is shown in (a) and (b). Note that in (c) the curves corresponding to
different values of R practically coincide, because the free-particle
contribution is removed from ρ̄0,lj . In (d) we show the perturbed
densities ρlj , obtained by solving the Dyson equation with the
inclusion of the coupling either with all multipolarities (blue dotted
curve) or with only the 3− (red solid curve). They are compared
with the HF density ρ0,lj (green dashed curve, R = 20 fm) already
shown in (a). In (e) we show the corresponding perturbed densities
ρ̄lj , obtained by subtracting the free-particle level density. They are
compared with the HF density ρ̄0,lj already shown in (c).
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FIG. 6. (Color online) Dependence of the HF + PVC level density
ρ̄lj [cf. Eq. (21)] on the smearing parameter η, for the g9/2 states (upper
panel) and for the p1/2 states (lower panel). Only the coupling with 3−

phonons is taken the account. The red solid curves show the results
obtained with the standard value η = 0.2 MeV, while the blue dotted
curves have been obtained with η = 0.1 MeV. We also show the HF
results (sparse dashed curves, obtained with η = 0.2 MeV).

η = 0.2 MeV, and with η = 0.1 MeV, again in the case of 40Ca
and the Skyrme set SLy5, and for the quantum numbers g9/2

(particle state close to the continuum) and p1/2 (deeply lying
hole state). It is quite reassuring that the general structure
of the level density does not change by decreasing the value
of η, although sharp individual peaks become more evident.
Notice that that the dependence on η disappears in the case of
g9/2 above ≈ 5 MeV, when the continuum coupling becomes
dominant.

In Fig. 7, we show results for the single-particle level
density ρ̄lj in 40Ca, associated with various quantum numbers.
The unperturbed level density is shown by means of the
black curve, and displays sharp peaks of equal heights at the
HF energies. We compare in the figure the results obtained
by taking into account the coupling with all multipolarities
(blue curve), or with 3− phonons only (red curve). The first
qualitative remark is that, for the states lying close to the Fermi
energy, both in the case of hole states (2s1/2, 1d5/2, and 1d3/2)
and bound particle states (2p3/2, 2p1/2, 1f7/2, and 1f5/2), the
strength remains concentrated in a single peak, eventually
acquiring a spectroscopic factor, and the quasiparticle picture
maintains its validity. This is not true when we consider states
either farther from the Fermi surface or in the continuum, that
is, at energies where we expect the single-particle self-energy
to become larger.

The hole states are in the left part of Fig. 7. For the
aforementioned 2s and 1d states there is only a shift of the HF
peak. Instead, in the case of 1p1/2 and 1p3/2 states the strength
is damped over a broad interval. It is interesting to trace the
origin of this fragmentation, by restricting the summation over
the phonon multipolarity and the angular momentum of the
intermediate single-particle states in Eq. (13), and analyzing
the contribution of specific configurations.

To help the following discussion, we depict in Fig. 8
selected contributions to the particle [(a) and (b)] and hole
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FIG. 7. (Color online) The single-particle level density ρ̄lj for
neutron states in 40Ca defined by Eq. (19) for HF and Eq. (21) for
HF + PVC. The left panel refers to hole states, the right panel to
particle states. The black curve represents the HF level density, while
the red solid curve and the blue dotted curve show level densities
resulting from the coupling to phonons. In the case of the red curve,
only 3− RPA phonons are taken into account, while in the case of the
blue curve 2+, 3−, 4+, and 5− phonons are taken into account.

[(c) and (d)] self-energy. Since our equations and numerical
codes are written in the coordinate space, these different con-
tributions cannot, strictly speaking, be singled out. However,
at definite energies it may happen that only one is dominant.
We use Fig. 8 to recall that the fragmentation of a hole state can
only be caused by on-shell contributions associated with the
coupling with other hole-phonon configurations [panel (c)],
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(c) (d)

r
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r

r1

r2

r’

FIG. 8. (Color online) Feynman diagrams associated with particle
[(a) and (b)] and hole [(c) and (d)] states. The shaded area denotes the
RPA phonon and the wavy lines correspond to the interaction. See
the text for further discussion.

while the coupling with particle states [panel (d)] can only
produce an energy shift.

The unperturbed (s1/2)−1 strength shows two peaks, asso-
ciated with the 1s1/2 (e1s1/2 ≈ −50 MeV) and 2s1/2 (e2s1/2 ≈
−20 MeV) single-particle states. Due to parity and angular
momentum conservation, the only intermediate hole-phonon
configurations s1/2 holes can couple to are (d3/2)−1 ⊗ 2+
and (d5/2)−1 ⊗ 2+. These couplings can lead to a strong
fragmentation of the (1s1/2)−1 strength. In fact, the energy
differences e1d3/2 − e1s1/2 = −15.2 + 48.3 = 33.1 MeV and
e1d5/2 − e1s1/2 = −22.1 + 48.3 = 26.2 MeV (cf. Table I) are
close to the centroid of the isovector quadrupole strength
(EIVGDR = 29.2 MeV, cf. Fig. 4). On the other hand, although
the (1d3/2)−1 ⊗ 2+ intermediate configuration could in prin-
ciple contribute to the fragmentation of the (2s1/2)−1 state, in
this case the energy difference is low, namely e1d3/2 − e1s1/2 =
−15.2 + 17.3 = 2.1 MeV. In 40Ca there is no low-lying
quadrupole strength, and therefore the HF strength is shifted
but not fragmented. In a similar way, one concludes that the
d3/2 and d5/2 hole strength, which lies close to the Fermi
energy, cannot be fragmented. The deeply bound p1/2 and
p3/2 states can instead couple efficiently, respectively to the
(1d5/2)−1 ⊗ 3− and to the (1d3/2)−1 ⊗ 3− configurations. The
relevant energy differences lie in the range 9–20 MeV, where
one finds substantial 3− strength (cf. Fig. 4). The case of
p1/2 is analyzed in more detail in Fig. 9, including only
3− phonons. It is seen that the full calculation (top panel,
left) is very similar to the result obtained including only
(1d5/2)−1 ⊗ 3− configurations (top panel, right). Coupling
only to the lowest phonons of each multipolarity (bottom
panel, left) leads only to a modest energy shift, again caused
essentially by the (1d5/2)−1 ⊗ 3−

1 configuration (bottom panel,
right). The remnant of this configuration (bottom panel, right)
lies at −25 MeV.

The results obtained for the particle states are depicted in the
right part of Fig. 7. As already mentioned, those lying close
to the Fermi energy (2p3/2, 2p1/2, 1f7/2, and 1f5/2) can be
well described within the quasiparticle picture: the associated

 0

 0.2

 0.4

 0.6
(a)

40Ca
(p1/2)-1

HF
HF+PVC

(b) HF
3- ⊗ d5/2

 0

 0.2

 0.4

 0.6

-35 -30 -25 -20

ρ l
j(

ω
) 

[M
eV

-1
]

ω [MeV]

(c)

-

HF
HF+PVC(3-

1)

-35 -30 -25 -20

ω [MeV]

(d) HF
3-

1 ⊗ d5/2

FIG. 9. (Color online) Analysis of the (p1/2)−1 level density in
40Ca produced by the coupling with 3− phonons. In the upper panels,
all the calculated RPA 3− phonons are included in the calculation.
In the lower panels, only the lowest 3−

1 phonon state is instead taken
into account. In the left panels [(a) and (c)], all possible intermediate
single-particle configurations are included. In the right panels [(b)
and (d)], the intermediate configurations are restricted to (1d5/2)−1.
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FIG. 10. (Color online) The same as Fig. 9 in the case of the g9/2

level density. In the right panel, we show results obtained by taking
into account only the coupling to specific intermediate configurations:
p3/2 ⊗ 3− (green dashed curve), f5/2 ⊗ 3− (blue dotted curve), and
f7/2 ⊗ 3− (purple chain curve), respectively.

single-particle strength shows a well defined peak, which is
shifted from the unperturbed (HF) position. The situation is
quite different for the unbound particle states 1g7/2 and 1g9/2

which are strongly fragmented. For these states, we expect that
our proper treatment of the continuum should be particularly
important. The case of the 1g9/2 orbital, which in the HF calcu-
lation is associated with a low-lying resonance lying at about
2.5 MeV, is analyzed in more detail in Fig. 10. We consider
only the coupling with 3− phonons, since they produce most
of the fragmentation. By comparing the left and the right top
panels of Fig. 10, one concludes that the strong fragmentation
of the resonant level is caused by the coupling with several
intermediate configurations [namely (p3/2) ⊗ 3−, (f5/2) ⊗ 3−,
and (f7/2) ⊗ 3−]. The two satellite peaks found at ≈ −6 MeV
and at ≈ −2 MeV are produced by specific configurations,
associated with the lowest 3−

1 collective state (cf. bottom panel,
right). This phonon is responsible for about half of the total
width (compare bottom panel, left with top panel, left).

In Fig. 11 we compare the position of the seven HF energy
levels lying close to the Fermi energy with the position of
the shifted levels, deduced from Fig. 7. Only for these levels
a centroid energy is quite meaningful because, as we have
already emphasized, for these levels essentially only one peak
exists when one looks at the PVC results and the quasiparticle
picture holds. Also for these levels, and for them only, one can
attempt a comparison with the results of Ref. [13] that have
been obtained through second-order perturbation theory and
in a very similar scheme. The results are in overall agreement
with those of Ref. [13], although the magnitude of the present
energy shifts is larger. In fact, while in Ref. [13] the shifts
are typically between −1 and −2 MeV, here they range
between −1.5 and −4.5 MeV. We attribute this difference
mainly to the coupling with non collective phonons. As it was
discussed alreday in Ref. [13], the energy shifts are mostly
due to coupling with intermediate configurations including an
octupole phonon. If we compare the theoretical results with
experiment, we must probably conclude that a refitting of the
effective force (SLy5 in the present case) is needed if this
has to be used outside the mean-field framework. In fact, the
HF-PVC results need a global upward shift in energy.
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FIG. 11. (Color online) Energy of the seven neutron bound states
lying close to the Fermi energy in 40Ca, calculated in HF (left) and
by taking into account the coupling to phonons (middle). Also shown
are the experimental data (right).

1. Comparison with the experimental data in 40Ca

The experimental single-particle strength of 40Ca is ob-
tained from 40Ca(p, d)39Ca pickup (for hole states) and
40Ca(d, p)41Ca stripping reactions (for particle states), by
comparing the measured cross sections with distorted wave
Born approximation (DWBA) calculations performed with
conventional assumptions. In particular, one usually assumes
that the wave function of the transferred nucleon, φnlj can
be taken as an eigenfunction of a static mean field potential,
by adjusting the depth of that potential so that the binding
energy becomes equal to the experimental separation energy
and the correct asymptotic dependence is guaranteed. The
comparison with the level density obtained in a calculation like
the present one, although not straightforward, is reasonable
for levels which are well described by the one-quasiparticle
approximation. In the previous subsection, we have seen
that this is indeed the case for several states close to the
Fermi energy: for them, the single-peak associated with a
definite value of the number of nodes n, appearing in HF,
persists. A diagonal, even perturbative, approximation for
the mass operator is quite appropriate. However, for states
characterized by a broad distribution in energy, when several
values of n are mixed, the comparison with a simple DWBA
calculation is likely to be less reliable (cf., e.g., the discussion
in Ref. [33]). In principle, one should rather perform a direct
theoretical calculation of the transfer cross section, using the
wave functions that include many-body correlations. This
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FIG. 12. (Color online) The theoretical level densities ρ̄lj (blue
dotted curves) are shown as a function of the excitation energy in
39Ca [hole states, left panels (a)] and in 41Ca [particle states, right
panels (b)]. Except for the change of scale, the results are the same
as already shown in Fig. 7. They are compared with the experimental
spectroscopic factors taken from Refs. [34,35]: these are represented
in histogram form and also convoluted with Lorentzian functions of
width 0.4 MeV (red solid curve). In the left (right) panels the energy
of the renormalized HF + PVC 1d3/2 (1f7/2) state already displayed in
Figs. 7 and 11 is set at zero. In the right panels, the vertical dotted line
shows the one-neutron theoretical threshold energy obtained within
HF + PVC (this energy is then the continuum threshold measured
by setting at zero the energy of the renormalized 1f7/2 state already
displayed in Figs. 7 and 11).

goes beyond the scope of the current paper, and in the
following we shall limit ourselves to a simple comparison
with the spectroscopic factors reported in the experimental
papers [34,35]. Our results are comparable to those obtained
in Ref. [36], where the distribution of single-particle strength
in 40Ca was calculated in a (discrete) quasiparticle-coupling
model going beyond the diagonal approximation. The red
histogram bars in Fig. 12 show the experimentally determined
spectroscopic factors, which are convoluted with Lorentzian
functions having a width equal to 0.4 MeV to produce the red
continuous lines. These can be compared with our theoretical
level densities (blue continuous lines). The dotted vertical
line shows the calculated threshold for one-neutron emission,
which overestimates the experimental value by about 2 MeV.

The total single-particle strength associated with the dif-
ferent quantum numbers l, j , obtained by integrating the level
densities displayed in Fig. 12 up to E = 10 MeV is reported in
Table III. One finds an overall satisfactory agreement between
theory and experiment. The position of the centroid energies
is reasonably well reproduced, except in the case of the s1/2

TABLE III. Experimental spectroscopic factors Slj obtained from
one-nucleon transfer reactions for hole and particle states in 39Ca
and 41Ca, compared to the integral of the theoretical level density
performed up to an excitation energy of 10 MeV (cf. Fig. 13).

40Ca

Holes Particles

J π Slj (39Ca) J π Slj (41Ca)

Exp. Theory Exp. Theory

d3/2 0.88 0.80 f7/2 0.74 0.66
s1/2 0.84 0.80 p1/2 0.80 0.81
p3/2 2.9×10−3 0.05 p3/2 0.73 0.79
d5/2 0.73 0.75 d5/2 0.11 0.04

f5/2 0.88 0.77
g9/2 0.28 0.36

strength, where the theoretical centroid energy is too low by
about 2 MeV. In general, theory tends still to underestimate
the fragmentation of the single-particle strength: this occurs
in particular for the d5/2 strength (for particles and holes),
and for the f5/2 strength (for particles). This can be seen also
from Fig. 13, where we show the cumulated experimental
and theoretical strength distributions. The latter distributions
tend to show a sharper increase. This can be attributed to
several reasons. Among the possible ones, we point out that the
present RPA calculation underestimates the experimental value
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FIG. 13. (Color online) The integrated level density as a function
of excitation energy for 39Ca [left panel (a)] and 41Ca [right panel
(b)]. The red solid curves correspond to the experimental data, while
the blue dotted curves are our HF + PVC calculation. The vertical
dotted line is the same as in Fig. 12.
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FIG. 14. (Color online) The RPA strength functions in 208Pb
obtained from our RPA calculations. The IS 2+ strength is reduced
by a factor of 5, while the IS 3− strength is reduced by a factor of 10.

of the collectivity of the low-lying 3−
1 phonon (cf. Table II)

and cannnot describe in detail the Isoscalar Giant Quadrupole
Resonance (ISGQR) strength distribution. If one could include
its admixture with two-particle–two-hole configurations, these
could shift part of the strength at lower energy and increase the
effect of the coupling with the single-particle strength. A more
fragmented ISGQR distribution would be in better agreement
with experiment [37,38]; however, such a calculation would
require going beyond the formalism of the present work.

B. Results for 208Pb

In Fig. 14 we provide an overall view of the calculated
RPA multipole strength in 208Pb, while the energy and
transition strength of the lowest states of each multipolarity
are reported in Table IV. The properties of the low-lying states
are reproduced reasonably well by our calculation, with the
partial exception of the transition probability associated with
the 4+ state.

In Fig. 15, we show the results of our systematic calculation
of the level densities, displaying the outcome of the full
HF + PVC calculation including 2+, 3−, 4+, and 5− phonons
(blue curve), as well as the results obtained by including only

TABLE IV. Energies and electromagnetic transition probabilities
associated with the low-lying isoscalar collective states in 208Pb. The
experimental data are taken from Refs. [31,39].

Nucleus J π Theory (RPA) Experiment

Energy B(Qτ=0
J ) Energy B(Qτ=0

J )
(MeV) (e2fm2J ) (MeV) (e2fm2J )

208Pb 2+ 5.12 2.35 × 103 4.09 3.00 × 103

3− 3.49 7.08 × 105 2.62 6.11 × 105

4+ 5.69 5.16 × 106 4.32 15.5 × 106

5− 4.49 4.96 × 108 3.20 4.47 × 108
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FIG. 15. (Color online) The same as Fig. 7 in the case of 208Pb.

the 3− phonons (red curve), in comparison with the HF results
(black curve).

The HF single-particle spectrum calculated for 208Pb is
reported in Table V and illustrated in the left columns of
Figs. 16 and 17. In the central columns of Figs. 16 and
17 we show the position of the main peaks obtained from
the full HF + PVC calculation, whereas in the right columns
we include the experimental results. From an overall look at
Fig. 15, we can notice that the quasiparticle picture (a single
peak emerging from the PVC calculation, with shifted energy
and renormalized integral with respect to HF) holds for most
of the valence hole states, that is, for 3p1/2, 2f5/2, 3p3/2,
1i13/2, and 1h9/2. A partial exception is constituted by the state
2f7/2, which acquires a double structure mainly due to the
coupling with the 3−

1 ⊗ i13/2 configuration. The inclusion of
PVC brings the relative position of the valence hole states in
much better agreement with experiment. For particle states,
the quasiparticle picture seems to be valid for 2g9/2, 1i11/2,
3d5/2, 4s1/2, 2g7/2, 3d3/2 and, only to some extent, for 1j15/2.
The position of the 2g9/2, 1i11/2, and 1j15/2 states is in good
agreement with experiment, while the 3d5/2, 1j15/2, and 2g7/2

orbitals lie too high in energy.
The present calculation is similar to the one of Ref. [13] but

the energy shifts are larger, as in the case of 40Ca, due probably
to the contribution of non collective states. We can also make
an overall comparison with the various results reported in
Ref. [4], by evaluating an average particle-hole gap defined
as

�ω = 〈εp〉 − 〈εh〉, (22)
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TABLE V. Skyrme Hartree-Fock single-particle energies for
208Pb obtained with the force SLy5. Only states at negative energy
are reported in the table.

Nucleus Hole states (MeV) Particle states (MeV)

208Pb 1s 1
2 −58.0 4s 1

2 −0.1

2s 1
2 −40.6 3d 5

2 −0.7

3s 1
2 −18.8 2g 9

2 −3.2

1p 1
2 −51.2 1i 11

2 −1.9

2p 1
2 −29.8 1j 15

2 −0.4

3p 1
2 −8.1

1p 3
2 −51.8

2p 3
2 −30.9

3p 3
2 −9.2

1d 3
2 −43.1

2d 3
2 −19.2

1d 5
2 −44.5

2d 5
2 −21.3

1f 5
2 −33.8

2f 5
2 −9.1

1f 7
2 −36.3

2f 7
2 −12.1

1g 7
2 −23.5

1g 9
2 −27.5

1h 9
2 −12.8

1h 11
2 −18.5

1j 13
2 −9.4

with

〈εp〉 =
∑

unocc(2j + 1)εnlj∑
unocc(2j + 1)

, 〈εh〉 =
∑

occ(2j + 1)εnlj∑
occ(2j + 1)

,

(23)

where the labels “unocc” and “occ” refer to the unoccupied
and occupied valence shell, respectively. Starting from the HF
value, 9.34 MeV, the HF-PVC value is reduced to 7.89 MeV
and gets closer to the experimental value of 6.52 MeV;
the difference between the two values, namely −1.45 MeV,
compares well with the values presented in Ref. [4], which
range between −3.2 and −1.1 MeV.

The processes leading to the fragmentation of the single-
particle strength for the orbitals lying far from the Fermi energy
in 208Pb have been already extensively discussed within the
framework of more phenomenological studies [4]; however,
for the convenience of the reader, in the following we present
some details of the present calculation.

In many cases, the strong broadening of the single-particle
strength observed in Fig. 15 is caused mostly by the coupling
with the ISGQR and the Isoscalar Giant Octupole Resonance
(ISGOR), due to the favorable matching with the difference
between the relevant single-particle states. This is the case
for the orbitals (1s1/2)−1 and (2s1/2)−1, which couple to d3/2,
d5/2 ⊗ 2+ and to f5/2, f7/2 ⊗ 3−. The contribution of the 4+
strength is small, but not completely negligible. The main
configurations contributing to the large broadening of the
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2g9/ 2
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1j15/2 4s1/2

3d5/ 2
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FIG. 16. (Color online) Neutron particle states in 208Pb.

(31/2)−1are f5/2, f7/2 ⊗ 3−. In the case of (1p1/2)−1 and
(2p1/2)−1, the 2+, 3−, and 4+ phonons give comparable contri-
butions to the strength fragmentation, which is also quite large.
In the case of (3p1/2) and (3p3/2)−1, there is no good match
with the energy of available single-particle configurations,
and this explains the small amount of fragmentation that
characterizes these states.

In the case of (1d3/2)−1, the 2+, 3−, and 4+ phonons give
comparable contributions to the fragmentation. In the case of
(2d3/2)−1, instead, the 3− phonons play the most important role
for the fragmentation: in fact, the relevant single-particle con-
figurations are (3p3/2)−1, (2f5/2)−1, (2f7/2)−1, and (1h9/2)−1

coupled with the low-lying 3−
1 state. A similar pattern holds

for the spin-orbit partners, that is, in the case of (1d5/2)−1, the
2+, 3−, and 4+ phonons give comparable contributions for the
fragmentation, but in the case of (2d5/2)−1, the 3− phonons play
the main role for the fragmentation (with some contribution
arising from coupling with 4+ phonons). In the case of
(1f5/2)−1 and (1f7/2)−1, the 2+, 3−, and 4+ phonons give
similar contributions to the strength fragmentation; however,
the main configuration involved turns out to be (1i13/2)−1 ⊗
3−. As already mentioned, the state (2f5/2)−1 is not affected
much by the particle-vibration coupling. In the case of the
states (1g7/2)−1 and (1h9/2)−1, the 3− is the main responsible
for the couplings; however, the fragmentation is rather small,
and the energy shift is also small. In the case of (1g9/2)−1, the
2+, 3−, and 4+ phonons give comparable effects. In the case
of (1h11/2)−1, the fragmentation is caused by the coupling
with the configurations (3p3/2)−1, (2f5/2)−1, (2f7/2)−1, and
(1h9/2)−1 ⊗ 4+. The state 2h11/2 is a resonant state in the
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FIG. 17. (Color online) Neutron hole states in 208Pb.

continuum: 2+ and 3− give the main contributions to fragment
its strength: 1j15/2 ⊗ 2+, 3d5/2, 2g7/2, 2g9/2, and 1i11/2 ⊗ 3−
are the main states that produce the strength fragmentation.
Also 1j13/2 is a resonant state in the continuum: in this case, 3−
and 5− are the most relevant phonons for the fragmentation of
the strength: the main configurations are 2g7/2, 2g9/2, 1i11/2 ⊗
3− and 3d3/2, 3d5/2, 2g7/2, 2g9/2, 1i11/2 ⊗ 5−. Finally, in the
case of the state 1j15/2, the fragmentation is mainly caused by
the coupling with the configurations 1i11/2, 2g9/2 ⊗ 3−. Once
more, from considerations related to the matching of initial
and intermediate energies, we expect that the low-lying 3−
state is the main contributor.

The level densities of the various orbitals are compared
in Figs. 18 and 19 to spectroscopic factors obtained from
the 208Pb(3He, α) stripping reaction for hole states, and
from 208Pb(d, p) reaction [40,41] for particle states. The
integrated level density is compared to the sum of experimental
spectroscopic factors in Table VI. The quasiparticle character
of the orbitals lying close to the Fermi energy is a general
result of our adopted theoretical framework. Our results are in
fair overall agreement with the experimental findings from
transfer reactions, which were able to locate most of the
quasiparticle strength associated with the orbitals lying close
to the Fermi energy. The quality of the agreement varies
from one case to the other, and it is hard to decide whether
this has to be attributed either to specific features of our
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FIG. 18. (Color online) The same as Fig. 12 in the case of 208Pb.
The experimental data are taken from Refs. [40,41].

model, or to deficiencies in the experimental extraction of
the spectroscopic factors (as testified, e.g., by the fact that
some of them exceed the maximum allowed value of one).
Furthermore, we must recall that (e, e′p) experiments lead to
much smaller spectroscopic factors, and that the relationship
between the two kinds of experiments, as well as the relative
role of long- and short-range correlations, is a matter which
continues to be actively debated [42,43]. Last but not least, the
very possibility of extracting a spectroscopic factor as a true
observable has been recently questioned [44,45].

C. Results for 24O

In this subsection, we finally give results for 24O, as an
example of neutron-rich, weakly bound (Sn = 4.1 MeV)
nucleus. This nucleus is a doubly magic isotope, due to to
the usual proton shell closure at Z = 8 and to an “exotic”
neutron shell gap appearing at N = 16. The magicity of 24O,
had been suggested by theoretical studies [46–48], and has
been established by the measurement of the (unbound) 25O
ground state and of its decay spectrum to 24O, and by the
extraction of the N = 16 single-particle gap from the 23,24,25O
ground-state energies [49,50]. As already mentioned, having
a tool that allows studying weakly bound systems by taking
proper care of the continuum is one of the main motivations of
the present work. Interestingly enough, it has been suggested
that nuclei in which the neutron separation energy becomes
smaller than the proton separation energy are characterized by
larger single-particle spectroscopic factors or, in other words,
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FIG. 19. (Color online) The same as Fig. 13 in the case of 208Pb.

by more pure single-particle states. This is the feature emerging
by the plot shown in Fig. 6 of Ref. [51] and, consequently, one
of those that can be analyzed within our framework. We will
come back to this point below.

In Table VII we provide the HF single-particle spectrum
for neutrons. In Fig. 20, we illustrate our results for the RPA
strength functions. Experimental information, although scarce,
is available. The main results are that (i) there should be no
bound excited state [52], and (ii) the lowest excitation should
be a 2+ state lying at 4.72 MeV [50]. In our RPA spectra, the
lowest peak among those found for the chosen multipolarities
is indeed a 2+ one, and its energy and electromagnetic

TABLE VI. The same as Table III for 208Pb.

208Pb

Holes Particles

J π Slj (207Pb) J π Slj (209Pb)

Exp. Theory Exp. Theory

p1/2 1.07 0.82 g9/2 0.76 0.77
p3/2 1.50 0.84 s1/2 0.87 0.47
f5/2 1.07 0.84 d3/2 0.93 0.52
f7/2 1.02 0.84 d5/2 0.85 0.75
h9/2 1.06 0.86 g7/2 0.90 0.74
h11/2 0.39 0.39 i11/2 0.82 0.82
i13/2 0.90 0.87 j15/2 0.54 0.71

TABLE VII. Skyrme Hartree-Fock single-particle energies for
24O with the interaction SLy5. Hole and particle states at negative
energies are displayed.

Nucleus Hole states (MeV) Particle states (MeV)

24O 1s 1
2 −39.2 1d 3

2 −1.3

2s 1
2 −5.3

1p 1
2 −17.2

1p 3
2 −22.0

1d 5
2 −7.5

transition probability are 3.4 MeV and 4.2 e2fm4. Experiment
has also provided indications for the existence of a 1+
state lying at 5.33 MeV, but our calculations are limited to
natural-parity states. In the case of this nucleus we compute
the 1− strength as well. To ensure that coupling with 1−
phonons does not introduce any error associated with spurious
strength associated with the translational mode, we follow the
procedure already discussed in our previous paper [53]. We
find a significant amount of dipole strength lying at energies
somewhat below the usual (IS and IV) giant dipole resonances.

In Fig. 21, we display our results for the level density of 24O.
Before entering into some detail, we discuss the main emerging
features and compare with what is known experimentally. In
our calculation, the 1d3/2 and 2s1/2 states have a marked quasi-
particle character, namely they are associated with a single
narrow peak. It makes sense, therefore, to compare the exper-
imental value of the gap with the HF and HF-PVC results for
the energy difference between the 1d3/2 and 2s1/2 states, that
is, 4.0 and 4.6 MeV respectively. The HF-PVC result is in good
agreement with the experimental value of 4.86 MeV. In heavy
nuclei, as a rule, the PVC shrinks the single-particle gap and
increases the effective mass (cf. the previous subsection), but
this is not necessarily the case in light nuclei due to the specific
effect of having only low angular momentum occupied states
(as already noticed in Ref. [13]). In the present case, while
the PVC pushes the 1d3/2 orbital closer to the Fermi energy
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FIG. 20. (Color online) The RPA strength functions in 24O
obtained with the present continuum RPA.
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MIZUYAMA, COLÒ, AND VIGEZZI PHYSICAL REVIEW C 86, 034318 (2012)

 0
 0.4
 0.8

-50 -40 -30 -20 -10

E [MeV]

 0
 0.4
 0.8

 0
 0.4
 0.8

ρ l
j(E

) 
[M

eV
-1

]
-

 0
 0.4
 0.8

 0
 0.4
 0.8

(a) Hole states

HF
HF+PVC(only 3 )-

HF+PVC(1-,2+,3-,4+)

 0
 0.4
 0.8

 0  10  20

E [MeV]

[s1/2]

 0
 0.4
 0.8

[p1/2]

 0
 0.4
 0.8

[p3/2]

 0
 0.4
 0.8

[d3/2]

 0
 0.4
 0.8

[d5/2]

 0
 0.4
 0.8

[f5/2]

 0
 0.4
 0.8

(b) Particle states

[f7/2]24O SLy5

FIG. 21. (Color online) The same as Fig. 7 in the case of 24O.
In this case not only 2+, 3−, and 4+ phonons but 1− phonons as
well are considered in the case of the full PVC result (blue dotted
curve).

(−2.5 MeV compared to the HF value of −1.3 MeV), the 2s1/2

hole state is pushed further from it (−7.1 MeV compared to
the HF value of −5.3 MeV).

The peak energies of the other orbitals obtained by using
HF-PVC (HF) read 2.4 MeV (4.3 MeV) for 1f7/2, and
−8.3 MeV (−7.5 MeV) for 1d5/2. The net effect of PVC is a
shift down of the states. The absolute value of the energies is
expected to depend on the choice of the effective force. Skyrme
forces, as other mean-field frameworks, tend to predict larger
binding in light neutron-rich nuclei compared with the experi-
mental findings, as is clearly testified by the fact that 28O turns
out to be bound in many of these models. In the present case,
the 1d3/2 state is bound while it should be a resonant state. We
can nonetheless look at relative energy differences. The known
states in 23O taken from Ref. [54] are, in addition to the 1/2+
ground-state, a 5/2+ state at 2.79 MeV and a 3/2+ at 4.04 MeV
(leaving aside the state at 5.34 whose character is not clear,
being either 3/2− or 7/2−). These are states that can decay to
the 22O ground state. In our calculation we can also identify
states below the energy threshold for this kind of decay: in
particular the first 5/2+ state lies at 1.2 MeV in our calculation.

We now discuss the couplings that produce fragmentation of
most of the single-particle strength distributions. At variance
with the state 2s1/2, the state 1s1/2 is strongly fragmented.
This fragmentation is chiefly caused by the configurations
1d−1

5/2 ⊗ 2+ and (1p1/2)−1, (1p3/2)−1 ⊗ 1−. By inspecting the
energy difference, we can assume that the Isovector Giant
Quadrupole Resonance (IVGQR) and Isovector Giant Dipole
Resonance (IVGDR) play the main role for the fragmentation.
The state (1p1/2)−1 is fragmented due to the coupling with the
configuration (1d5/2)−1 ⊗ 3−; we expect that the ISGOR and
IVGOR play the main role by considering the energy matching.
(2s1/2)−1 ⊗ 1− can also contribute to the fragmentation, yet
to a minor extent. The main configuration giving rise to
the fragmentation of the state (1p3/2)−1 is the configuration
(1d5/2)−1 ⊗ 1−. Here, due to the energy difference between
the hole states (1p3/2)−1 and (1d5/2)−1, the dipole excitations
around 14 MeV do play the main role. In the case of

TABLE VIII. The same as Table III for 24O.

24O

Holes Particles

J π Slj (24O) J π Slj (24O)

Exp. Theory Exp. Theory

s1/2 0.81 d3/2 0.83
d5/2 0.78

the fragmentation of the (1d5/2)−1 state, the configuration
(2s1/2)−1 ⊗ 2+ is the most important one, and the low-lying
2+ state at 3.4 MeV is the most relevant. Finally, the energy
shift of the state 1f7/2 is mostly caused by the coupling with
the configuration 1d3/2 ⊗ 3−.

Last but not least, we come back to the point raised above,
namely that the (quasi-particle-like) states around the Fermi
energy, 1d3/2 and 2s1/2, are quite pure (see also Table VIII). In
our calculation, there are no optimal energy matchings of those
states with other configurations due to the scarcity of low-lying
collective excitations and large gaps between single-particle
states. More generally, in our calculations the coupling of
neutron states is mainly with the proton component of the
phonon states (due to the dominance of the neutron-proton in-
teraction). Therefore, neutron states on neutron-rich nuclei are
expected to be more pure because proton excitations are pushed
at higher energy as the neutron excess increases. Recently,
other calculations of the spectroscopic factors in light nuclei
within the coupled-cluster approach have become available in
Ref. [55] (see also the critical discussion in Ref. [56]).

IV. SUMMARY

The idea that single-particle strength is not systematically
pure in atomic nuclei, and that coupling with other degrees of
freedom is quite relevant, is an old idea in nuclear physics.
Phenomenological calculations based on particle-vibration
coupling (PVC) for spherical nuclei have been performed for
several decades, and they have been quite instrumental to point
out some of the limitations of the pure mean-field approach
(such as, e.g., the enhancement of the effective mass around
the Fermi energy). Microscopic PVC calculations based on
the consistent use of an effective Hamiltonian, have become
available only recently.

None of the mentioned self-consistent microscopic calcu-
lations, to our knowledge, takes proper care of the continuum.
In our work, we have implemented a scheme based on
coordinate-space representation in which the single-particle
states, the vibrations, and their coupling are calculated with
proper inclusion of the continuum. This is of special interest if
weakly bound nuclei close to the drip lines are to be studied.
Transfer to the continuum has been the subject of several
experimental studies.

However, also in the case of well bound nuclei we deem
that the present approach offers advantages if compared with
the standard discrete PVC approach, as far as the study of
either resonant states or of the coupling of deeply bound states
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that couple efficiently to giant vibrations in the continuum
are concerned. A disadvantage of the current approach, with
respect to the discrete approach, is that it is not easy to separate
the contributions of collective and non collective phonons,
and/or introduce corrections for the Pauli principle violation.
Further investigations along this line should be envisaged.

In stable nuclei we obtain results that are in overall agree-
ment with previous studies. We can, at the same time, better
describe the fragmentation of the single-particle strength. The
shifts of the single-particle states around the Fermi energy, with
respect to the HF values, are relatively large (in keeping also
with the fact that we cannot restrict our coupling to collective
states only). We obtain an overall agreement with experiment
in 208Pb, while in the case of 40Ca our results point to the need
of refitting the Skyrme interaction that has been devised to
work at the mean-field level and not beyond it.

We have also applied our model to a neutron-rich nucleus,
namely 24O. This is a double-magic nucleus, and there are few
low-lying states. Because of this, and also since the neutron
states energy would be more affected by coupling with protons,
the neutron single-particle strength around the Fermi energy
is quite pure (i.e., spectroscopic factors are rather close to 1).
While this is in agreement with some experimental findings,
certainly more detailed spectroscopic studies are needed to
extract a global trend and a firm understanding.
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APPENDIX A: HARTREE-FOCK GREEN’S FUNCTION

As it is stated in the main text, it is necessary to use the
causal Green’s function for the Dyson equation because this
equation is based on the use of the Wick’s theorem, and the
Wick’s theorem applies only to time-ordered products. On the
other hand, the continuum HF Green’s function is given in the
form of a retarded function. So we need to compute the causal
Green’s function starting from the retarded Green’s function in
order to use the continuum HF Green’s function in the Dyson
equation.

The causal HF Green’s function is defined by

iGC
0 (rσ t, r ′σ ′t ′) ≡ 〈�0|T{ψ̂(rσ t)ψ̂†(r ′σ ′t ′)}|�0〉 (A1)

= θ (t − t ′)〈�0|ψ̂(rσ t)ψ̂†(r ′σ ′t ′)|�0〉
− θ (t ′ − t)〈�0|ψ̂†(r ′σ ′t ′)ψ̂(rσ t)|�0〉.

(A2)

The retarded Green’s function is instead defined by

iGR
0 (rσ t, r ′σ ′t ′) ≡ θ (t − t ′)〈�0|{ψ̂(rσ t), ψ̂†(r ′σ ′t ′)}|�0〉.

(A3)

From these two definitions, and using θ (t ′ − t) = 1 − θ (t −
t ′), we can find that

iGC
0 (rσ t, r ′σ ′t ′) = iGR

0 (rσ t, r ′σ ′t ′)

−
∑

h

e− i
h̄
eh(t−t ′)φ∗

h(r ′σ ′)φh(rσ ). (A4)

The Fourier transform of Eq. (A4) is expressed as

GC
0 (rσ, r ′σ ′; ω) = GR

0 (rσ, r ′σ ′; ω)

+
∑

h

2iη

(ω − eh)2 + η2
φh(rσ )φ∗

h(r ′σ ′)

(A5)

(in the limit η→0) → GR
0 (rσ, r ′σ ′; ω)

+ 2πi
∑

h

δ(ω − eh)φh(rσ )φ∗
h(r ′σ ′).

(A6)

The continuum HF Green’s function G0,lj given by Eq. (15)
is regular for the complex energy E. So the retarded Green’s
function with a smearing width η is expressed as

GR
0,lj (rr ′, ω) = G0,lj (rr ′; ω + iη), (A7)

where ω is the real part of the complex energy. Then the
continuum causal Green’s function can be expressed by

GC
0,lj (rr ′, ω) = G0,lj (rr ′; ω + iη) +

∑
nhlhjh

2iη(
ω − enhlhjh

)2 + η2

×φnhlhjh
(r)φnhlhjh

(r ′). (A8)

APPENDIX B: UNPERTURBED RESPONSE FUNCTION

In general, the RPA theory can be formulated in two ways.
One is based on the causal function, while another one on the
retarded function. Both formulations give the same results for
the physical part of the spectrum, namely for positive excitation
energy. However, a complete RPA basis must include negative
energy states and the two aforementioned formulations are
different for negative energies.

In order to construct the self-energy function of Eq. (7),
we need to consider the RPA response function not only in
the positive energy domain but also in the negative energy
domain due to the required energy integration. So we cannot
use the retarded RPA response function for the self-energy
function. The RPA equation for the response function is given
by R = R0 + R0κR in any of the representations, R0 being
the unperturbed response function, and R the RPA response
function. In order to obtain the causal RPA response function
by solving this equation, the causal unperturbed response
function should be used.

Normally the continuum (Q)RPA is formulated by using
retarded functions within the linear response theory. The
continuum HF(B) Green’s function is used to build the (re-
tarded) unperturbed response function [20,27]. It is therefore
necessary to know how to convert the retarded unperturbed
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response function to the causal function in the continuum RPA
formalism. We show it in the present appendix.

The causal and retarded response functions in RPA are
defined by

iRC
0 (rt, r ′t ′) = 〈�0|T{δρ̂(rt)δρ̂(r ′t ′)}|�0〉 (B1)

= θ (t − t ′)〈�0|δρ̂(rt)δρ̂(r ′t ′)|�0〉
+ θ (t ′ − t)〈�0|δρ̂(r ′t ′)δρ̂(rt)|�0〉, (B2)

iRR
0 (rt, r ′t ′) = θ (t − t ′)〈�0|[δρ̂(rt), δρ̂(r ′t ′)]|�0〉,

(B3)

respectively (here |�0〉 is the HF ground state). From these
definitions, one can find the relation between them as
follows:

iRC
0 (rt, r ′t ′) = iRR

0 (rt, r ′t ′) + 〈�0|δρ̂(rt)δρ̂(r ′t ′)|�0〉
(B4)

= iRR
0 (rt, r ′t ′) −

∑
hh′

ei(eh−eh′ )(t−t ′)

×φ∗
h(r)φh′(r)φ∗

h′(r ′)φh(r ′). (B5)

The Fourier transformation of the latter equation gives

RC
0 (r r ′; ω) = RR

0 (r r ′; ω) −
∑
hh′

2iη

(ω − eh′ + eh)2 + η2

×φ∗
h(r)φh′(r)φ∗

h′(r ′)φh(r ′)
(B6)

(in the limit of η → 0) → RR
0 (r r ′; ω)

− 2πi
∑
hh′

δ(ω − eh′ + eh)φ∗
h(r)φh′(r)φ∗

h′(r ′)φh(r ′), (B7)

where RR
0 (r r ′; ω) can be expressed by means of the retarded

HF Green’s function as

RR
0 (r r ′; ω) =

∑
h

φ∗
h(r)GR

0 (r r ′; ω + eh)φh(r ′)

+φ∗
h(r ′)GR∗

0 (r r ′; −ω + eh)φh(r). (B8)

In the continuum RPA formalism, the continuum HF Green’s
function is used as GR

0 in Eq. (B8).

APPENDIX C: SPECTRAL REPRESENTATION OF THE
GREEN’S FUNCTION AND THE RESPONSE FUNCTION

Here we show the spectral representations of the HF
Green’s function and the RPA response function (both causal
and retarded). The difference will appear in the sign of the
imaginary part η. Actually this is very important to obtain the
proper self-energy function by using the contour integration,
because this sign differencee produce changes in the position of
the poles of the Green’s function and of the response function
on the complex energy plane (this fact is connected with the
fact that the Wick’s theorem can be applied only for the causal
function, as already mentioned):

GC
0 (rσ, r ′σ ′; ω) =

∑
h

φh(rσ )φ∗
h(r ′σ ′)

ω − eh − iη

+
∑

p

φp(rσ )φ∗
p(r ′σ ′)

ω − ep + iη
, (C1)

GR
0 (rσ, r ′σ ′; ω) =

∑
h

φh(rσ )φ∗
h(r ′σ ′)

ω − eh + iη

+
∑

p

φp(rσ )φ∗
p(r ′σ ′)

ω − ep + iη
, (C2)

RC(r r ′; ω) =
∑

ν

〈0|ρ̂(r)|ν〉〈ν|ρ̂(r ′)|0〉
ω − Eν + iη

− 〈0|ρ̂(r ′)|ν〉〈ν|ρ̂(r)|0〉
ω + Eν − iη

, (C3)

RR(r r ′; ω) =
∑

ν

〈0|ρ̂(r)|ν〉〈ν|ρ̂(r ′)|0〉
ω − Eν + iη

− 〈0|ρ̂(r ′)|ν〉〈ν|ρ̂(r)|0〉
ω + Eν + iη

. (C4)

APPENDIX D: SPECTRAL REPRESENTATION OF THE
SELF-ENERGY FUNCTION

The self-energy function in the space-time representation is
defined by Eq. (4). If we insert the HF and the RPA results in
this definition, then the self-energy function can be expressed
as

	(r1σ1t1, r2σ2t2) = κ(r1)G0(r1σ1t1, r2σ2t2)κ(r2)iR(r1t1r2t2) (D1)

= 1

i
θ (t1 − t2)

∑
p,ν

e−i(Eν+ep)(t1−t2)κ(r1)δρν(r1)φp(r1σ1)φ∗
p(r2σ2)δρ∗

ν (r2)κ(r2)

− 1

i
θ (t2 − t1)

∑
h,ν

e+i(Eν−eh)(t1−t2)κ(r1)δρ∗
ν (r1)φ∗

h(r1σ1)φh(r2σ2)δρν(r2)κ(r2). (D2)

The Fourier transform of Eq. (D2) gives

	(rσ, r ′σ ′; ω) =
∑
h,ν

φh(rσ )δρ∗
ν (r)κ(r)φ∗

h(r ′σ ′)δρν(r ′)κ(r ′)
ω − eh + Eν − iη

+
∑
p,ν

φp(rσ )δρν(r)κ(r)φ∗
p(r ′σ ′)δρ∗

ν (r ′)κ(r ′)

ω − ep − Eν + iη
. (D3)
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APPENDIX E: RESIDUAL INTERACTION WITHIN THE LANDAU-MIGDAL APPROXIMATION

Here we show the explicit expression of the residual interaction within the so-called Landau-Migdal approximation. This
residual force is used in the self-energy function [Eq. (13)]:

κqq ′ (r) = ∂hq

ρq ′
(r) = δ2E

δρqδρq ′
where q, q ′ = n, p

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q = q ′) t0
2 (1 − x0)

+ t3
12ργ

[
(γ + 2)(γ + 1)

(
1 + x3

2

) − (
x3 + 1

2

)(
2 + 4γ

ρq

ρ
+ γ (γ − 1)

∑
α

(
ρα

ρ

)2)]
+ 1

4 [t1(1 − x1) + 3t2(1 + x2)]k2
F ,

(q �= q ′) t0
(
1 + x0

2

)
+ t3

12ργ
[
(γ + 2)(γ + 1)

(
1 + x3

2

) − (
x3 + 1

2

)(
2γ + γ (γ − 1)

∑
α

(
ρα

ρ

)2)]
+ 1

2

[
t1

(
1 + x1

2

) + t2
(
1 + x2

2

)]
k2
F

(E1)
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