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The spherical to prolate deformed shape transition is studied in the framework of the interacting boson IBA-2
model by using a one-parameter Hamiltonian. Excitation energies and B(E2) reduced transition strengths of
the ground-state, quasi-β, and quasi-γ bands are considered. Particular attention is payed to effects related to
the finite boson number. Structural changes are investigated taking also into account the wave functions of the
relevant states. The IBA-2 and X(5) predictions are compared to the experimental data on 150Nd, considered one
of the best examples of an X(5)-like nucleus. The analysis of potential energy surfaces of 144−156Nd, carried out
in the framework of the IBA-2 model, provides further information on the structure of the Nd chain and the
identification of the phase transition critical point.
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I. INTRODUCTION

The quantum shape-phase transition as well as the structural
evolution of low-lying states of nuclei can be investigated,
as a function of proton and/or neutron number, within the
framework of the interacting boson approximation (IBA)
model [1]. This kind of analysis has usually been carried out in
the IBA-1 version of the model, in which no distinction is made
between proton pairs and neutron pairs. The nuclear shapes
among which the transitions take place are associated with
the U(5), O(6), and SU(3) dynamic symmetries of the IBA-1
model, which correspond to a spherical, a γ -unstable, and an
axially deformed shape, respectively. Studies performed using
the coherent-state formalism [2] in the classical limit (number
of nucleons → ∞) showed that the transitions from U(5) to
SU(3) and from U(5) to O(6) are first- and second-order phase
transitions, respectively [3].

The phase structure of a two-fluid bosonic system has been
investigated [4–8] in the framework of the IBA-2 version of
the model [3,9,10], where proton pairs and neutron pairs are
treated as distinct constituents. In addition to the three Uπν(5),
Oπν(6), and SUπν(3) symmetries, which correspond to those
of the IBA-1 version, a fourth symmetry exists, indicated
with SU∗

πν(3), where proton and neutron fluids have different
deformations.

A detailed study of the evolution of nuclear structure
in a transitional region requires a numerical solution of
the Hamiltonian. An analytic (though based on physical
approximations) solution for a macroscopic system has been
obtained for the critical point (i) of a first-order quantum phase
transition from a spherical vibrator to a symmetric deformed
rotor, X(5) [11] and (ii) of a second-order quantum phase
transition from a spherical vibrator to a γ unstable nucleus,
E(5) [12]. These solutions of the Bohr Hamiltonian [13]

*giannatiempo@fi.infn.it

provide parameter-free (apart from a scale factor) predictions
for the excitation energy pattern as well as for the electric
quadrupole B(E2) strengths within and among the ground and
β bands. The γ bands can also be described with an additional
parameter in the X(5) model or in the version introduced by
Bijker et al. [14], where the separation of variables occurs in
a different manner that introduces the dependence on K in the
equation for β.

Many studies concerning the properties of the ground state
(g.s.) band have been performed with the aim of identifying
X(5) candidates [15–28]. In several cases it has been found that
nuclei having excitation energies (normalized to that of the 2+

1
state) very close to the X(5) predictions, have B(E2) reduced
transition probabilities [normalized to the B(E2; 2+

1 → 0+
1 )]

close to the SU(3) limit.
In the present work the transition from a spherical vibrator

to an axially symmetric rotor is studied in the framework
of the IBA-2 model by using a one-parameter Hamiltonian.
The evolution of excitation energies and B(E2) reduced
transition strengths of the g.s., quasi-β, and quasi-γ bands are
investigated, focusing on effects induced by a finite number
of valence nucleons. The analysis of the wave functions of the
relevant states, in terms of nd components, provides significant
information on the structure changes of these bands along the
whole transition. The IBA-2 results are compared with the
IBA-1 ones and to the X(5) predictions. A test of the results
is performed by referring to the chain of even neodymium
isotopes (Z = 60, N > 82), which includes 150Nd, one of
the first identified X(5)-like nuclei [15,16]. The Hamiltonian
parameter has been extracted for each isotope from those
obtained in Ref. [29] in the study of the spectroscopic
properties of Nd chain. Additional information on the structure
of the even 144−156Nd isotopes is obtained via the IBA-2 study
of potential energy surfaces (PESs) performed in the intrinsic
state formalism [30–32], using the parameters of Ref. [29].

In Sec. II, the spherical-to-prolate deformed shape transi-
tion is investigated in the framework of the IBA-2 model and
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the results are compared with the IBA-1 ones and with the
X(5) predictions. A test of the findings of Sec. II, performed
by referring to the experimental data concerning heavy Nd
isotopes and N = 90 even isotones, is discussed in Sec. III.
The PES calculations are reported in Sec. IV. Finally, the main
conclusions of this study are drawn in Sec. V.

II. SPHERICAL-TO-PROLATE AXIALLY DEFORMED
SHAPE TRANSITIONS IN IBA AND X(5) MODELS

The X(5) analytic solution of the Bohr Hamiltonian for the
critical point of the phase transition from a spherical vibrator
to a prolate symmetric rotor was obtained by Iachello [11]
by separating the potential into two terms. The quadrupole
deformation parameter, β, has been associated with an infinite
square-well potential, and the triaxiality deformation parame-
ter, γ , with a harmonic oscillator potential. In this model the
nγ = 0 bands built on the 0+

1 , 0+
2 , and 0+

3 states are classified as
s = 1, s = 2, and s = 3 bands, respectively. The predictions
for excitation energies and E2 transition probabilities are pa-
rameter free (except for scale). An additional parameter in the
γ -dependent part makes it possible to model also γ -vibrational
bands [11]. Alternatively, one can use the approach of Bijker
et al. [14] in the limit of small oscillations in the γ variable.

In the IBA-1 model the U(5)-to-SU(3) transition can be
described by a schematic Hamiltonian (see, e.g., Ref. [33])
governed by just one control parameter, ζ , namely,

H (ζ ) = c

[
(1 − ζ )n̂d + ζ

4NB

Q̂(χ) · Q̂(χ)

]
, (1)

with χ fixed at the value −√
7/2. Here, c is a normalization

factor, n̂d is the d-boson number operator, and NB is the total
boson number. The expression of the quadrupole operator is
given by

Q̂ = [d† × s̃ + s† × d̃] (2) + χ [d† × d̃](2). (2)

In the calculations performed in the present work the value
of χ in the E2 transition operator

T̂ (E2) = eQ̂(χ) (3)

is the same as in the Hamiltonian (consistent-Q formalism
[34,35]); e is the effective quadrupole charge.

The studies by McCutchan et al. [33] and Rosensteel and
Rowe [36], both performed using Hamiltonian (1), are of
particular relevance to our findings. In Ref. [33] the differences
between the predictions of the X(5) model and the IBA-1
calculations, concerning the excitation energies of the g.s. band
in the phase transition region, have been pointed out. The ζ

parameter has been allowed to vary from 0 to 1 and χ from
0 to −√

7/2 so as to investigate the whole Casten’s triangle
[37]. It has been found that no set of IBA-1 parameters can
exactly reproduce the X(5) solution. Rosensteel and Rowe [36]
studied thoroughly the dependence of the U(5)-to-SU(3) phase
transition on the the finite boson numbers. Their conclusions
support the idea that a close correspondence between a first-
order phase transition in a macroscopic system and a transition
in a corresponding system with a discrete number of nucleons
exists only for a large number of particles.

As for the IBA-2 model, the physically dominant interac-
tions contained in the Hamiltonian

H = επ n̂dπ
+ εν n̂dν

+ κπ,π Q̂(χπ )
π · Q̂(χπ )

π

+ κν,ν Q̂(χν )
ν · Q̂(χν )

ν + κπν Q̂(χπ )
π · Q̂(χν )

ν + M̂πν(ξi) (4)

[d-boson number n̂dρ
, (ρ = π, ν), quadrupole-quadrupole, and

Majorana operators] give rise to four dynamical symmetries.
The three of them that occur for χπ = χν correspond to the
U(5), O(6), and SU(3) symmetries of the IBA-1 model. In
the IBA-2 model the Uπν(5) dynamical symmetry is realized
when κπ,π = κν,ν = κπν = 0 and the SUπν(3) dynamical
symmetry when επ = εν = 0 and χπ = χν = −√

7/2. The
Majorana operator affects only the excitation energies of
mixed-symmetry (MS) states.

The E2 transition operator is given by

T̂ (E2) ≡ eνT̂ν(E2) + eπ T̂π (E2) = eνQ̂ν + eπQ̂π , (5)

where the parameters eπ and eν are the quadrupole effective
charges.

To investigate the Uπν(5)-to-SUπν(3) transition we adopted
the one-parameter Hamiltonian

H = c

[
(1 − ζ )(n̂dπ

+ n̂dν
) + ζ

4NB

(
Q̂(χπ )

π · Q̂
(χν)
ν

)]
. (6)

This expression is similar to that of Hamiltonian (1). The boson
number is the sum of the proton bosons Nπ and neutron bosons
Nν . The first term gives the Uπν(5) dynamical symmetry; the
second one, with χπ and χν kept fixed to −√

7/2, can be
connected to the SUπν(3) dynamical symmetry. In fact the
operator (Q̂(χπ )

π · Q̂
(χν)
ν ), if χπ = χν = −√

7/2, can be written
as a combination of the Casimir operators of the algebras
appearing in the SUπν(3) dynamical symmetry (cf. Eq. (2.4)
in Ref. [7]), namely,

2
(
Q̂(χπ )

π · Q̂
(χν)
ν

) = C(SUπν(3)) − C(SUπ (3)) − C(SUν(3)).

(7)

Hereafter, the (Q̂(χπ )
π · Q̂

(χν)
ν ) term (χπ = χν = −√

7/2) is
referred to as the [SUπν(3)] Hamiltonian. The brackets indicate
that the quadrupole interactions between like-nucleons are
neglected. This choice is justified by the dominant role played
by the proton-neutron quadrupole interaction in producing
collective nuclear deformation (see, e.g., [38]). In the analysis,
the Majorana parameters are kept fixed at 2 MeV. States of MS
origin, which do not have counterparts in the IBA-1 states, are
pushed to such high energies that only fully symmetric (FS)
states are present in the energy region of interest. This allows
the comparison of the IBA-2 results with the IBA-1 ones and,
as far as the critical point of the transition is concerned, with the
X(5) predictions. Because the Majorana term does not affect
the results reported in this section it does not appear explicitly
in Eq. (6). In the calculations, carried out using the NPBOS

code [39], the value of χρ in Eq. (5) was fixed at −√
7/2.

Many of the examples presented in the following
subsections refer to a nucleus having Nπ = 5. This is helpful
for the comparison of the IBA-2 and X(5) predictions with
the experimental data concerning the neodymium chain,
presented in Sec. III.
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A. Ground-state band

The phase transitional behavior is commonly described
in terms of some observable that characterizes the degree
of deformation of a nucleus. The (E4+

1 )/E(2+
1 ) ratio [R4/2]

is usually adopted as a simple benchmark. As remarked in
Ref. [36], only for sufficiently large NB the transition happens
in a narrow region around the critical value of the control
parameter ζ . An example of the dependence of the transition
width on the number of the valence bosons is shown in
Fig. 1. The R4/2 values calculated with Hamiltonian (1) and
Hamiltonian (6) are reported in the upper panel, as a function
of ζ , for different NB values. The values predicted by the X(5)
model and by the U(5) = Uπν(5) and SU(3) = [SUπν(3)] limits
are also shown. The width of the critical zone decreases with
NB , however, a sufficiently sharp behavior at the critical point
is not yet achieved for NB = 12. Because of the normalization
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FIG. 1. (Color online) Normalized excitation energies of the 4+
1

state in the IBA-1 (dashed lines) and IBA-2 (solid lines) versions of
the model, as a function of ζ , for (upper panel) different values of
NB , reported on each curve (IBA-2 values correspond to Nπ = 5)
and (bottom panel) NB = 9, with the different Nπ boson numbers
reported on each IBA-2 curve. Values predicted by the U(5) and
SU(3) limits and by the X(5) model are indicated by horizontal lines.

adopted in Hamiltonian (6) the IBA-2 curves do not cross
exactly at the same value of ζ . This would be the case if the
terms n̂dρ

, Q̂ρ were divided by Nρ in the adopted Hamiltonian.
However, Hamiltonian (6) is preferable for relating the present
calculations to those performed in Ref. [29] for the Nd chain
(see Sec. III).

The R4/2 ratios calculated for a given boson number
(NB = 9), with Hamiltonian (1) and Hamiltonian (6) (varying
Nπ ) are reported in the lower panel in Fig. 1. In the IBA-2
calculations the symmetry breaking induced by the lack of
the quadrupole interactions between like nucleons gives rise
to a splitting of the curves corresponding to different values
of Nπ and Nν . This depends on the relative strength of the
π -ν interaction that induces deformation (related to the value
of the NπNν product) and the pairing interaction (related to
the value of Nπ + Nν). Indeed, in the example shown in the
figure, the Nπ = 5 curve achieves first the X(5) critical R4/2

value.
The normalized excitation energies, R[E], of the g.s.

band take the same values for corresponding values of ζ in
Hamiltonians (1) and (6), e.g., for ζ values which lead to the
same R4/2 value.

The R[E] values of the g.s. band predicted by the X(5)
model are given, as a function of J, in the left panel in Fig. 2.
They are compared to the values calculated in the IBA-1 model
for NB = 6 and in the IBA-2 model for NB = 12 (Nπ = 5), in
both cases keeping the parameter ζ to the value for which R4/2

takes the value 2.91 predicted by the X(5) model. Hereafter,
this value is referred to as ζ [X(5)]. The two IBA curves,
which exactly overlap, are close to that representing the X(5)
predictions only for small J, lying slightly higher for high J
(this extends to the IBA-2 case the findings of Ref. [33] already
mentioned). For ζ [X(5)] the deformation predicted by the IBA
model for the g.s. band is therefore slightly higher than that pre-
dicted by the X(5) solution. In the transition region very small
changes of ζ give rise to strong variations of the curve slopes.
This is shown in the right panel in Fig. 2, where the R[E] values
of the g.s. band are reported, as a function of J, with ζ as order
parameter, for an Nπ = 5, Nν = 4 nucleus. By reducing ζ by
about 2% with respect to ζ [X(5)] = 0.82 (see bottom panel in
Fig. 1), the relevant curve falls below the X(5) curve.

The values of the normalized B(E2) strengths, R[B(E2)],
of the g.s. band, calculated in the IBA-2 model, are equal to
(only slightly different from) the IBA-1 values, despite the
presence of two effective charges in Eq. (5). The IBA-1 values
are always independent of the effective charge, because of
the expression of the E2 transition operator. In the Uπν(5)
limit the ratio 〈Jf ‖ T̂ (E2)π ‖ Ji〉/〈Jf ‖ T̂ (E2)ν ‖ Ji〉 equals
Nπ/Nν and in the [SUπν(3)] limit 〈Jf ‖ T̂ (E2)ν ‖ Ji〉 is
equal to 〈Jf ‖ T̂ (E2)π ‖ Ji〉 for Nπ = Nν . In both cases the
normalized B(E2) values are independent of the values of the
effective charges and are the same as in the U(5) and SU(3)
limit, respectively. In the [SUπν(3)] limit there are, instead,
some differences between the IBA-1 and the IBA-2 values
when Nπ 
= Nν , as shown in the left panel in Fig. 3. Here,
the IBA-2 values are reported, as a function of J, for different
values of NB and of eπ and eν , together with the corresponding
IBA-1 ones. The spread of the IBA-2 values around the IBA-1
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FIG. 2. (Color online) Normalized excitation energies of the g.s. band, as a function of J. Left: IBA-1 (filled circles) values for NB = 6 and
IBA-2 (open squares) values for NB = 12 (Nπ = 5, Nν = 7), calculated for ζ = ζ [X(5)], are shown together with the U(5), SU(3), and X(5)
predictions. Right: IBA-2 values of a nucleus having Nπ = 5 and Nν = 4 calculated for the ζ values reported close to each curve. The ζ [X(5)]
value is in boldface.

value is limited to a few percent also in the case of Nπ = 5
and Nν = 1, where the difference between the number of π

and that of ν bosons is the largest among the considered cases.
Therefore, the normalized E2 strengths of the g.s. band are
independent, or nearly independent, of the effective charges
also in the the IBA-2 model.

The behavior of the R[B(E2)] strengths, reported in the
center panel in Fig. 3, as a function of J, can be compared
with that of the R[E] values, shown in Fig. 2 for the same
nucleus (Nπ = 5, Nν = 4) and for the same values of the
order parameter ζ . The X(5) curve, which, in Fig. 2, is

in a region limited by the ζ = 0.80 and 0.82 curves, is
no longer confined in a narrow band of ζ values. Besides,
the R[B(E2)] curves calculated for ζ � 0.82 do not fall
in a region midway between the Uπν(5) (ζ = 0) and the
[SUπν(3)] (ζ = 1) limits. They are close to the X(5) curve
only up to J = 4 and get close to the [SUπν(3)] limit for
higher J.

The R[B(E2)] strengths of the 4+
1 → 2+

1 and 6+
1 → 4+

1
transitions, for an Nπ = 5, Nν = 4 nucleus, are shown, as a
function of ζ , in the right panel in Fig. 3. Their values start
rising with respect to the Uπν(5) value for ζ ≈ 0.4 and, after
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FIG. 3. (Color online) Left: Normalized B(E2) transition strengths of the g.s. band, as a function of J, for different NB in the SU(3) limit
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FIG. 4. (Color online) Normalized B(E2) values of the g.s. band, calculated in the framework of the IBA-1 model for ζ [X(5)], compared
to the values predicted by the X(5) model and by the U(5) and SU(3) symmetries for the NB values shown.

having reached a maximum for ζ ≈ 0.70, rapidly decrease up
to ζ ≈ 0.90. In the 0.90–1.0 range of ζ the R[B(E2)] strengths
are close to those predicted by the [SUπν(3)] limit. In this
panel and in the right panel in Fig. 2, one can see how BE(2)
and energy ratios, respectively, remain fairly constant around
the limits (thus displaying the hallmarks of a quasidynamical
symmetry) and that the change happens swiftly only in the
region around the critical point.

Because in the IBA model the normalized B(E2) values
of the g.s. band strongly depend on the boson number, the
R[B(E2)] curves representing the U(5) and SU(3) predictions
as well as the IBA values for ζ [X(5)] move with respect to the
X(5) curve as NB changes. Some examples are given in Fig. 4.
For NB = 12 the X(5) curve is located between the U(5) and
the SU(3) curves. However, as the boson number decreases,
the curves representing the two IBA limits move down, the
curvatures increase, and a maximum appears in the U(5) curves
for a value of J close to NB . The region included between the
two limits narrows, and for small NB , the normalized B(E2)

values predicted by the U(5) limit can diminish sufficiently
to become close, for small values of J, to those predicted by
the X(5) model. Therefore, the whole X(5) curve is no longer
included in the U(5)-SU(3) region. As NB diminishes, owing
to the increasing importance of the finite-number effect on the
magnitude of R[B(E2)], the X(5) predictions go more and
more off the mark. A close correspondence between X(5)
and IBA predictions on B(E2) strengths can therefore be
obtained only when the boson number is very large (>12).
These findings are in agreement with the conclusions drawn
in Ref. [36].

Further information on the structure evolution of the g.s.
band in the Uπν(5) → [SUπν(3)] transition can be obtained
from the wave functions. The percentage of the nd components
for the 0+

1 , 2+
1 , and 4+

1 states in a nucleus having Nπ = 5
and Nν = 4 is reported in Fig. 5 for some values of ζ of
particular interest. The structure of these states is very close
to that of the Uπν(5) symmetry up to ζ � 0.60, then starts
changing. At the beginning of the transition region (ζ ≈ 0.75)
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1 states in a nucleus having Nπ = 5 and Nν = 4 for the values

of ζ shown in each panel.
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FIG. 6. Level scheme and relative B(E2) strengths of the quasi-β and quasi-γ bands for nuclei having NB = 6 and 9 in the SU(3) and
[SUπν(3)] limits. The 0+

3 level is also shown. The arrow thickness reflects the normalized E2 strength of the transition.

the nd = 0, 1, and 2 components are still the predominant
ones in the wave functions of the 0+

1 , 2+
1 , and 4+

1 states,
respectively. For ζ [X(5)] = 0.82 several nd components of
comparable intensities are present. The evolution toward a
deformed structure continues without further discontinuities
for increasing ζ . For ζ = 0.90 the percentage of the lowest nd

components is strongly reduced. As expected in the deformed
limit the wave functions, diagonalized in the spherical basis,
have no dominant component and appear to be strongly
admixed.

B. Quasi-β and quasi-γ bands

For even-even nuclei the terms quasi-β and quasi-γ bands
are normally used for spherical regions, and the corresponding
ones, β and γ bands, for deformed regions. For simplicity, we
use the term “quasiband” without distinction when describing
the whole evolution of these bands.

In the U(5) or Uπν(5) limit, one can refer to the quasi-β band
and quasi-γ band as those made up by the 0+

2 [2d], 2+
3 [3d],

4+
3 [4d], 6+

3 [5d], . . . states and by the 2+
2 [2d], 4+

2 [3d], 6+
2 [4d],
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8+
2 [5d], . . . states, respectively. The d-boson quantum number

of each state is given in parentheses. Strong E2 transitions
connect the J , J − 2, and �nd = 1 states in each band.

The values of both R[E] and R[B(E2)] ratios of quasi-β
and quasi-γ bands are equal in the U(5) and Uπν(5) limits.
This is not the case in the SU(3) and [SUπν(3)] limits. In the
IBA-1 limit the levels of the β and γ bands of the same J are
degenerate, whereas they are not in the IBA-2 limit. As for
the normalized B(E2) strengths, the IBA-2 values calculated
for eπ = eν , eπ = 2eν , and eπ = 0.5eν differ from each other
by at most a few percent, for both quasi-β and quasi-γ bands,
analogously to what happens for the g.s. band (see left panel
in Fig. 3). This is also the largest difference with respect to the
IBA-1 values of the quasi-β band, the values of which have
been calculated analytically [40]. Because also the R[B(E2)]
strengths of the quasi-β and quasi-γ bands, like those of the
g.s. band, are nearly independent of eπ and eν , the whole IBA-2
study is performed by varying practically only the ζ parameter.

The excitation energy and decay patterns of the β and
γ bands in the SU(3) and [SUπν(3)] limits are shown in
Fig. 6, together with the excitation energy of the 0+

3 level,
for nuclei having NB = 6 and 9. The normalized energies
of the two bands increase rapidly from NB = 6 to NB = 9.
In the [SUπν(3)] limit the Ji memberships of each band are
identified on the basis of the B(E2) strengths of the de-exciting
transitions. The states of the β band with J > 0 have index
i = 3; the even ones of the γ band index i = 2.

The dependence of the normalized excitation energies
E(J )/E(2) on NB , as the deformation increases, is shown
for the quasi-β band in Fig. 7, considering again (see Fig. 2,
left panel) the cases of NB = 6 and 9. Here, the R[E] values
predicted by the X(5) model and by the Uπν(5) = U(5),
SU(3), and [SUπν(3)] limits are reported, as a function of
J, together with those calculated for ζ [X(5)] in the IBA-1
and IBA-2 versions of the model. In moving away from the
U(5) limit the curves corresponding to the two values of NB

start splitting. In the transition region they are completely
separated, whereas the difference between the IBA-1 and the
IBA-2 values of the ζ [X(5)] curves corresponding to the same
NB is still very small. At variance with what happens for the
g.s. band, the ζ [X(5)] curves lie below the X(5) curve, which
they approach for increasing NB . The separation between the
curves of different NB values and between the IBA-1 and
the BA-2 curves with the same NB becomes remarkable when
the deformation attains its maximum value.

Similarly to what happens for the g.s. band, the smaller the
boson number, the more the R[B(E2)] strengths of the quasi-β
and quasi-γ bands calculated for ζ [X(5)] differ from the X(5)
predictions. This is shown in Fig. 8, where the normalized
B(E2) values of the Uπν(5) and [SUπν(3)] limits are reported,
as a function of J, for NB = 6 and 9 (Nπ = 5), together
with the X(5) predictions and the IBA-2 values calculated for
ζ [X(5)]. For clarity, the values of the transitions connecting
even-J and odd-J memberships of the quasi-γ band are shown
separately. The general features are similar to those of the
g.s. band (see Fig. 4). Indeed, for NB = 6 the Uπν(5) curves
have a maximum close to (not far from) J = 6. In going
towards higher NB (NB = 9 in the present example) the Uπν(5)
values increase noticeably and the maximum moves towards
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FIG. 7. (Color online) Normalized excitation energies of the
quasi-β band, as a function of J, for NB = 6 and 9. The values
calculated for ζ [X(5)] in the IBA-1 and IBA-2 (Nπ = 5) models are
represented by filled and open symbols, respectively. The values of
the U(5), SU(3), and [SUπν(3)] limits are also shown, together with
those of the X(5) model.

higher J or disappears, whereas the [SUπν(3)] curves, after
an initial increase, tend to become quite flat. The X(5) curve,
for NB = 6, crosses (left and center panels) or lies higher
than (right panel) the Uπν(5) curve, whereas for NB = 9, it is
included in the region defined by the Uπν(5) and [SUπν(3)]
curves, except for its highest odd spin. Also, the behavior of
the ζ [X(5)] curves is similar to that observed in the g.s. band
for NB = 6 and 9. Indeed, in all cases considered, they are
quite close to those of the [SUπν(3)] limit.

A more detailed IBA-2 analysis of the evolution of the
quasi-β and quasi-γ bands, as a function of ζ , is presented
hereafter for a nucleus having Nπ = 5, Nν = 4. The normal-
ized excitation energies of the even-Ji states, with i = 2, 3 and
Jmax = 6 are reported, as a function of ζ , in Fig. 9, together
with the Uπν(5) and [SUπν(3)] values. The comparison with
the X(5) predictions is limited to the excitation energies of
the s = 2 band to avoid the introduction of the additional
normalization required for the quasi-γ band. The 0+

3 level
is also considered, as it provides further information on the
nuclear structure evolution.

The degeneracy of the 0+
2 -2+

2 , 0+
3 -2+

3 -4+
2 , and 4+

3 -6+
2 states,

present in the Uπν(5) limit, starts disappearing for ζ � 0.60.
No noticeable increase in the R[E] values is, however,
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FIG. 8. (Color online) Normalized B(E2) values of the quasi-β-band (left) and of the even-J states (middle) and odd-J states (right) of the
quasi-γ band calculated for ζ [X(5)] in the IBA-2 model and predicted by the Uπν(5) and [SUπν(3)] limits and by the X(5) model. The data for
NB = 6 are reported in the upper panels; those for NB = 9, in the lower panels.

observed up to ζ ≈ 0.72; thereafter the excitation energies
of the states of the quasi-β and quasi-γ bands increase
monotonically with ζ . The excitation energy of the 0+

3 level is
close to those of the 2+

3 and 4+
2 states up to ζ = ζ [X(5)] ≈ 0.82

and increases very rapidly for higher values of ζ .
The curves corresponding to two states of equal J > 0

approach each other in the region near the [SUπν(3)] limit. At
ζ � 0.98 they cross, so that the states exchange their index i.
An expanded view of this region is shown in the lower panel
in Fig. 9. There, the symbols Ja and Jb indicate the spin of
two states |a〉 and |b〉 having the same J (J = 2 is taken as an
example). The structure of each of these states is expected to
be quite the same before and after the crossing point.

The normalized energies of the 0+
2 and 0+

3 states, calculated
for ζ [X(5)], are lower than the corresponding ones in the X(5)
solution. No close correspondence of the IBA-2 states of spin
J > 0 and index i = 2 or 3, for ζ = 0.82, with the states of
the s = 2 band can be noticed.

Further information on the evolution of the two bands in
the whole range of ζ is obtained from the B(E2) strengths and
from the wave functions of some transitions of particular in-
terest. The data concerning the R[B(E2)] values are presented
in Fig. 10. In the regions where the quasi-β and quasi-γ bands
can be identified, the even-J states belonging to each band
have the same index i because the R[B(E2)] values of the
4+

2 → 2+
3 , 4+

3 → 2+
2 and 6+

2 → 4+
3 , 6+

3 → 4+
2 transitions are
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FIG. 9. (Color online) Top: Normalized excitation energies of
the lowest even-J states of the quasi-β and quasi-γ bands and of
the 0+

3 state, as a function of ζ , for an Nπ = 5, Nν = 4 nucleus.
The corresponding values in the Uπν(5) and [SUπν(3)] limits and
the values of the s = 2 band and of the 03s state in the X(5) model
are shown at the right. Solid lines represent the excitation energies
of the Ji states with index i = 2; dashed lines, of those with index
i = 3. The vertical line indicates the ζ [X(5)] value, whereas the
circles point out the region where levels of the same J > 0 cross.
Bottom: Expanded view of the crossing region for the 2+

2 and 2+
3

states.

negligible for whatever ζ . The identification of these bands is
therefore based on the B(E2; 2+

2 → 0+
2 ) and B(E2; 2+

3 → 0+
2 )

values.
From the decay of the relevant transitions it turns out that in

the region of ζ < 0.6 the J3 states make up the band on the 0+
2

state. Past ζ ≈ 0.6 the structure of the bands starts changing,
even if the excitation energies of their memberships do not
vary significantly. In the approximately 0.72–0.98 range of ζ ,

which contains ζ [X(5)], the quasi-β band is made up of the J2

states. At ζ � 0.98 the B(E2) strengths of the two transitions
reported in each of Figs. 10(b)–10(e) abruptly exchange their
values. This is just related to the crossing of the levels of the
same J, as shown in Fig. 9 for the J = 2 states (which does
not imply significant changes in the wave functions of states
|a〉 and |b〉. The indexes i of the states of the quasi-β and
the quasi-γ bands therefore become the same as those of the
Uπν(5) and [SUπν(3)] limits. The R[B(E2)] strengths of all
the transitions reported in Fig. 10 are smaller, for ζ [X(5)],
than the corresponding X(5) values. The curve relative to the
0+

2 → 2+
1 transition crosses the X(5) horizontal line for a value

of ζ (0.80) that differs by only 2.5% from ζ [X(5)]. However,
the strong slope of the curve leads to an �30% difference
in the R[B(E2)] strengths. As for the other transitions, the
largest differences amount to �30% for the quasi-β band
and �50% for the quasi-γ band. A good agreement is
instead obtained between the R[B(E2; 0+

3 → 2+
2 )] and the

R[B(E2; 0+
s3 → 2+

s2)] strengths.
Past ζ � 0.82 and up to ζ � 0.98 the normalized B(E2)

strengths do not change significantly. Their values could imply
a structure of the bands close to the [SUπν(3)] limit already
for ζ � 0.82. However, the normalized excitation energies of
the two bands increase rapidly after ζ = 0.82, which implies
that deformation is still rapidly increasing.

The wave functions of some relevant states prove to be
very useful for gaining a deeper insight into the structure of
the quasi-β and quasi-γ bands along the Uπν(5) → [SUπν(3)]
transition. The nd components of the 0+

2 , 2+
2 , and 2+

3 states are
reported in Fig. 11 for some values of ζ . For ζ = 0.60 these
states have a rather Uπν(5) structure: the nd = 2 component is
strongly predominant for the 0+

2 and 2+
2 states, and the nd = 3

component for the 2+
3 state. When ζ increases, the percentages

of the nd = 0, 1, and 2 components in the wave functions of
the 0+

2 , 2+
2 , and 2+

3 states, respectively, start growing. They
become the largest for ζ = 0.775 and achieve a percentage
close to 60% for ζ [X(5)] = 0.82. The structure of the states
does not vary appreciably in the ζ ≈ 0.78–0.84 region.

For ζ [X(5)] the wave functions of the 0+
2 , 2+

2 , and 2+
3 states

are similar to those of the 0+
1 , 2+

1 , and 2+
2 levels, respectively, of

an U(5) nucleus. On the whole, the information associated with
the quasi-β and quasi-γ bands suggests a vibrational structure,
based on the 0+

2 state. The main nd components of the states
of the two bands, reported in Fig. 12, have a structure (apart
from the higher J3 states) that supports this interpretation.
This accounts for the fact that, in Fig. 8, the R[E] curve of the
quasi-β band is in a region of less deformation with respect to
the corresponding X(5) curve.

The structure of the states denoted states |a〉 and |b〉 in the
lower panel in Fig. 9 is shown for ζ = 0.975 and ζ = 0.99 in
Fig. 11. It is shown that there are only small changes in their
wave functions before and after ζ � 0.98, where the 2+

2 and
2+

3 states cross.
By taking into account the wave functions and the B(E2)

strengths of the relevant states, it is possible to understand why
the composition of the quasi-β and quasi-γ bands changes
upon approaching the transition region. In the low-ζ region
the 2+

2 → 0+
2 transition links mainly �nd = 0 components,

whereas in the ζ ≈ 0.82 region it connects predominantly
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FIG. 10. (Color online) Normalized B(E2) strengths of the transitions shown in each panel, as a function of ζ , for a nucleus having Nπ = 5
and Nν = 4. The corresponding values predicted by the X(5) model for the s = 2 band and nγ = 1 lowest band are shown as horizontal lines.
The solid vertical line marks the ζ [X(5)] value; the dashed vertical line, the ζ values where the curves in (b) and (c) cross.

�nd = 1 components, and this gives rise to the increase in
the B(E2; 2+

2 → 0+
2 ) strength. Simultaneously, the B(E2)

strength of the 2+
3 → 0+

2 transition, which initially links
mainly �nd = 1 components, decreases dramatically in going
towards the ζ ≈ 0.82 region because of the E2 selection rule,
which forbids �nd = 2 transitions. For ζ ≈ 0.82 the quasi-β
band is thus made up of J2 states.

In the ζ ≈ 0.78–0.84 region, where the structure of the
states does not change appreciably, the R[B(E2; 2+

2 → 0+
2 ]

strength has a constant value, smaller than the [SUπν(3)] one,
achieved for higher ζ .

The coexistence of vibrational and rotational motions,
which results from the data presented up to now, is also evident
from the data in Fig. 13. There, the R[E] values of the g.s. band
and the excitation energies of the quasi-β band, normalized to

that of the 2+ member of the band, are reported, as a function of
J, for ζ [X(5)]. The deformation of the excited band is smaller
than that of the g.s. band. These findings are in agreement with
global experimental data (see, e.g., Fig. 4 in Ref. [41]).

The excitation energy and decay patterns of the states
considered until now are displayed in Fig. 14 for some value
of ζ of particular interest. For ζ = 0.4 the nuclear structure is
close to that of the Uπν(5) limit, with multiplets clearly visible
and strong E2 transitions connecting states of subsequent
multiplets. For ζ = 0.75, i.e., in the region where the curves in
Figs. 10(b) and 10(c) first cross, the states belonging to the mul-
tiplets start splitting, with couplets of states (31, 42 and 43, 51),
still close in energy. The 03 states decays to both the 22 and the
23 states. For ζ [X(5)] ≈ 0.82 the structure of the quasi-β and
quasi-γ bands is not far from that of an anharmonic vibrator. To
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FIG. 11. (Color online) Percentage of the nd components of the 0+
2 , 2+

2 , and 2+
3 states for some values of ζ of particular interest in the

evolution of quasi-β and quasi-γ bands. In the panels corresponding to ζ = 0.975 and ζ = 0.99 the arrows indicate the largest components of
the states, denoted as states |a〉 (dashed lines) and |b〉 (solid lines) in the lower panel in Fig. 9.

stress this point the 8+
2 level has been included in the panel and

the states of the two quasibands have been inserted in a dotted
rectangle. The normalized B(E2) strengths of the 0+

3 → 2+
1

and 0+
3 → 2+

2 transitions (0.005 and 0.65, respectively) are
rather close to those predicted by the X(5) model (0.001
and 0.85, respectively). Upon going from ζ [X(5)] to ζ = 1
the quasi-β and quasi-γ bands move to very high excitation
energies with respect to the g.s. band and attain the structure
predicted by the [SUπν(3)] limit for the β and γ bands.

III. COMPARISON OF IBA-2 AND X(5) PREDICTIONS
WITH EXPERIMENTS

From the data presented in Sec. II it turns out that
IBA-2 results can differ appreciably from the predictions of
the macroscopic X(5) model when the calculated quantities
depend on the boson number and NB is small. In this section
the predictions of two models are compared to the experimental
data on even neodymium (N > 82) isotopes [42]. This isotopic
chain has a structure which changes from spherical to axially
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FIG. 12. (Color online) Percentage of the major nd component(s) of the states of the quasi-β band (left) and of the odd-J states (center) and
even-J states (right) of the quasi-γ bands, for ζ = 0.82.

symmetric for increasing A and contains the 150Nd isotope,
considered one of the best examples of an X(5)-like nu-
cleus. The spectroscopic properties of the 144−156Nd isotopes
(Nπ = 5, Nν = 1–7) concerning excitation energies, dipole
and quadrupole moments, E2 and M1 transition strengths,
and branching ratios have recently been investigated [29,43]
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FIG. 13. (Color online) Normalized excitation energies, as a
function of J, of the g.s. band and the quasi-β bands, for ζ = 0.82.

in the framework of the IBA-2 model. The calculations have
been carried out using the Hamiltonian

H = ε
(
n̂dπ

+ n̂dν

) + κ Q̂(χπ )
π · Q̂(χν )

ν + M̂πν, (8)

where M̂πν is the generalized Majorana operator [38].
Both parameters χπ and χν have been kept equal to the value

−√
7/2. The values deduced for the Hamiltonian parameters

are reported in Table I. An overall good agreement with the
experimental data was achieved by considering states of FS
as well as of MS character. It turned out that all the states
belonging to the g.s. bands and to the band built on the 0+

2 state
in 150Nd (the only band built on an excited 0+ state identified
in the isotopic chain) are FS. The symmetry character of the
2+

3 and 3+
1 states, which is predominantly MS in 144−148Nd

isotopes, changes abruptly in 150Nd, where the FS components
of the wave functions are larger than 95%. These findings make
it possible to exclude from the analysis states like the 2+

3 and
3+

1 ones in 144−1148Nd. The fact that their energy regularly
increases with A (see Fig. 12 in Ref. [29]) could erroneously
suggest an interpretation in terms of the lowest members of the
quasi-β and quasi-γ bands. In addition, the knowledge of the
symmetry character of the relevant states allows one to limit the
study to the states of FS character. In such a case the Majorana
term can be neglected in Hamiltonian (8), which can thus be
expressed in a form similar to Hamiltonian (6) by performing
the proper renormalization, ζ = 4NB/(4NB + ε/κ); see, e.g.,
[44]. The ζ values used in the present calculations are deduced
from parameters ε and κ of Ref. [29] and are reported in the
last column in Table I.

The change in structure along the neodymium chain is
apparent in Fig. 15, where the experimental R4/2 values of
144−156Nd are shown as a function of the values of ζ given
in Table I. The anomalous value of 144Nd is caused by the
presence of noncollective components in the wave functions
of the 4+

1 state [43,45]. The 150Nd isotope was first identified
by Casten and Zamfir [15] as an X(5)-like nucleus on the basis
of the energy spacing of the yrast states, in nearly perfect
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indicates the normalized B(E2) strengths. Only transitions having R[B(E2)] values larger than 0.5 are shown. In the panel corresponding to
ζ = 0.82 a dotted rectangle including the states belonging to the quasi-β and quasi-γ bands is drawn.

agreement with the model predictions. The normalized B(E2)
strengths of the transitions de-exciting the J � 10 yrast levels,
measured in Ref. [16], were also found to be close to the X(5)
values, apart from the B(E2; 10+

1 → 8+
1 ) value. The agreement

was not as good for the s = 2 band.
The experimental excitation energies of the g.s. band and of

the 0+
2 band in 150Nd, reported as a function of J, are compared

to the X(5) predictions and to the IBA-2 values in Fig. 16,
where the predictions of the Uπν(5) and [SUπν(3)] limits
are also shown. The IBA-2 values reproduce the excitation
energies of the g.s. band satisfactorily, even though not as well
as the X(5) model. Instead they match the energies of the 0+

2
band better. It is to be remarked that this band is made up of
Ji states having index i = 2, as expected on the basis of the
results presented in Sec. II.

The comparison for the normalized B(E2) strengths of the
g.s. band and of the quasi-β band in 150Nd are shown in Fig. 17.
The experimental values of the g.s band [16,42,46] include
additional data with respect to those considered in Ref. [16].
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FIG. 15. (Color online) Experimental R4/2 values of heavy
neodymium isotopes reported as a function of the values of ζ listed in
Table I. Horizontal lines indicate the corresponding U(5), X(5), and
SU(3) values.

The R[B(E2)] strengths predicted by the IBA-2 model for the
g.s. band are close to the experimental data, whereas the X(5)
values turn away for increasing J. A close comparison of IBA-2
and X(5) predictions for the normalized B(E2) values of the
quasi-β band is hampered by the large errors affecting the
experimental data, except for the B(E2; 0+

2 → 2+
1 ) strength.

In this case the IBA-2 value is closer to the experimental one
than the X(5) one.

As for the quasi-γ band, only two possible members are
known, i.e., the 2+

3 and 3+
1 states, however, the E2 transition

strengths of the de-exciting transitions have not yet been
measured. The energies of these states are reproduced to better
than 5% in Ref. [29]. For additional tests of the findings in
Sec. II, the experimental data concerning excitation energies
and E2 transition probabilities of the g.s. bands in 146−156Nd
isotopes and in N = 90 isotones are taken into account.

In the top panel in Fig. 18 the experimental R[E] values
of the levels of neodymium isotopes (identified as states of
collective nature in Ref. [29]) are reported, as a function
of J, together with the U(5), SU(3), and X(5) predictions.
The values of 146−148Nd are not far from that of the U(5)
limit, while those of 152−156Nd gather near the SU(3) limit.
The 150Nd is in an outstanding position, as expected for a
nucleus close to the critical point of a phase transition. No

TABLE I. Values of the Hamiltonian parameters deduced in the
analysis of even 144−156Nd isotopes in Ref. [29] are reported (in MeV)
in columns 2–5 (those kept fixed are in italics). In the last column we
give the value of ζ deduced, for each isotope, from ε and κπν .

A ε κπν ξ2 ξ3 ζ

144 0.900 −0.100 0.350 −0.350 0.73
146 0.850 −0.108 0.150 −0.350 0.78
148 0.750 −0.092 0.080 −0.300 0.80
150 0.500 −0.065 0.060 −0.300 0.82
152 0.390 −0.055 0.500 0.500 0.85
154 0.425 −0.058 0.500 0.500 0.86
156 0.440 −0.060 0.500 0.500 0.87
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2 state, and the results of the IBA-2 calculations [29] (open circles).

such peculiar behavior is instead displayed by the normalized
B(E2) values, as shown in the bottom panel in Fig. 18. Here,
the data concerning 148−152Nd (NB = 8–10) are reported, as
a function of J, together with the predictions of the U(5) and
SU(3) limits for NB = 9. These isotopes are the only ones
among the heavy neodymium isotopes where the trend of the
experimental values can be clearly observed. It is shown that
the values of 148Nd are as close to the SU(3) limit as those of
150Nd and this is in contrast to the conclusions one could draw
from the top panel in the figure.

The experimental R[E] and R[B(E2)] values of the g.s.
bands in N = 90 isotones [42] are reported, as a function of J,
in Fig. 19. By looking at the R[E] values it appears that 152Sm
and 154Gd are more deformed than 150Nd. However, as shown
in the bottom panel, the B(E2) strengths of 150Nd are closer
to the SU(3) values than those of the heavier isotones, which
instead approach the X(5) values. This is just what is expected
on the basis of the data presented in Fig. 4.

The data on the normalized excitation energies and B(E2)
strengths of the g.s. band in these isotopic and isotonic chains
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FIG. 17. (Color online) Left: Experimental B(E2) ratios of the g.s. band in 150Nd compared to the predictions (dashed lines) of the X(5)
model and of the U(5) and SU(5) limits (for NB = 9) and to the IBA-2 results (open circles). Experimental values are from Refs. [42] (filled
diamonds), [16] (filled circles), and [46] (filled squares). Right: Experimental B(E2) ratios [16] of the quoted transitions in 150Nd compared to
the X(5) predictions (crossed open squares) and to the results of the IBA-2 calculations (open circles).
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FIG. 18. (Color online) Top: Experimental normalized energies
of the g.s. band in 146−156Nd isotopes. Bottom: Experimental B(E2)
ratios of the g.s. band in 148−152Nd; the data on 148,152Nd are from
Ref. [42]; those on 150Nd are the weighted averages of the data
reported in Refs. [16,42], and [46]. In both panels the predictions
(dotted-dashed line) of the X(5) model and of the U(5) and SU(3)
limits for NB = 9 are also shown.

support the findings of Sec. II about the importance of taking
into account the finite number of bosons to achieve a correct
description of the experimental data and about the possibility
that the IBA description approaches the X(5) one for a large
boson number.

Further information about the structure evolution of the
Nd chain can be obtained from the nd components of g.s.
wave functions in 144−156Nd, calculated with the parameters
of Ref. [29]. The percentage of the main components in each
isotope is shown in Fig. 20. The 144Nd isotope has a structure
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FIG. 19. (Color online) Top: Experimental normalized energy of
the g.s. band in N = 90 isotones shown together with the predictions
(dashed lines) of the X(5) model and of the U(5) and SU(3)
symmetries. Bottom: Experimental B(E2) ratios of the g.s. band in
N = 90 Nd, Gd, and Sm isotones shown together with the predictions
of the X(5) model and of the U(5) and SU(3) limits for NB = 9
(dotted-dashed lines) and for large NB (dashed lines). Experimental
data are from Ref. [42].

very close to that of the U(5) limit. The nd = 0 component
is predominant in 146Nd and still has a percentage larger than
50% in 148Nd, whereas the nd = 2 is the main component in
150Nd. In the heavier isotopes nd components of comparable
intensities are present with a large range of values, as expected
for nuclei approaching the SU(3) limit. From these data, 148Nd
seems to be the isotope closest to the transition point, even if, in
this case, a clear statement on which to base the identification
is missing.

034311-15



A. GIANNATIEMPO, L. FORTUNATO, AND A. VITTURI PHYSICAL REVIEW C 86, 034311 (2012)

0

20

40

60

80

0 2 4 6

144
%

nd
0

20

40

60

80

0 2 4 6

146
%

nd
0

20

40

60

80

0 2 4 6

%
148

nd
0

20

40

60

80

0 2 4 6

150
%

nd
0

20

40

60

80

0 2 4 6

152
%

nd
0

20

40

60

80

0 2 4 6

154
%

nd
0

20

40

60

80

0 2 4 6

156
%

nd

FIG. 20. (Color online) Percentage of the nd components in the ground state of heavy Nd isotopes, evaluated in the IBA-2 model using the
parameters of Ref. [29].

IV. PES CALCULATIONS IN THE IBA-2 MODEL
FOR NEODYMIUM-144–156

Additional information on the structure of heavy Nd
isotopes and on the possible identification of 150Nd as an
X(5)-like nucleus can be obtained from the study of the
g.s. PESs performed through the coherent-state formalism
[30–32]. In the IBA-2 model one has to consider two fluids
and their mutual interaction according to Hamiltonian (4). The
PESs can be obtained by calculating matrix elements of
the Hamiltonian within intrinsic coherent states that separate
the proton and neutron contribution, defined as

|Nπ,Nν,βπ ,βν,γπ ,γν ; g.s.〉= 1√
Nπ !Nν!

(B†
π )Nπ(B†

ν )Nν|0〉. (9)

This expression is shortened to |g.s.〉 in the following. The
boson creator operators of each species are defined as a linear
combination of the basic s and dμ operators as

B†
ρ = 1√

1 + β2
ρ

(
s†ρ + βρ cos(γρ)d†

0ρ

+βρ

sin(γρ)√
2

(d†
2ρ

+ d
†
−2ρ

)

)
. (10)

The expectation value of Q̂π · Q̂ν in the g.s. is

〈g.s.|Q̂π · Q̂ν |g.s.〉

= 2NπNνβπβν

7
(
1 + β2

π

)(
1 + β2

ν

)
× (14 cos(γπ − γν) + χπχνβπβν cos(2γπ − 2γν)

−
√

14(χπβπ cos(2γπ + γν) + χνβν cos(γπ + 2γν))).

(11)

Note that it differs from Eq. (2.12) in Ref. [7] in the sign in
front of the last term.1

1The authors of Ref. [7] agree that there was a misprint in Ref. [7].

The expectation value for the Maiorana operator M̂πν [48],
within g.s. coherent states, is given by

〈g.s.|M̂πν |g.s.〉
= NπNνβπβν

2
(
1 + β2

π

)(
1 + β2

ν

)(
ξ2

(
β2

π + β2
ν

)

− 2ξ2βπβν cos(γπ − γν) − ξ3β
2
πβ2

ν sin(γπ − γν)2
)
.

(12)

It reduces to Eq. (2.13) of Ref. [7] when ξ1 = ξ3 = −2 and
ξ2 = 2. Note the absence of terms with ξ1 in the g.s. and also
that Eq. (12) gives 0 for βπ = βν and γπ = γν . Therefore the
Majorana operator affects the g.s. PESs only if some imbalance
is chosen between the deformations and the asymmetry angle
of the proton and neutron fluids. It is noteworthy that the largest
effects are expected for isotopes that have neutron and proton
bosons in different shells or that occupy the same (large) shell
in a very dissimilar way.

Contour plots of PESs for Hamiltonian (8) are given in
Fig. 21 for even 144−156Nd, taking γπ = γν for simplicity. The
parameters are the ones given in Table I and Ref. [29] (χπ =
χν = −√

7/2). The Majorana term is included, although its
contribution is almost negligible (see, e.g., Fig. 22 to appreciate
the change). The horizontal and vertical axes are labeled βπ

and βν , respectively. These figures show that, while 144Nd and
146Nd have a clear spherical minimum, the isotopes 150−156Nd
have a clear prolate deformed minimum. The case of 148Nd
is very close to the critical point, lying slightly toward the
deformed side. Sections of the potential energies in Fig. 21
are given in Fig. 22 as a function of β taken along the line
connecting the origin with the absolute minimum, again with
γπ = γν = 0. This figure shows that the minimum for 148Nd
is already at some non-null value of β.

V. CONCLUSIONS

The Uπν(5) → [SUπν(3)] transition is investigated in the
framework of the IBA-2 model using a one-parameter (ζ )
Hamiltonian. This is the only parameter varied in the analysis,
as the effects of effective charges on normalized B(E2)
reduced transition strengths are negligible.

The normalized excitation energies and B(E2) strengths
of the g.s., quasi-β, and quasi-γ bands are studied as a
function of ζ . The results obtained for the value of ζ
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FIG. 21. (Color online) Contour plots of ground-state potential energy surfaces calculated with Hamiltonian (8), including the Majorana
term, as a function of βπ and βν , for even 144−156Nd isotopes. The values of βπ and βν as well as of χπ and χν are irrelevant for the cases with
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which leads to R41/21 = 2.91 are compared to the X(5)
predictions. Noticeable differences are found in the R[B(E2)]
strengths for a finite boson number, which decrease as NB

increases.
A detailed analysis of the evolution of the quasi-β and

quasi-γ bands is performed for an Nπ = 5, Nν = 4 nucleus,
also taking into account the wave functions of the relevant

states. It turns out that for ζ [X(5)] the two bands have, on the
whole, a quite anharmonic vibrational structure, with the 0+

2
state as band head.

The predictions of the IBA-2 and X(5) models are tested
by referring to the experimental data concerning even Nd
(N > 82) isotopes and the N = 90 isotonic chain. Both
include the X(5)-like nucleus 150Nd, which has Nπ = 5 and
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the origin to the minimum (see Fig. 21) for all other cases. Vertical
values have been shifted in order to allow easier comparison. The
position of the minimum is indicated by a filled circle. The effects of
the Majorana term are small in all instances.

Nν = 4. The IBA-2 calculations correctly describe 150Nd,
also reproducing the R[B(E2)] values of the g.s. band and
the R[E] values of the quasi-β band, overestimated by the

X(5) model. It is to be remarked that the X(5) model allows
one to immediately identify the small region around ζ [X(5)]
where the properties of the quasi-β and quasi-γ bands change
rather suddenly, giving rise to the anharmonic aforementioned
structure.

The wave functions of the g.s. in the Nd chain, calculated
with the parameters of Ref. [29], show that 148Nd has an
Uπν(5)-SUπν(3) intermediate structure.

Further information on the structure evolution along the
neodymium chain is obtained via PES calculations, performed
in the framework of the IBA-2 model with the parameters of
Ref. [29]. A prolate deformed minimum is already present in
A ≈ 148, so that apparently 148Nd would be the closest isotope
to the critical point. Of course this kind of calculation should
be taken only as an indication of the fact that both 148Nd and
150Nd are very close to the critical point and perhaps neither
of them is sitting precisely on top of it.

Recent microscopic calculations for neodymium isotopes
performed with a self-consistent relativistic mean-field ap-
proach [49] and a relativistic mean-field + BCS approach
[50,51] are in agreement with our conclusions. Figure 4 in
Ref. [49] and Fig. 1 in Ref. [51] show that a configuration
with two minima, albeit very shallow ones, is already present
in 148Nd and becomes more pronounced in 150Nd. Within
the microscopic approaches, we have to mention, finally,
the calculations of Ref. [52], based on the beyond-mean-
field approximation combined with the Gogny interaction.
Although their results are qualitatively consistent with the
other microscopic approaches, the authors of Ref. [52] strongly
question the interpretation of shape changes as nuclear shape
phase transitions.
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