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The semimicroscopic algebraic cluster model (SACM) is applied to the systems 12C + α → 16O, 14C + α →
18O, 16O + α → 20Ne, 18C + α → 22Ne, and 20Ne + α → 24Mg. The spectrum and some E2 values are fitted
to experiment. Further E2 transition values as well as E1 and M1 transitions are calculated and compared to
experiment. In addition, we list the spectroscopic factors of the states listed. These factors are predictions of the
model and are of interest in current astrophysical studies.
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I. INTRODUCTION

The semimicroscopic algebraic cluster model (SACM) is
a model for nuclear cluster structure which incorporates the
Pauli exclusion principle, which is, in general, difficult to
implement microscopically for complex systems, because
the large dimensions of the resulting space lead to large
computational difficulties. However, incorporating the Pauli
principle in a semimicroscopic model is of greater ease.

It has been applied with success to several light nuclear
systems [1,2]. However, until now, applications have mainly
regarded the study of the energy spectra and E1, E2, and
M1 electromagnetic transitions of nuclei considered to be
described by a single dynamical symmetry [1–4]. Recently
though, some applications have been published that allow
nuclei to be described by a mixing of dynamical symme-
tries [5,6]. The aim of this contribution is to present an
algebraic model which is able to describe not only the energy
spectra and electromagnetic transitions of nuclei but also
spectroscopic factors, and all in cases of the breaking of
dynamical symmetries.

In the SACM [1,2], the internal structure of the clusters
is described by the shell model, having a UST (4) ⊗ U (3)
group structure, where UST (4) stands for the spin-isospin
sector, while U (3) refers to the space-part. The model for a
binary clusterization then has a UST

C1
(4) ⊗ UC1 (3) ⊗ UR(4) ⊗

UST
C2

(4) ⊗ UC2 (3) algebraic structure, where Ci stands for
the ith cluster and R indicates relative motion. The model
space is constructed to be free from Pauli-forbidden states,
and the physical operators are expressed in terms of the
group-generators. If we consider spin-isospin zero clusters,
which is going to be the case here, then the role of the UST

Ci
(4)

groups is important only in the construction of the model
space, and they do not play any role in formulating physical
operators. Therefore, from the viewpoint of the interactions,
the group structure is simplified to UC1 (3) ⊗ UR(4) ⊗ UC2 (3).
(This model has been applied in realistic studies [3,4].)

The interactions considered in the Hamiltonian of the
present model can be expressed in terms of the algebraic

operators, up to second order, in terms of the group generators.
Some exceptional interactions of third order are added, the first
being a correction to the quadrupole-quadrupole interaction,
and the second being the Casimir-invariant of third order
C3(SU(3)), of the largest coupled group UC1 (3) ⊗ UR(4) ⊗
UC2 (3). This last type of interaction has been considered
in order to shift the (λ,μ) of the total SU(3) irreducible
representation (irrep), from the (μ, λ) irrep. The Hamiltonian
considered here is similar to other algebraic Hamiltonians for
the study of nuclear clusterization [7], with the addition of an
SO(4)-type interaction that breaks the dynamical symmetry of
the SACM model.

Its parameters are fit to the energy spectra of the nuclei
and some E2 transitions. While the B(E2) transitions are
adjusted in the fit, the B(E1) and B(M1) transitions and
the spectroscopic factors are predictions of the model. The
effective charges are determined via a geometrical mapping,
while for the B(E2) values a further correction factor is
introduced, which measures the deviation from the geometrical
estimate [8].

This model is applied to the core+α nuclei 12C + α →
16O, 14C + α → 18O, 16O + α → 20Ne, 18O + α → 22Ne, and
20Ne + α → 24Mg. These systems play a very important role
in astrophysics in order to produce heavier elements, defined
as the secondary α fusion process, which occurs in stars when
some carbon is initially present. The reaction corresponding
to the first system has a Q value of 7.16 MeV. The third,
fourth, and fifth systems have Q values of 4.73, 9.31, and
6.95 MeV, respectively. These are the dominant reactions and
the knowledge of spectroscopic factors is needed.

The first system examined is of great importance. The radia-
tive capture reaction 12C(α, γ )16O is widely considered to be
among the most important processes in stellar nucleogenesis—
it is Hoyle’s “holy grail.” It determines the mass ratio of 12C
and 16O after helium burning, and, thus, the abundances of
elements from carbon to iron and, in turn, the iron-core mass
at supernova explosion, for massive stars [9,10].

For stellar models to be useful, the total scattering cross
section for this reaction must be known, to within 20%
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accuracy, in the Gamow window aroundEc.o.m. = 0.3 MeV.
This is not currently feasible experimentally, and, indeed, the
lowest energy of any scattering experiment performed for this
system wasEc.o.m. = 0.75 MeV [11].

Thus, theoretical investigations of scattering in the impor-
tant energy regime are needed. The most recent [12] sought
a simple expression for asymptotic normalization constants
based on a very old model-independent prescription of the
S matrix [13], and results of this expression were tested
against numerical results, using an even older potential [14,15].
Another recent paper [16] sought cross sections using optical
potentials, another very old approach. While important works
that showed good results, these indicate that more modern,
sophisticated theoretical approaches, showing greater insight
into nuclear structure, are needed. (For a brief overview of
work to date on this reaction, see Ref. [17].)

While the present work is not concerned with scattering,
works that contribute α + 12C potentials, from a structural
point of view, are useful in that they may be used in scattering
formalisms to extract elastic [18] and radiative capture [19]
cross sections.

The structure of this paper is as follows. In Sec. II,
details of the SACM are presented, including itstwo-cluster
Hamiltonian. Section III details the electromagnetic transition
operators, as well as their geometric mapping, providing
one general method for obtaining the effective charges. In
Sec. IV the parametrization of the spectroscopic factor is
presented. Section V presents numerical applications of the
model. Finally, in Sec. VI some conclusions are drawn. For
completeness, and also as such is nowhere else available, the
appendices list the formulas for all possible interaction terms
and transition operators.

II. THE MODEL

A. The semimicroscopic algebraic cluster model space

In the SACM the internal structure of the clusters are
described by the Elliott shell model with a UST

Ci
(4) ⊗ UCi

(3)
group structure. Their internal wave functions are completely
antisymmetric. However, when the product wave function of
the two clusters and that of the relative motion is constructed, it
is contaminated by Pauli-forbidden states, as antisymmetriza-
tion with respect to the interchange of nucleons between the
two clusters is not taken into account. Therefore, the Pauli
principle must be incorporated by some supplementary means.
There are several ways to do this, and for the light binary-
cluster configurations considered here, a suitable and simple
procedure is to take the intersection of the non-anti-symmetric
cluster-model basis and the fully antisymmetric-shell-model
basis of the united nucleus. Such is done here, with details
discussed in Ref. [2]. When this procedure is applied to
a system of two closed-shell clusters, it reduces to the
Wildermuth condition, which simply gives a lower limit for the
number of quanta of the relative motion [20] (which, of course,
depends on the specific clusters). When one or both clusters
have an open shell, a more refined discrimination between
allowed and forbidden single-nucleon states within a major
shell is required. Thus, when constructing the microscopic

model space, the spin-isospin degrees of freedom [the UST (4)
group] play an essential role; without them, the consequences
of the antisymmetrization cannot be taken into account. For
more details, please consult Refs. [1,2,21,22].

B. The Hamiltonian

If restricted to a single sector of the spin-isospin degrees of
freedom when constructing the Hamiltonian, as is the case in
what follows, the basis of the SACM can be characterized by
the following group structure:

SUC1 (3) ⊗ SUC2 (3) ⊗SUR(3) ⊃ SUC(3) ⊗ SUR(3) ⊃
(λ1, μ1)(λ2, μ2) (nπ, 0) (λC,μC)

SU(3) ⊃ SO(3) ⊃ SO(2)

(λ,μ) κL M, (1)

where (λk, μk) refer to the SUCk
(3) irreducible representations

(irreps) of the individual clusters, which are coupled to
intermediate irrep (λC,μC), nπ is the number of relative
oscillator quanta, while (λ,μ) is the total SU(3) irrep. L and
M are the angular momentum and its projection, and κ is
the eigenvalue of the K 2 operator [1,2,23], which classifies
the rotational bands, giving the projection of the angular
momentum onto the intrinsic z axis, distinguishing multiple
occurrences of a given L in (λ,μ).

Beginning with the Hamiltonian of Refs. [21,22], we
add further terms which allow reproduction of the order of
negative-parity states, which in 16O is 3−, 1−, and 2−. Namely

H = xy HSU(3) + y(1 − x)HSO(4) + (1 − y)HSO(3), (2)

with x and y being mixing parameters of the dynamical
symmetries with values between 0 and 1, and

HSU(3) = h̄ωnπ + aClusC2 (λC,μC) + (a − b�nπ )C2 (λ,μ)

+ (ā − b̄�nπ )C2 (nπ , 0) + t1C3 (λ,μ)

+ (γ + aL(−1)L + aLn�nπ )L2 + t K 2

HSO(4) = aC LC
2 + a

(1)
R LR

2 + (γ + aL(−1)L)L2 (3)

+ c

4
[(π † · π †) − (σ †)2][(π · π) − (σ )2]

HSO(3) = h̄ωnπ + aClusC2(λC,μC) + aC LC
2 + a

(1)
R L2

R

+ (γ + aL(−1)L + aLn�nπ )L2,

where �nπ = nπ − n0, n0 being the minimal number of
quanta required by the Pauli principle. The aClus is the strength
of the quadrupole-quadrupole interaction, restricted to the
cluster part, while R and C denote the contributions related to
the relative and cluster part, respectively, and L2 is the total
angular-momentum operator.

For the case of two spherical clusters, the second-order
Casimir operator of SU(3) is nπ (nπ + 3). Note that in the case
of deformed clusters the information about the deformation
only enters in the SU(3) dynamical limit.

The difference between Eqs. (2) and (3) and the Hamil-
tonian used in Refs. [21,22] is in the coefficient of the
angular-momentum operator. This coefficient now depends on
L and �nπ , which represents a dependence of the moment of
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inertia on the angular momentum and the number of shell
excitations. This ansatz is not new, being used before in
Refs. [3,4].

The first term of the SU(3) Hamiltonian, h̄ωnπ , contains
the linear invariant operator of the UR(3) subgroup, and h̄ω is
usually chosen to be (45A−1/3 − 25A−2/3) for light nuclei [24]
and 41A−1/3 for heavy nuclei [25]. When a truncation is
applied due to the exclusion principle, one finds that nπ has a
minimal value larger than zero.

The C2 (SU(3)) is the second-order Casimir invariant of the
largest coupled SU(3) group of Eq. (1), having contributions
both from the internal cluster part and from the relative motion,
and is given by

C2(SU(3)) = 1
4 Q2 + 3

4 L2,

→ (λ2 + λμ + μ2 + 3λ + 3μ),
(4)

Q = QC + QR,

L = LC + LR,

where Q and L are the quadrupole operator and angular-
momentum operator, respectively. The relations of the
quadrupole and angular-momentum operators to the C

(1,1)
2m

generators of the SU(3) group, expressed in terms of SU(3)-
coupled π -boson creation and annihilation operators [26], are

Qk 2m = 1√
3
C

(1,1)
2m , QR 2m =

√
3C

(1,1)
2m ,

(5)
L1m = C

(1,1)
1m , C (1,1)

lm =
√

2[π † ⊗ π ](1,1)
lm .

Numerical values of these can be found in Refs. [27,28].
The subscripted R, C, and k = 1, 2 are used to distinguish
the quadrupole operator associated with the relative motion
from the quadrupole operator of the clusters or quadrupole
operator of the coupled clusters. (The reason for considering
two different numerical factors for these quadrupole operators
is discussed in more detail in the next section.) The remaining
subscripts denote SO(3) and SO(2) quantum numbers, and
superscripts denote SU(3).

The matrix elements of all the terms of the Hamiltonian in
Eq. (2) and (3) can be calculated by standard SU(3) coupling
and recoupling techniques [26]; the relevant formulas are
collected in Appendix A for the SO(4)-like interaction and
for the different quadrupole and angular-momentum terms.

III. ELECTROMAGNETIC TRANSITIONS AND THE
GEOMETRICAL MAPPING

The model detailed in the previous section considers the

electromagnetic transition operator, T
(λ̄j ,μ̄j )kj lj
mj

, to also have
an SUj (3) character, with j = 1, 2, C, or R. In the present
work only the electric dipole (E1), the electric quadrupole
(E2), and the magnetic dipole (M1) transition operators will
be discussed,

T (E1)
m = e

(1)
R D(1)

R,m, T (E2)
m =

∑
γ

e(2)
γ Q(2)

γ,m,

(6)
T (M1)

m =
∑

γ

m(1)
γ L(1)

γ,m,

using the notation of previous works [1,2].

In what follows, the transition operators of Eq. (6) are each
discussed separately. The purpose of this part of the model
is to obtain a relationship between the effective charges and
geometrical variables and, therefore, a means of estimating
effective charges. Each total transition operator may be
multiplied by a parameter, which can be considered to be
a correction to the geometrically estimated effective charge.
(In this contribution only the E2 transition involves such a
correction factor.) The closer this factor is to 1, the better the
quality of the geometrical estimate.

To obtain the above-mentioned geometrical relationship for
the case of the relative motion, we use a geometrical mapping,
in similar form as in Ref. [8]. For the individual clusters and the
coupled cluster (C) part, the geometrical connection between
effective charges and geometrical variables is also similar to
those given in Refs. [8,29].

A. Electromagnetic effective charges

1. Electric quadrupole transition operator

The total E2 transition operator is given by

T (E2)
m =

(
5

16π

) 1
2

pe2
[
e

(2)
1 Q(2)

1,m + e
(2)
2 Q(2)

2,m + e
(2)
R Q(2)

R,m

]
,

(7)

where e
(2)
k are effective charges of clusters 1 and 2 and e

(2)
R is

the same for relative motion. Here, the quadrupole transition
operator is expressed as the sum of the quadrupole momentum
operator, Q(2)

j , associated with the different SUj (3) group, with
j = 1, 2, and R. One could include the coupled quadrupole
operator Q(2)

C,m, but this term can be expressed as a sum of

Q(2)
1,m and Q(2)

2,m, and with a simple rearrangement of terms
Eq. (7) is again obtained. The factor pe2 is the aforementioned
correction to the geometrical estimate.

Note that the mass quadrupole operator is considered here.
In order to have the charge quadrupole operator one must
multiply the mass quadrupole operator of the cluster k by Zk

Ak

and the relative mass quadrupole operator by Z
A

. Therefore, the
final expression for T (E2)

m is

T (E2)
m

=
(

5

16π

) 1
2
[
e

(2)
1

Z1

A1
Q(2)

1,m + e
(2)
2

Z2

A2
Q(2)

2,m + e
(2)
R

Z

A
Q(2)

R,m

]
.

(8)

The individual cluster contribution to the geometrical
mapping, which relates the effective charge to the total number
of oscillation quanta and the deformation, is [8]

〈
e

(2)
k Q(2)

k,m

〉 =
√

5

π
N0,kα2m(k), (9)

where k denotes cluster 1 or 2 and N0,k is the total number of
oscillation quanta plus 3

2 (Ak − 1). The Ak is the total number
of nucleons in cluster k.

For simplicity, we consider the m = 0 component of the
deformation α2m. The α20(k) in the intrinsic system is just

034309-3
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β(k), i.e., the deformation parameter of the kth cluster. The
expectation of the algebraic quadrupole operator with spin
two and projection zero with respect to a SU(3) basis is given
by

〈(λk, μk)κk = 1Lk = 2Mk = 0|Q20|(λk, μk)κk

= 1Lk = 2Mk = 0〉
= 〈(λk, μk)12, (1, 1)12||(λk, μk)12〉1

× (20, 20|20)2(−1)φ
√

C2(λk, μk)

= Q0(λk, μk). (10)

The first factor refers to an isoscalar factor [26], the second
factor is a SU(2) Clebsch-Gordan coefficient, C2(λ,μ) =
(λ2 + λμ + μ2 + 3λ + 3μ), and φ is 1 for μ �= 0 and 0 for
μ = 0. The factor 2(−1)φ

√
C2(λk, μk) is the triply reduced

matrix element of the quadrupole operator, which is a generator
of SUk(3) [26].

Therefore, the geometrical estimate of the effective charge
for the quadrupole cluster transition operator is given by

e
(2)
k =

√
5

π
N0,kβ0,k/Q0(λk, μk). (11)

Likewise, the effective charge for the radial quadrupole
transition operator associated with the relative motion can
be evaluated by the geometrical mapping of the algebraic
transition operator T (E2)

R,m , in this case taking the limit N → ∞,
as was the case in Ref. [8]. This mapping has to be of the order
of 〈

T (E2)
R,m

〉 = Z

A

〈
e

(2)
R Q(2)

R,m

〉 ≈
√

6
Z

A
[r × r][2]

m (12)

(not considering the additional factor pe2). Furthermore, it is
necessary to remember that the transition operator of Eq. (12)
is an algebraic operator without units. In order to obtain the
correct effective charge, one has to multiply by h̄

mω
, obtaining

〈
T (E2)

R,m

〉 = Z

A

h̄

mω

〈
e

(2)
R Q(2)

R,m

〉 ≈
√

6
Z

A
[r × r][2]

m . (13)

It is important to note that in the definition〈T (E2)
R,m〉 =√

6Z
A

[r × r][2]
m , a

√
6 factor has been considered, instead of√

3
2 as it was used in Refs. [1,2]. The definition used here

is closer to that of the physical definition of the quadrupole
operators, where the m = 0 projection has to be given by
2z2 − x2 − y2 for the coordinate-dependent term. Now the
geometrical mapping of the Q(2)

R,m operator (where Q(2)
R,m =√

6[π † × π̃ ][2]
m ) is given by〈

Q(2)
R,m

〉 ≈
√

6N [α × α][2]
m . (14)

Using the results obtained previously in Ref. [8], one obtains

αm ≈
√

μωr

2Nh̄
(rm − r0,m), (15)

where μ is the reduced mass and ωr =
√

A1+A2
A1A2

ω [30]. These

factors arise from the consideration that the oscillator constant,
mω2, changes after a transformation in the radial part to μω2

r ,
due to the condition that mω2 = μω2

r . Using, for simplicity,

r0,m = 0, Eq. (13) can be expressed as (again, not considering
the additional factor pe2)〈

T (E2)
R,m

〉 = Z

A

h̄

mω

〈
e

(2)
R Q(2)

R,m

〉 =
√

6e
(2)
R

Z

A

μωr

2mω
[r × r][2]

m .

(16)

This has to be compared to the classical definition of
the quadrupole operators. Comparing Eq. (12) and (16), one
obtains

e
(2)
R = 2

mω

μωr

= 2

√
A1 + A2

A1A2
. (17)

2. Electric dipole transition operator

The expectation value of the E1 transition operator is given
by [8]〈

pe1e
(1)
R D(1)

R,m

〉 = pe1e
(1)
R 〈π †

ms + s†πm〉

≈ 2pe1
(
e

(1)
R

√
N

)√μωr

2h̄
(rm − r0,m). (18)

Note that this expectation value has no units. In order to
compare it with the geometrical dipole operator, one must

multiply the above by
√

h̄
mω

. The possible additional factor,
pe1, again serves to model the deviation from the geometric
estimate. In the applications to core+α nuclei in the p and sd

shells, however, we will not adjust E1 transitions and, instead,
using the value pe1 = 1.

The classical definition of the geometrical dipole moment
for two charges, Z1 and Z2, separated by distance r0, divided
by the unit charge e, and with m = 0, is given by

D
geom
0 = A1A2

A

(
Z1

A1
− Z2

A2

)
r0. (19)

Compared with Eq. (18), and using, for simplicity, r0,m = 0,
one obtains

e
(1)
R

√
N = A1A2

A

∣∣∣∣
(

Z1

A1
− Z2

A2

)∣∣∣∣
√

mω

2μωr

, (20)

where the modulus was taken because the sign enters in
the formula for D

geom
0 . It is important to note that for the

electric dipole operator the effective charge depends on the
total number of bosons considered, N , or, in other words, on
the “cutoff.”

3. Magnetic dipole transition operator

The magnetic dipole transition operator T (M1) is defined as

T (M1) = μ0
[
g1 L(1)

m + g2 L(2)
m + gR LR

]
. (21)

No additional factor which would account for the deviation
from the geometrical estimate is introduced. The gyromagnetic
factors are given by gk = Zk

Ak
[25], and for the radial motion it

is gR = Z
A

.
The factors in Eq. (21) also give an expression for the

effective charges in front of the magnetic dipole transition
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operator considered in Eq. (6), i.e,

m
(1)
k = μ0

Zk

Ak

, m
(1)
R = μ0

Z

A
, (22)

with k = 1 or 2.

B. Electromagnetic matrix elements

In order to evaluate the electromagnetic transition inten-
sities, we calculate the matrix elements of the transitions
operators of Eq. (6) between different total irreps and total
spin.

The electromagnetic transition rates will be determined by
the reduced matrix element

〈(λ′
1, μ

′
1), (λ′

2, μ
′
2); ρ ′

C(λ′
C, μ′

C), (n′
π , 0); (λ′, μ′)K ′L′||

T (λ̄j ,μ̄j )kj lj

||(λ1, μ1), (λ2, μ2); ρC(λC,μC), (nπ, 0); (λ,μ)KL〉
(23)

via the relation (with ω = E or M , for an electric or magnetic
transition, respectively):

B(ω l; L → L′) = 2L′ + 1

2L + 1
|〈α′L′||T (λ̄,μ̄)kl||αL〉|2. (24)

Note that Eq. (24) reflects the form of the Wigner-Eckart
theorem and the definition of the doubly reduced matrix
elements followed by Escher and Draayer [26].

The different electromagnetic transitions (E1, E2, and M1)
considered here can be evaluated from the matrix elements of
Eq. (23) by defining the transition operator with the appropriate
tensorial character, and these matrix elements can be calculated
by standard SU(3) techniques [26]; the relevant formulas are
collected in Appendix B.

In order to obtain the transition intensities between different
states, it is important to remember that the Q(2)

k,mj
operators and

the angular-momentum operator L(1)
k,mj

are proportional to the
rank-2 generators of the SUj (3) groups as given in Eq. (5).

IV. SPECTROSCOPIC FACTORS

Here, we summarize the evaluation of the spectroscopic
factors within the model. For a more detailed discussion, please
consult Refs. [6,31].

The first attempt to calculate the spectroscopic factors
within the SACM was published in Ref. [32] and applied to
nuclei in the p and sd shells. Then, in Ref. [31], an exponential
ansatz, multiplied by SU(3) isoscalar factors, was proposed as
follows:

SSU(3) = exp [A + Bnπ + CC2(λ1, μ1) + DC2(λ2, μ2)

+ EC2(λc, μc) + FC2(λ,μ) + GC3(λ,μ) + H�nπ ]

× |〈(λ1, μ1)κ1L1, (λ2, μ2)κ2L2||(λC,μC)κCLC〉ρC

×〈(λC,μC)κCLC, (nπ, 0)1l||(λ,μ)κL〉1|2,
(25)

where C3(λ,μ) is the third-order Casimir operator of SU(3)
with eigenvalue (λ − μ)(2λ + μ + 3)(λ + 2μ + 3), which is

TABLE I. Parameter values used in the spectroscopic factor.

A B C D

2.1466 −0.361 13 −0.054 389 −0.117 64

E F G H

0.060 728 −0.008 665 4 0.000 021 097 1.909 01

important when distinguishing between excited states (λ,μ)
and (μ, λ). The C2(λk, μk) (k = 1, 2, C) is the second-order
Casimir operator with eigenvalue (λ2

k + λkμk + μ2
k + 3λk +

3μk). Finally, �nπ = (nπ − no) is as in Eq. (3), and l is the
angular momentum of the relative motion. This formula is
valid only for even-even nuclei, to which we restrict ourselves
here.

In Ref. [31], the parameters of this equation were fit-
ted to 17 states of core+α systems within the p and sd

shells. Because the applications in this contribution are also
core+α nuclei, we use the same parameter values, with
one exception (outlined below). These values are listed in
Table I.

The single divergence between the values used [31] and
those used herein is the parameter A; it was chosen in Ref. [31]
such that is gives 1 for the ground state of 16O + α, and
the value given here was chosen in order to reproduce the
absolute value of 0.23, as given by the microscopic calculation
of Ref. [33].

In Ref. [31], the spectroscopic factors of about 100 further
states were calculated, with agreement to within a couple of
percentages of the SU(3) microscopic calculations. Mainly,
core+α states were considered, though 15 states were included
from the 12C + 12C and 16O + 8Be systems.

The structure of the spectroscopic factor can be understood
by the following arguments: The probability of finding
two clusters separated by a distance R is proportional to

TABLE II. The values of the parameters determined by fitting
calculations to data.

12C + α 14C + α 16O + α 18O + α 20Ne + α

h̄ω 13.921 13.531 13.185 12.876 12.595
a −0.621 −0.0005 −0.469 −0.439 −1.377
a −0.230 −0.426 0.000 −0.097 −0.135
γ 0.111 0.184 0.175 0.349 0.211
aClus 0.000 0.000 0.000 0.000 0.000
b −0.023 −0.000 04 −0.001 −0.030 0.012

b −0.028 −0.027 0.000 −0.007 −0.009
c −2.232 0.706 0.483 0.200 −0.772
aC 0.036 0.763 0.000 1.367 0.555
a

(1)
R 0.163 0.143 0.000 −0.0661 0.403

t 0.000 0.672 0.000 0.784 0.638

t1 0.000 0.000 0.000 0.000 0.000
aL 0.163 0.060 0.056 −0.179 −0.010
aLn −0.037 −0.018 −0.079 0.87 × 10−3 −0.220
pe2 1.447 0.334 0.930 0.689 0.346
x 0.943 0.706 0.784 0.950 0.917
y 1.000 1.000 1.000 1.000 1.000
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TABLE III. The calculated and experimental values of the energy levels with positive parities.

L 12C + α L 14C + α L 16O + α L 18O + α L 20Ne + α

Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt.

0+
1 0.00 0.00 0+

1 0.00 0.00 0+
1 0. 0.00 0+

1 0.00 0.00 0+
1 0.00 0.00

0+
2 5.75 6.05 0+

2 3.65 3.63 0+
2 8.21 6.73 0+

2 3.55 0+
2 4.88 6.43

0+
3 7.50 11.26 0+

3 15.16 0+
3 14.60 7.19 0+

3 5.41 0+
3 9.85 10.68

0+
4 12.07 12.05 0+

4 17.94 0+
4 20.29 11.56 0+

4 12.14 0+
4 15.25 11.72

0+
5 16.60 14.03 0+

5 31.20 0+
5 25.62 12.43 0+

5 16.03 0+
5 19.42 13.04

1+
1 12.48 17.14 1+

1 24.12 2+
1 1.57 1.63 1+

1 4.13 5.33 1+
1 17.13 7.75

1+
2 15.02 1+

2 41.21 2+
2 9.06 7.42 1+

2 10.90 6.86 1+
2 21.27 9.83

1+
3 22.73 1+

3 59.86 2+
3 14.85 7.83 1+

3 16.40 1+
3 24.65 9.97

1+
4 28.47 1+

4 82.38 2+
4 19.96 9.49 1+

4 26.11 1+
4 47.55 10.71

1+
5 33.49 1+

5 2+
5 24.67 10.27 1+

5 31.51 1+
5 61.06

2+
1 7.17 6.92 2+

1 1.23 1.98 4+
1 5.14 4.25 2+

1 1.04 1.28 2+
1 1.41 1.37

2+
2 8.42 9.85 2+

2 4.12 3.92 4+
2 10.88 9.03 2+

2 4.00 4.46 2+
2 3.45 4.24

2+
3 13.04 11.52 2+

3 5.14 5.25 4+
3 15.35 9.99 2+

3 4.20 6.34 2+
3 6.48 7.35

2+
4 14.53 13.02 2+

4 16.14 8.21 4+
4 19.19 11.09 2+

4 4.68 2+
4 9.90 8.65

2+
5 16.18 16.35 2+

5 19.00 4+
5 22.58 11.93 2+

5 6.49 2+
5 11.12 9.00

3+
1 12.13 3+

1 4.30 6+
1 10.03 8.78 3+

1 9.25 3+
1 5.245 5.43

3+
2 13.58 3+

2 19.03 6+
2 12.73 3+

2 9.33 3+
2 11.52 13.43

3+
3 16.83 3+

3 24.97 6+
3 15.28 3+

3 12.97 3+
3 15.41

3+
4 17.46 3+

4 34.77 6+
4 17.50 3+

4 15.59 3+
4 16.29

3+
5 21.46 3+

5 41.71 6+
5 19.08 3+

5 16.11 3+
5 18.25

4+
1 10.35 10.36 4+

1 4.11 3.54 4+
1 3.47 3.36 4+

1 4.39 4.12
4+

2 10.56 11.10 4+
2 6.91 7.12 4+

2 6.21 6.35 4+
2 6.60 6.01

4+
3 16.51 13.87 4+

3 8.65 4+
3 6.60 4+

3 9.02 9.51
4+

4 18.21 16.84 4+
4 18.44 4+

4 7.23 4+
4 12.10 10.57

4+
5 19.86 17.78 4+

5 21.34 4+
5 9.02 4+

5 12.78 10.60
5+

1 10.95 5+
1 6.40 5+

1 18.48 5+
1 9.37 7.81

5+
2 14.65 5+

2 20.43 5+
2 18.59 5+

2 12.76
5+

3 15.19 5+
3 26.53 5+

3 22.29 5+
3 14.03

5+
4 19.21 5+

4 35.73 5+
4 24.72 5+

4 14.39
5+

5 22.37 5+
5 42.61 5+

5 25.48 5+
5 15.50

6+
1 13.86 14.82 6+

1 8.67 6+
1 7.30 6+

1 8.09
6+

2 21.40 16.28 6+
2 11.32 6+

2 9.81 6+
2 8.67

6+
3 22.68 17.56 6+

3 22.05 6+
3 10.35 6+

3 10.05
6+

4 25.80 19.31 6+
4 24.87 6+

4 11.13 6+
4 10.81

6+
5 26.14 21.05 6+

5 25.25 6+
5 13.00 6+

5 10.97

|F (R)|2 [20], where F (R) ∼ exp(−aR2) is the relative motion
wave function. On the other hand, the expectation value of
R satisfies 〈R〉 ∼ √

nπ when the SACM is mapped onto a
geometrical picture [8] and this gives rise to the nπ dependence
of the exponent. From this consideration, one expects a
negative value for the parameter B = −a. The eigenvalues
of the Casimir operators of the SU(3) groups are proportional
to the square of the deformation [29,34]. A larger deformation
corresponds to a more extended system and, thus, is also related
to the relative distance of the clusters. The SUC(3) group
describes the relative orientation of the nuclei [8] and large
eigenvalues of the corresponding Casimir operator are related
to an orientation which is less compact (more prolate), i.e.,
one can consider these operators as corrections to the overlap.
Of course, these explanations are only qualitative and a more
thorough understanding is desirable.

There is, however, a problem related to the expression in
Eq. (25), exposed in detail in Ref. [6]: In the original ansatz the
spectroscopic factor may have values greater than 1 as energy
becomes large. In Ref. [6], a novel ansatz was proposed, which
is identical to Ref. [31] for �nπ = 0, 1, and 2, by which this
problem may be circumvented.

This new ansatz for the spectroscopic factor is

SSU(3) = exp (F1 + F2)

× |〈(λ1, μ1)κ1L1, (λ2, μ2)κ2L2||(λC,μC)κCLC〉ρC

×〈(λC,μC)κCLC, (nπ, 0)1l||(λ,μ)κL〉1|2, (26)

where

F1 = [A+ Bnπ +CC2(λ1, μ1) + DC2(λ2, μ2) + EC2(λc, μc)

+FC2(λ,μ) + GC3(λ,μ)] (27)
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TABLE IV. The calculated and experimental values of the energy levels with negative parities.

L 12C + α L 14C + α L 16O + α L 18O + α L 20Ne + α

Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt.

1−
1 6.95 7.12 1−

1 4.21 4.45 1−
1 3.45 5.79 1−

1 4.58 7.50 1−
1 6.49 7.56

1−
2 9.27 9.58 1−

2 6.75 7.62 1−
2 11.28 8.71 1−

2 6.82 10.21 1−
2 7.35 8.44

1−
3 10.80 12.44 1−

3 10.24 8.04 1−
3 17.30 11.27 1−

3 9.99 1−
3 9.20 11.39

1−
4 14.16 13.09 1−

4 18.51 1−
4 22.62 11.98 1−

4 10.60 1−
4 10.79 11.86

1−
5 16.70 16.20 1−

5 22.92 1−
5 27.61 1−

5 13.60 1−
5 12.90

2−
1 9.10 8.81 2−

1 5.28 3−
1 4.63 5.62 2−

1 4.62 5.15 2−
1 6.57 8.86

2−
2 10.72 2−

2 10.56 3−
2 11.31 9.12 2−

2 10.00 2−
2 8.50

2−
3 19.23 2−

3 19.35 3−
3 16.40 12.26 2−

3 10.03 2−
3 9.62

2−
4 22.65 2−

4 26.63 3−
4 20.78 12.20 2−

4 13.82 2−
4 11.42

2−
5 24.21 2−

5 33.87 3−
5 24.72 12.40 2−

5 18.04 2−
5 13.19

3−
1 6.01 6.13 3−

1 5.41 0.10 5−
1 6.47 8.45 3−

1 9.74 10.85 3−
1 6.93 7.61

3−
2 7.99 11.6 3−

2 7.80 8.28 5−
2 10.94 3−

2 11.97 3−
2 8.021 8.36

3−
3 9.71 13.13 3−

3 10.66 5−
3 14.53 3−

3 14.99 3−
3 9.33 11.16

3−
4 12.26 13.26 3−

4 11.68 5−
4 17.50 3−

4 15.14 3−
4 10.49 11.60

3−
5 15.62 14.10 3−

5 19.31 5−
5 19.89 3−

5 15.84 3−
5 10.87 12.01

4−
1 13.52 4−

1 8.36 4−
1 7.14 4−

1 6.95
4−

2 22.23 4−
2 13.15 4−

2 12.44 4−
2 9.32

4−
3 24.39 4−

3 21.70 4−
3 12.45 4−

3 10.14
4−

4 26.87 4−
4 28.72 4−

4 16.28 4−
4 11.17

4−
5 28.71 4−

5 35.89 4−
5 18.75 4−

5 11.75

5−
1 5.69 14.66 5−

1 7.61 7.86 5−
1 19.03 5−

1 7.54 10.03
5−

2 7.57 18.40 5−
2 9.69 8.13 5−

2 21.26 5−
2 8.74

5−
3 8.81 18.60 5−

3 12.47 5−
3 24.06 5−

3 10.12
5−

4 13.67 19.25 5−
4 14.30 5−

4 24.39 5−
4 11.14

5−
5 15.91 20.54 5−

5 20.76 5−
5 25.20 5−

5 11.38
6−

1 17.86 6−
1 13.24 6−

1 11.09 6−
1 7.47

6−
2 27.01 6−

2 17.23 6−
2 16.23 6−

2 9.54
6−

3 30.89 6−
3 25.35 6−

3 16.31 6−
3 10.53

6−
4 31.29 6−

4 32.02 6−
4 20.17 6−

4 11.45
6−

5 34.28 6−
5 39.06 6−

5 22.44 6−
5 12.19

TABLE V. B(E2) transition probabilities for the systems 12C + α, 14C + α, and 16C + α.

L′ → L 12C + α L′ → L 14C + α L′ → L 16O + α

Calc. Expt. Calc. Expt. Calc. Expt.

2+
1 → 0+

1 7.49 × 10−3 3.1(1) 2+
1 → 0+

1 3.80 3.32(9) 0+
2 → 2+

1 2.15 3.6
2+

1 → 0+
2 30.74 27(3) 2+

1 → 0+
2 6.49 × 10−3 0+

2 → 2+
2 146.70

2+
1 → 0+

3 0.15 2+
1 → 0+

3 7.76 × 10−3 0+
2 → 2+

3 0.33
2+

2 → 0+
1 7.64 × 10−6 0.031(3) 2+

2 → 0+
1 1.22 1.3(2) 2+

1 → 0+
1 21.08 20.3(10)

2+
2 → 0+

2 0.03 2+
2 → 0+

2 3.37 × 10−3 2+
1 → 0+

2 0.43
2+

2 → 0+
3 136.33 2+

2 → 0+
3 9.72 × 10−6 2+

1 → 0+
3 1.83 × 10−4

2+
3 → 0+

1 0.22 1.5(5) 2+
3 → 0+

1 0.00 2.15(11) 5−
1 → 3−

1 34.34 27(6)
2+

3 → 0+
2 5.49 2+

3 → 0+
2 0.17 23(15) 5−

1 → 3−
2 4.87

2+
3 → 0+

3 0.00 2+
3 → 0+

3 6.27 × 10−5 5−
1 → 3−

3 0.11
4+

1 → 2+
1 41.28 65(6) 2+

4 → 0+
1 9.12 × 10−3 0.9(3)

4+
1 → 2+

2 10.62 2+
4 → 0+

2 1.06 × 10−4

4+
1 → 2+

3 4.77 2+
4 → 0+

3 4.86
4+

2 → 2+
1 0.97 1(3) 4+

1 → 2+
1 5.02 1.19(6)

4+
2 → 2+

2 179.12 4+
1 → 2+

2 0.06
4+

2 → 2+
3 0.29 4+

1 → 2+
3 0.01

1−
1 → 3−

1 17.37 21(5) 4+
2 → 2+

1 0.67
1−

1 → 3−
2 0.22 4+

2 → 2+
2 1.93 2.2(6)

1−
1 → 3−

3 0.40 × 10−5 4+
2 → 2+

3 1.13 × 10−3
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FIG. 1. Spectrum of the cluster system 12C + α → 16O. Thick
solid lines represent states in the 16O nucleus for which 12C(α, γ )16O
is a populating reaction. On the experimental side, thin solid lines are
not included in the fit and dashed lines represent states which are, in
addition, predicted by the theory.

and

F2 = −F1
�nπ (�nπ − 1)(�nπ − 2)

n3
π

+H
(n0 + 2)3(�nπ − 1)

n4
π

�nπ

nπ

. (28)

Both Eqs. (25) and (26) are diagonal in a SU(3) basis, which
is the reason that they are not written in terms of operators.
When mixing is included, the spectroscopic factor calculated

FIG. 2. Spectrum of the cluster system 14C + α → 18O. Thick
solid lines represent states in the 18O nucleus for which 14C(α, γ )18O
is a populating reaction. On the experimental side, thin solid lines are
not included in the fit and dashed lines represent states which are, in
addition, predicted by the theory.

will deviate from SU(3), such that it acquires the form

S =
∑

i

|ci |2SSU(3),i , (29)

where ci are the coefficients of a given state within the SU(3)
basis and i is a shorthand notation for all SU(3) quantum
numbers. (Note that in Ref. [6] we committed the error of not
squaring the coefficients.)

V. NUMERICAL STUDIES

A. Methodology

In this section we apply the model to the systems 12C + α →
16O, 14C + α → 18O, 16O + α → 20Ne, 18O + α → 22Ne,
and 20Ne + α → 24Mg. These are core+α nuclei and play
an important role in astrophysics, known as secondary α

process, as mentioned in the Introduction. Some of these
systems have already been discussed in Refs. [3,4]. However,
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FIG. 3. Spectrum of the cluster system 16O + α → 20Ne.
Thick solid lines represent states in the 20Ne nucleus for which
16O(α, γ )20Ne is a populating reaction. On the experimental side,
thin solid lines are not included in the fit and dashed lines represent
states which are, in addition, predicted by the theory.

in each case a Hamiltonian of a single dynamic symmetry
was chosen, which we abandon in our present analysis,
permitting the reproduction of transitions which belong to
different SU(3) irreps. In Ref. [6] the 14C + α and 20Ne + α

systems were investigated, restricting to the SU(3) dynamical
symmetry, which set transitions between different irreps to
zero, though experiment indicates the existence of such
transitions.

All spectral data used herein are taken from the National
Nuclear Data Center data tables [35]. These tables also list
the populating reactions of a given state. Only those states
populated by the considered clusterization are taken into
account. Problems of identification may arise when a state has
an overlap with an α process, but such has not been observed
in the corresponding experiment due to lack of sensitivity.
Due to this, fewer states appear at low energy than in fits that
include states not seen in direct reaction experiments of the
type A(α, γ )B. We will come back to this in the discussion

FIG. 4. Spectrum of the cluster system 18O + α → 22Ne.
Thick solid lines represent states in the 22Ne nucleus for which
18O(α, γ )22Ne is a populating reaction. On the experimental side,
thin solid lines are not included in the fit and dashed lines represent
states which are, in addition, predicted by the theory.

on the spectrum of 20Ne, where one particular example is
discussed.

The parameters of the Hamiltonian and the correction
factor pe2 for the B(E2) transitions have been adjusted to
the spectrum and quadrupole-transition values according to
a three-step fitting procedure. First, the SU(3) shell-model
space is constructed. Initially, this is done in the case where
only the valence shell is open. We then consider all 1h̄ω

excitations and determine the SU(3) irreps. From the obtained
list we subtract all states also obtained by multiplying the
SU(3) irreps of the 0h̄ω excitation with (1, 0) representing
spurious center-of-mass motion. We then consider all 2h̄ω

excitations, providing a further list of SU(3) irreps, and from
this we subtract all irreps obtained by multiplying the irreps
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FIG. 5. Spectrum of the cluster system 20Ne + α → 24Mg.
Thick solid lines represent states in the 24Mg nucleus for which
20Ne(α, γ )24Mg is a populating reaction. On the experimental side,
thin solid lines are not included in the fit and dashed lines represent
states which are, in addition, predicted by the theory.

of the 0h̄ω excitations with (2, 0) and all 1h̄ω excitations with
(1, 0), again eliminating spurious center-of-mass motion. This
procedure is repeated for higher h̄ω excitations. Parallel to this,
we calculate the direct product (λ1, μ1) ⊗ (λ2, μ2) ⊗ (nπ, 0),
producing a large list of SU(3) irreps. This list is compared to
the SU(3) shell-model content, and our space is made of all
states in the former which overlap with the latter. With this,
the Pauli exclusion principle is observed.

In a second step, all relevant matrix elements for the
interaction terms and electro-magnetic transition operators
are constructed. This step uses the microscopic model space
calculated in the first step. In a third and last step, the
Hamiltonian is constructed and diagonalized. Parameter values
may be either sought by fit to data or specified.

In fitting the parameters, care has to be taken; if used
blindly, the program tends to jump to the SO(4) dynamical
limit (x = 0 and y = 1). The lowest-lying states will then
exhibit a nonphysical structure, where the average number of
π bosons will jump from nπ = N (i.e., the maximal allowed
number) to nπ = n0 and so on. This is nonphysical as N is
a cutoff, and when the lowest states belong to a maximal nπ ,
no convergence of the results can be claimed. The numerical

TABLE VI. B(E2) transition probabilities for the systems 18O +
α and 20Ne + α.

L′ → L 18O + α L′ → L 20Ne + α

Calc. Expt. Calc. Expt.

2+
1 → 0+

1 11.89 12.5(5) 0+
2 → 2+

1 1.25
2+

1 → 0+
2 0.050 0+

2 → 2+
2 3.50 8.9(14)

2+
1 → 0+

3 9.59 × 10−6 0+
2 → 2+

3 51.35
2+

3 → 0+
1 1.12 >0.26 2+

1 → 0+
1 15.42 21.5(10)

2+
3 → 0+

2 0.034 2+
1 → 0+

2 0.25
2+

3 → 0+
3 2.08 × 10−6 2+

1 → 0+
3 0.02

2+
2 → 2+

1 0.16 >0.21 2+
2 → 0+

1 1.78 1.94(19)
2+

2 → 2+
3 0.20 2+

2 → 0+
2 0.70

6+
1 → 4+

1 14.45 13.7(17) 2+
2 → 0+

3 0.02
6+

1 → 4+
2 0.30 2+

1 → 2+
2 5.49

6+
1 → 4+

3 0.13 2+
1 → 2+

3 0.05

reason behind this is that in the SU(3) dynamical limit, the
sequence of states in a band behaves as L(L + 1), while in the
SO(4) case this band structure is deformed. In experimental
spectra, the dependence of the states on L is never truly
L(L + 1) though may be approximately so. Thus, in order to
reproduce the correct L dependence within a band, the program
prefers to jump to the SO(4) dynamical limit. One can reduce
this tendency by allowing only one large angular-momentum
state from the ground-state band (e.g., 4+

1 or 6+
1 ), and only

the band head of the other bands in the list of experimental
data. This method will work less when the identification of
bands is not as clear or when the order of spin states is unusual
(as in the negative-parity bands in the oxygen isotopes). All
FORTRAN programs that perform the above are available on
request.

For nuclei in the sd shell, one expects that the SU(3) dy-
namical symmetry is better realized than the others considered,
and so we begin at this limit (x = 1 and y = 1). Normally, this
yields good results, with the exception that some transition
values, which belong to transitions between different SU(3)
irreps, are calculated to be zero, while in experiment they
are not. This is corrected by seeking a value of x near, but
not exactly, 1, which allows mixing between different SU(3)
irreps. The affected transition values are then well reproduced.
We verify at the end of each step that the structure of the
low-lying states contain only low excitations in nπ and do not
approach the largest possible number, N .

After having fitted the parameters, we calculate further
states in the spectrum and additional B(E2) transition values.
In addition, we determine the B(E1) and B(M1) transitions.
As it is relevant to astrophysics, we have also calculated
spectroscopic factors of the first states in each system. The
experimental values for the spectroscopic factors were taken
from Refs. [36–41].

In the spectral plots presented, we do not use the standard
presentation in terms of bands, though in the SU(3) dynamical
limit, which is nearly realized in sd-shell nuclei, one can
associate a good K quantum number with each state. The
reason for this choice is that the bands do not follow an
L(L + 1) rule, so much so that the order of spin states is
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TABLE VII. B(M1) transition probabilities for the systems 12C + α and 14C + α.

L′ → L 12C + α L′ → L 14C + α

Calc. Expt. Calc. Expt.

2+
2 → 2+

1 1.03 × 10−5 0.0042(8) 2+
2 → 2+

1 8.20 × 10−4 0.014(2)
2+

2 → 2+
2 1.68 2+

2 → 2+
2 0.90

2+
2 → 2+

3 7.26 × 10−5 2+
2 → 2+

3 2.05 × 10−8

2+
3 → 2+

1 0.04 0.014(4) 2+
3 → 2+

1 10.60 × 10−4

2+
3 → 2+

2 2.03 × 10−5 2+
3 → 2+

2 1.17 × 10−8 0.111(8)
2+

3 → 2+
3 1.39 2+

4 → 2+
1 8.25 × 10−9

1−
4 → 1−

1 4.82 × 10−8 0.31(9) 2+
4 → 2+

2 1.71 × 10−6 0.0072(30)
1−

4 → 1−
2 9.89 × 10−4 2+

4 → 2+
3 2.73 × 10−10

1−
4 → 1−

3 2.37 × 10−6 4+
2 → 4+

1 3.74 × 10−4 0.071(16)
4+

2 → 4+
3 5.86 × 10−7

1−
2 → 1−

1 2.15 × 10−3

1−
2 → 1−

3 1.93 × 10−4

1−
3 → 1−

1 0.02 0.063(13)
1−

3 → 1−
2 1.47 × 10−4 0.07(7)

inverted in some bands. An example of this is 16,18O. This
behavior can be reproduced by a spin and nπ dependence in the
moment of inertia. Therefore, it is difficult to associate this with
a rotational band, and, thus, we prefer a simple sequential list
of states. Another reason concerns how one may reconstruct
a band without using a theoretical association with quantum
numbers: one starts with a high-angular-momentum state and
connects it with a lower-angular-momentum state with which
it shares the largest B(E2) value. This is continued until the
lowest-angular-momentum state is reached. In nuclei with a
pure SU(3) dynamical symmetry, this results in bands with the
usual L(L + 1) behavior. However, in some cases, discussed
here, this identification produces bands with inverted spin and
sometimes the B(E2) value is of similar size for two of the
lowest-angular-momentum states, which is due to mixing, i.e.,
even being near the SU(3) dynamical limit, mixing can be of
importance.

B. Results and discussion

Though the structure of the Hamiltonian used is quite
general, in the systems discussed in this paper the optimal

value for mixing parameter y turns out to be 1. Nevertheless,
for other systems, the more general Hamiltonian might be of
importance, i.e., the value of y could differ from 1 (hence its
inclusion in the development).

In Table II, the values for the parameters, fitted to experi-
mental data, are listed. Looking to the parameter pe2, it being
a guide to the quality of the model, we see that the largest
deviation from 1 was found for 14C + α, though the estimation
is only a factor of 3 out. This shows us that the M1 and E1
transitions, which were not adjusted, may be off by the same
factor in that system.

In Tables III and IV we compare calculated energy values
to experiment. The states with positive parity are listed
in Table III while those with negative parity are listed in
Table IV. In Figs. 1 to 5, the spectra of the nuclei 16O, 18O, 20Ne,
22Ne, and 24Mg are plotted, comparing model calculations with
experiment. Agreement is quite good.

One area of difficulty is in reproducing the sequence 3−,
1−, and 2− in the negative-parity band of 12C + α. (In the
other nuclei the lowest negative-parity states are quite close
compared to states within a positive-parity band.) The problem
was overcome with the introduction of interaction terms which

TABLE VIII. B(M1) transition probabilities for the systems 16O + α and 18O + α.

L′ → L 16O + α L′ → L 18O + α

Calc. Expt. Calc. Expt.

2+
3 → 2+

1 5.06 × 10−4 2.3 × 10−3(3) 1+
1 → 0+

1 0.075 0.088(19)
2+

3 → 2+
2 3.13 × 10−4 1+

1 → 0+
2 0.094

2+
4 → 2+

1 5.85 × 10−5 1+
1 → 0+

3 4.40 × 10−8

2+
4 → 2+

2 5.40 × 10−7 0.64(8) 1+
2 → 0+

1 4.07 × 10−5 0.21(5)
2+

4 → 2+
3 3.07 × 10−5 2.6 × 10−2(7) 1+

2 → 0+
2 1.21 × 10−6

4+
4 → 4+

1 6.58 × 10−4 2.2 × 10−3 1+
2 → 0+

3 0.08
4+

4 → 4+
2 4.61 × 10−6

4+
4 → 4+

3 2.35 × 10−5

3−
2 → 3−

1 7.74 × 10−4

3−
2 → 3−

3 7.37 × 10−4
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depend on the angular momentum L and on �nπ [see Eqs. (2)
and (3)]. Due to the parity and nπ dependence of the moment
of inertia, a 5− state in 16O (belonging to a 3h̄ω excitation [7])
is calculated as having quite a low energy. This is due to a
large positive aL parameter in the moment of inertia which
is multiplied by (−1)L, i.e., bringing down negative-parity
states with a large angular momentum. This might be a
peculiarity of the fit or may indicate a general behavior of
low-lying negative-parity states with large spin. However, the
value of aL is important in reproducing the spin-sequence 3−,
1−, and 2−. For the other systems, aL is either smaller or
negative.

As mentioned before, we include in the fit only states which
are seen in a direct (α, γ ) reaction. An example, as discussed
also in a supersymmetric formulation of the cluster model [42,
43], is that the first 3− state in 20Ne is at 7.156 MeV, but
we exclude it because it does not appear in the list of states
observed in the mentioned reaction. Thus, the first 3− state
we include is at 5.62 MeV, as listed in Ref. [35]. Similar
considerations apply for the other cluster systems considered
in this paper.

In Tables V and VI, the B(E2)-transition values, as
calculated in the model, are compared to experiment. The
same is listed in Tables VII, VIII, and IX for M1 transitions
and in Table X for E1 transitions. In general, the B(E2)
values are well reproduced, which, considered alongside the
good reproduction of the spectra, allows for confidence in the
SACM.

The exceptions to this agreement are the 2+
1 → 0+

1 tran-
sition in 12C + α and the transitions in 14C + α from 4+

1
to 2+

3 and from 2+
3 to 0+

2 , compared to the ground-state
band transitions, which are extremely strong in experiment.
In 12C + α this deviation might be due to the low-lying 0+
excited state and in 14C + α this indicates a different structure
of these states, being strongly deformed. One possibility [6] is
that these states are localized in a highly deformed minimum
and are out of the scope of the model Hamiltonian used here.
In this case, the reproduced spectrum of 18O has to be taken
with care, excluding those states. The M1 transitions are not so
well reproduced, also indicating a limit to the applicability of
the model. The situation is much better for the E1 transitions,
though data of appropriate clusterization was available only
for the 14C + α system.

In Ref. [6], the fitting of 14C + α was performed in the
SU(3) limit, i.e., x = 1, and as such, this was a system where
several transitions were erroneously found to be zero, as they
involved different SU(3) irreps. Allowing x to differ from 1,

TABLE IX. B(M1) transition probabilities for the system 20Ne +
α.

L′ → L 20Ne + α

Calc. Expt.

1+
3 → 0+

1 3.47 × 10−4 0.0078(20)
1+

3 → 0+
2 5.33 × 10−3

1+
3 → 0+

1 6.67 × 10−3

TABLE X. B(E1) transition probabilities for the system 14C + α.
Only the values of this system are listed, as these are the largest. For
the other systems the values determined are very small, which agrees
with experiment (either also very small or not observed).

L′ → L 14C + α

Calc. Expt.

2+
3 → 1−

1 1.74 × 10−5 0.0082(8)
2+

3 → 1−
2 1.35 × 10−6

2+
3 → 1−

3 0.46
2+

4 → 1−
1 4.1 × 10−4 0.0050(11)

2+
4 → 1−

2 0.34
2+

4 → 1−
3 8.41 × 10−4

4+
2 → 3−

1 8.91 × 10−4 0.0029(8)
4+

2 → 3−
2 6.38 × 10−6

4+
2 → 3−

3 0.39
1−

2 → 0+
1 0.53 0.000 46(11)

1−
2 → 0+

2 8.32 × 10−6

1−
2 → 0+

3 0.21
1−

4 → 0+
1 3.39 × 10−3

1−
4 → 0+

2 8.29 × 10−5 0.000 28(8)
1−

4 → 0+
3 1.58 × 10−5

1−
3 → 1+

1 6.16 × 10−5 0.000 70(17)
1−

3 → 1+
2 2.63 × 10−6

1−
3 → 1+

3 8.73 × 10−9

1−
1 → 2+

1 2.57 × 10−6 0.000 41(10)
1−

1 → 2+
2 17.9 × 10−3 0.0035(11)

1−
1 → 2+

3 2.90 × 10−5

1−
3 → 2+

1 2.59 × 10−4 0.0072(15)
1−

3 → 2+
2 2.79 × 10−6

1−
3 → 2+

3 0.78 0.0043(14)

3−
1 → 2+

1 4.67 × 10−3 0.000 57(23)
3−

1 → 2+
2 3.11 × 10−5 0.0025(11)

3−
1 → 2+

3 5.35 × 10−3

3−
2 → 2+

1 0.73
3−

2 → 2+
2 3.54 × 10−7

3−
2 → 2+

3 7.52 × 10−5 0.014(5)
3−

1 → 4+
1 2.67 × 10−4 0.000 36(15)

3−
1 → 4+

2 1.15 × 10−3

3−
1 → 4+

3 7.07 × 10−5

3−
2 → 4+

1 0.65 0.0061(16)
3−

2 → 4+
2 8.21 × 10−6

3−
2 → 4+

3 9.38 × 10−8

5−
1 → 4+

1 8.48 × 10−3 >0.0009
5−

1 → 4+
2 1.61 × 10−5

5−
1 → 4+

3 6.29 × 10−3

5−
1 → 4+

4 1.40 × 10−3

5−
1 → 4+

5 2.52 × 10−5

5−
2 → 4+

1 0.82 0.0061(11)
5−

2 → 4+
2 8.10 × 10−7

5−
2 → 4+

3 1.44 × 10−4

as discussed above, the results are now nonzero and reproduce
the experiment quite well.

Considering the difficulty of simultaneously describing a
spectrum and E2, E1, and M1 transitions with a single model,
and also taking into account that, for the latter two, only the
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TABLE XI. Spectroscopic factors for positive-parity levels. The indices a, b, and c correspond to Refs. [38,40,41], respectively.

L 12C + α L 14C + α L 16O + α L 18O + α L 20Ne + α

Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt.

0+
1 0.160 0.42a 0+

1 0.176 0+
1 0.195 0.15a 0+

1 0.068 0+
1 0.052

0+
2 0.260 0+

2 0.196 0+
2 0.108 0+

2 0.123 0+
2 0.063

0+
3 0.211 0+

3 0.100 0+
3 0.060 0+

3 0.014 0+
3 0.064

0+
4 0.150 0+

4 0.116 0+
4 0.030 0.70c 0+

4 0.027 0+
4 0.038

0+
5 0.147 0+

5 0.044 0+
5 0.013 0+

5 0.058 0+
5 0.026

1+
1 0.778 1+

1 0.121 2+
1 0.190 0.11a 1+

1 0.063 1+
1 0.025

1+
2 0.274 1+

2 0.060 2+
2 0.108 1+

2 0.016 1+
2 0.020

1+
3 0.447 1+

3 0.026 2+
3 0.060 1+

3 0.027 1+
3 0.015

1+
4 0.124 1+

4 0.011 2+
4 0.030 1+

4 0.008 1+
4 0.014

1+
5 0.207 1+

5 2+
5 0.014 1+

5 0.014 1+
5 0.010

2+
1 0.172 1.10a 2+

1 0.171 4+
1 0.176 0.12a 2+

1 0.052 2+
1 0.018

2+
2 0.202 2+

2 9.78 × 10−5 4+
2 0.104 2+

2 0.030 2+
2 0.005

2+
3 0.089 2+

3 0.170 4+
3 0.065 2+

3 0.001 2+
3 0.014

2+
4 0.089 2+

4 0.097 4+
4 0.039 0.95c 2+

4 0.100 2+
4 0.004

2+
5 0.028 2+

5 0.104 4+
5 0.020 2+

5 0.013 2+
5 0.016

3+
1 0.763 3+

1 0.168 6+
1 0.113 0.085a,c 3+

1 0.062 3+
1 0.036

3+
2 0.269 3+

2 0.096 6+
2 0.082 3+

2 0.051 3+
2 0.046

3+
3 0.635 3+

3 0.120 6+
3 0.067 3+

3 0.071 3+
3 0.015

3+
4 0.199 3+

4 0.043 6+
4 0.050 0.33c 3+

4 0.0002 3+
4 0.019

3+
5 0.438 0.28a 3+

5 0.059 6+
5 0.026 3+

5 0.016 3+
5 0.018

4+
1 0.036 4+

1 0.160 4+
1 0.024 4+

1 0.0006
4+

2 0.169 4+
2 0.002 4+

2 0.065 4+
2 0.020

4+
3 0.178 4+

3 0.106 4+
3 0.007 4+

3 0.009
4+

4 0.079 4+
4 0.092 4+

4 0.074 4+
4 0.002

4+
5 0.051 4+

5 0.0006 4+
5 0.011 4+

5 0.005
5+

1 0.254 5+
1 0.165 5+

1 0.057 5+
1 0.023

5+
2 0.188 5+

2 0.094 5+
2 0.050 5+

2 0.012
5+

3 0.602 5+
3 0.118 5+

3 0.066 5+
3 0.012

5+
4 0.417 5+

4 0.042 5+
4 0.001 5+

4 0.020
5+

5 0.115 5+
5 0.058 5+

5 0.015 5+
5 0.014

6+
1 0.138 0.28a,b 6+

1 0.139 6+
1 0.003 6+

1 0.005
6+

2 0.128 6+
2 0.008 6+

2 0.085 6+
2 0.008

6+
3 0.022 6+

3 0.082 6+
3 0.027 6+

3 0.009
6+

4 0.017 6+
4 0.003 6+

4 0.042 6+
4 0.016

6+
5 0.069 6+

5 0.046 6+
5 0.008 6+

5 0.018

geometric estimate of the effective charge was used, one can
be satisfied with the results obtained.

Tables XI and XII list the spectroscopic factors of the first
five states for each Jπ combination, with J = 0, 1, 2, 3, 4, 5, 6
for the positive-parity states and J = 1, 2, 3, 4, 5, 6 for the
negative. No 0− appears in the model space, and these
are not observed in fusion reactions which include an
α particle.

One has to be careful with the experimentally deduced
values because, usually, theoretical penetration models are
involved and, thus, the result is model dependent. The ratio
of the experimentally measured differential cross section to
that of the theoretically deduced value within a penetration
calculation is defined as the experimental measured spectro-
scopic factor. A difference of orders of magnitude may arise
due to the link to this specific model, which does not take into
account other possible structure effects such as those of the
formation of a cluster.

The theoretically determined spectroscopic factors listed in
these tables can be used in calculations of fusion cross sections.

VI. CONCLUSIONS

The SACM was applied to several secondary α fusion
processes. The Hamiltonian used is an extended version of
those formerly used and includes terms which reproduce
well the distinct behavior of states in negative-parity bands,
compared to states within positive-parity bands.

The matrix elements of all interaction terms and E2, E1,
and M1 transition operators have been listed and correspond-
ing transition values calculated. For all transition operators,
the effective charges were estimated geometrically and for
the E2 transition proved to be close to the adjusted E2
effective charges. The calculations were performed without
restricting to specific dynamical symmetry limits and instead
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TABLE XII. Spectroscopic factors for negative-parity levels. The indices c, d, e, and f correspond to Refs. [36–39], respectively.

L 12C + α L 14C + α L 16O + α L 18O + α L 20Ne + α

Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt.

1−
1 0.048 0.5d 1−

1 0.007 1−
1 0.117 1.03d 1−

1 0.002 1−
1 0.006

1−
2 0.017 1−

2 0.129 1−
2 0.071 1−

2 0.037 1−
2 0.025

1−
3 0.183 1−

3 0.126 1−
3 0.042 1−

3 0.006 1−
3 0.020

1−
4 0.136 1−

4 0.003 1−
4 0.022 1−

4 0.073 1−
4 0.021

1−
5 0.107 1−

5 0.067 1−
5 0.008 1−

5 0.009 1−
5 0.019

2−
1 0.869 2−

1 0.285 3−
1 0.112 0.87d 2−

1 0.024 2−
1 0.001

2−
2 0.394 2−

2 0.125 3−
2 0.069 2−

2 0.031 2−
2 0.002

2−
3 0.617 2−

3 0.180 3−
3 0.044 2−

3 0.037 2−
3 0.001

2−
4 0.187 2−

4 0.065 3−
4 0.024 2−

4 0.044 2−
4 0.001

2−
5 0.502 2−

5 0.091 3−
5 0.010 2−

5 0.011 2−
5 0.001

3−
1 0.185 0.56d 3−

1 0.040 5−
1 0.096 0.90d 3−

1 0.009 3−
1 0.017

3−
2 0.089 3−

2 0.124 5−
2 0.060 3−

2 0.025 3−
2 0.006

3−
3 0.100 3−

3 0.000 5−
3 0.045 3−

3 0.024 3−
3 0.009

3−
4 0.127 3−

4 0.103 5−
4 0.032 3−

4 0.001 3−
4 0.006

3−
5 0.088 3−

5 0.018 5−
5 0.019 3−

5 0.060 3−
5 0.023

4−
1 0.379 4−

1 0.283 4−
1 0.023 4−

1 0.005
4−

2 0.590 4−
2 0.124 4−

2 0.030 4−
2 0.009

4−
3 0.180 4−

3 0.177 4−
3 0.036 4−

3 0.007
4−

4 0.484 4−
4 0.064 4−

4 0.042 4−
4 0.007

4−
5 0.127 4−

5 0.089 4−
5 0.0002 4−

5 0.001

5−
1 0.180 0.39d 5−

1 0.101 0.09c 5−
1 0.019 5−

1 0.020
5−

2 0.010 5−
2 0.115 5−

2 0.012 5−
2 0.002

5−
3 0.110 5−

3 0.002 5−
3 0.043 5−

3 0.010
5−

4 0.145 5−
4 0.062 5−

4 0.005 5−
4 0.010

5−
5 0.063 5−

5 0.045 5−
5 0.045 5−

5 0.011
6−

1 0.352 6−
1 0.280 0.27e, 0.16f , 0.05f 6−

1 0.021 6−
1 0.011

6−
2 0.166 6−

2 0.121 6−
2 0.030 6−

2 0.016
6−

3 0.438 6−
3 0.170 6−

3 0.031 6−
3 0.013

6−
4 0.122 6−

4 0.062 6−
4 0.039 6−

4 0.013
6−

5 0.276 6−
5 0.086 6−

5 0.001 6−
5 0.002

allowing mixing. The overall agreement with experiment
is quite satisfactory, showing that the SACM is able to
describe complicated structures of cluster systems in the
sd shell.

The spectroscopic factors of the systems were also cal-
culated and listed for later use in experimental deduction
of fusion cross sections. In Ref. [31], it was shown that the
SU(3) spectroscopic factors are reproduced extremely well for
core+α systems. Here, we presented results of these factors
near, but not in, the SU(3) limit.
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APPENDIX A

Here, we present the formulas needed for the calculation of the matrix elements of the Hamiltonian, given in Eqs. (2) and (3).
We start by considering only the nondiagonal interaction related to the SO(4) Hamiltonian. We use the formulas of Ref. [26], as
listed in its Appendix. The triply reduced matrix elements of the bilinear products of creation and annihilation operators of the
relative quanta are given by

〈(n′
π , 0)|||[π † ⊗ π †](2,0)|||(nπ, 0)〉 = √

n′
π (n′

π − 1)δn′
π ,nπ +2

〈(n′
π , 0)|||[π ⊗ π ](0,2)|||(nπ, 0)〉 = √

(n′
π + 3)(n′

π + 4)δn′
π ,nπ −2. (A1)
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The triply reduced matrix elements of a pair of boson creation operators is given by

〈ρ ′
C(λ′

C, μ′
C), (n′

π , 0), (λ′, μ′)|||[π † ⊗ π †](2,0)|||ρC(λC,μC), (nπ, 0), (λ,μ)〉1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λC,μC) (0, 0) (λ′
C, μ′

C) 1

(nπ, 0) (2, 0) (n′
π , 0) 1

(λ,μ) (2, 0) (λ′, μ′) 1

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

〈(n′
π , 0)|||[π † ⊗ π †](2,0)|||(nπ, 0)〉1δ(λ′

C,μ′
C ),(λC,μC )δρ ′

C,ρC
(A2)

and a similar relation holds for the two annihilation operators. The symbol { } stands for the 9-(λ,μ) symbol. Please note that
the total number of bosons (N ) is conserved; thus, the number of σ bosons is determined by nπ , so our shorthand notation for
the basis states is complete.

The next type of interaction is the product of two creation and two annihilation operators, i.e.,

〈ρ ′
C(λ′

C, μ′
C), (n′

π , 0), (λ′, μ′)|||[[π † ⊗ π †](2,0) ⊗ [π ⊗ π ](0,2)](λ0,λ0)|||ρC(λC,μC), (nπ, 0), (λ,μ)〉1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λC,μC) (0, 0) (λ′
C, μ′

C) 1

(nπ, 0) (λ0, λ0) (n′
π , 0) 1

(λ,μ) (λ0, λ0) (λ′, μ′) 1

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

δ(λ′
C,μ′

C ),(λC,μC )δρ ′
C,ρC

δn′
π ,nπ

×〈(n′
π , 0)|||[π † ⊗ π †](2,0)|||(nπ − 2, 0)〉1〈(nπ − 2, 0)||| [π ⊗ π](0,2) |||(nπ, 0)〉1

×U [(nπ, 0)(0, 2)(n′
π , 0)(20); (nπ − 2, 0)11(λ0, λ0)11], (A3)

with λ0 = 0, 1, 2 and U [· · ·] being the SU(3) Racah coefficient [26]. Here, only irreps of the form (λ0, λ0) appear and any
others can be deduced as follows: A creation operator of π bosons transforms as (1, 0) and a product of two as (2, 0), because
this product is symmetric. For the annihilation operators the argument is the same, except that one annihilation operator
transforms as (0, 1) and two as (0, 2). A product of two creation and two annihilation operators thus can be coupled to
(2, 0) ⊗ (0, 2) = (2, 2) + (1, 1) + (0, 0), i.e., to irreps with μ0 = λ0. The Kronecker δ function for the nπ bosons enters because
the operator in consideration does not change this number.

In the Hamiltonian, only those products of two creation and two annihilation operators appear, which are coupled to zero
angular momentum. Their relations to the SU(3) tensor products are

(π † · π †) =
√

3〈(1, 0)11, (1, 0)11||(2, 0)10〉1[π † ⊗ π †](2,0)
100

(π · π) =
√

3〈(0, 1)11, (0, 1)11||(0, 2)10〉1[π ⊗ π](0,2)
100 (A4)

and

(π † · π †)(π · π ) = 3
∑
λ0

〈(1, 0)11, (1, 0)11||(2, 0)10〉1〈(0, 1)11, (0, 1)11||(0, 2)10〉1

×〈(2, 0)10, (0, 2)10||(λ0, λ0)10〉1[[π † ⊗ π †](2,0) ⊗ [π ⊗ π ](0,2)](λ0,λ0)
100 , (A5)

where the subindex in the last line refers to the multiplicity κ = 1, angular momentum L = 0, and its projection m = 0,
respectively.

The matrix elements of the σ † and σ operators are

〈n′
σ |σ †|nσ 〉 = δn′

σ nσ +1

√
nσ + 1

〈n′
σ |σ |nσ 〉 = δn′

σ nσ −1
√

nσ

〈n′
σ |σ †σ |nσ 〉 = δn′

σ nσ
nσ (A6)

〈n′
σ |(σ †)2|nσ 〉 = δn′

σ nσ +2

√
(nσ + 1)(nσ + 2)

〈n′
σ |(σ )2|nσ 〉 = δn′

σ nσ −2

√
nσ (nσ − 1),

where we denoted the basis states by the nσ = N − nπ quantum number.
For the quadrupole and angular-momentum interaction we have, in general,

Q · Q = 4C2(SU(3)) − 3L2, (A7)

with

L2 =
√

15

8
[C (1,1) ⊗ C (1,1)](2,2)

100 +
√

9

8
[C (1,1) ⊗ C (1,1)](0,0)

100 , (A8)
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where C (1,1) are the generators of any of the SU(3) groups. In order to evaluate the matrix elements of the quadrupole-quadrupole
interaction, the following triply reduced matrix elements are needed,

〈(λ′
1, μ

′
1), (λ′

2, μ
′
2); ρ ′

C(λ′
C, μ′

C), (n′
π , 0); (λ′, μ′)|∣∣∣∣[C (1,1)

i ⊗ C (1,1)
i

](0,0)∣∣∣∣|(λ1, μ1), (λ2, μ2); ρC(λC,μC), (nπ, 0); (λ,μ)〉1

= δnπ ,n′
π
δ(λC,μC ),(λ′

C,μ′
C )δ(λ,μ),(λ′,μ′)δρ ′

C,ρC
δ(λ1,μ1),(λ′

1,μ
′
1)δ(λ2,μ2),(λ′

2,μ
′
2)〈(λi, μi)|

∣∣∣∣[C (1,1)
i ⊗ C (1,1)

i

](0,0)∣∣∣∣|(λi, μi)〉ρi=1, (A9)

where

〈(λi, μi)|
∣∣∣∣[C (1,1)

i ⊗ C (1,1)
i

](0,0)∣∣∣∣|(λi, μi)〉ρi=1 =
√

2

3

(
λ2

i + μ2
i + λiμi + 3λi + 3μi

)
. (A10)

Next we need to evaluate the triply reduced matrix element,

〈(λ′
1, μ

′
1), (λ′

2, μ
′
2); ρ ′

C(λ′
C, μ′

C), (n′
π , 0); (λ′, μ′)|∣∣∣∣[C (1,1)

i ⊗ C (1,1)
i

](2,2)∣∣∣∣|(λ1, μ1), (λ2, μ2); ρC(λC,μC), (nπ, 0); (λ,μ)〉ρ.

(A11)

The evaluation of this term depends on the value taken by i (i = 1, 2, C,R). In the i = 1 case,

〈(λ′
1, μ

′
1), (λ′

2, μ
′
2); ρ ′

C(λ′
C, μ′

C), (n′
π , 0); (λ′, μ′)|∣∣∣∣[C (1,1)

1 ⊗ C (1,1)
1

](2,2)∣∣∣∣|(λ1, μ1), (λ2, μ2); ρC(λC,μC), (nπ, 0); (λ,μ)〉ρ

= δnπ ,n′
π
δ(λ2,μ2),(λ′

2,μ
′
2)

∑
ρ̃C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λC,μC) (2, 2) (λ′
C, μ′

C) ρ̃C

(nπ, 0) (0, 0) (nπ, 0) 1

(λ,μ) (2, 2) (λ′, μ′) ρ

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∑
ρ̃

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λ1, μ1) (2, 2) (λ′
1, μ

′
1) ρ̃

(λ2, μ2) (0, 0) (λ2, μ2) 1

(λC,μC) (2, 2) (λ′
C, μ′

C) ρ̃C

ρC 1 ρ ′
C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

×〈(λ′
1, μ

′
1)|∣∣∣∣[C (1,1)

1 ⊗ C (1,1)
1

](2,2)∣∣∣∣|(λ1, μ1)〉ρ̃ , (A12)

where

〈(λ′
1, μ

′
1)|∣∣∣∣[C (1,1)

1 ⊗ C (1,1)
1

](2,2)∣∣∣∣|(λ1, μ1)〉ρ̃
=

∑
(λ′′

1 ,μ
′′
1)ρ⊗ρ∗

〈(λ′
1, μ

′
1)|∣∣∣∣C (1,1)

1

∣∣∣∣|(λ′′
1, μ

′′
1)〉ρ⊗〈(λ′′

1, μ
′′
1)|∣∣∣∣C (1,1)

1

∣∣∣∣|(λ1, μ1)〉ρ∗

×
∑
ρk

�1ρk
[(1, 1) , (1, 1) , (2, 2)]U [(λ1, μ1)(1, 1)(λ′

1, μ
′
1)(1, 1); (λ′′

1, μ
′′
1)ρ∗ρ⊗(2, 2)ρkρ̃]

= δ(λ1,μ1),(λ′
1,μ

′
1)
[〈(λ1, μ1)|∣∣∣∣C (1,1)

1

∣∣∣∣|(λ1, μ1)〉1
]2

U [(λ1, μ1)(1, 1)(λ1, μ1)(1, 1); (λ1, μ1)11(2, 2)1ρ̃] , (A13)

with

〈(λj , μj )|∣∣∣∣C(1,1)
j

∣∣∣∣|(λj , μj )〉ρj =1 = (−1)φ
(

4

3

(
λ2

j + μ2
j + λjμj + 3λj + 3μj

))1/2

, (A14)

where φ = 0 holds if μj = 0, and φ = 1 otherwise. This is in accordance with Ref. [26].
Now for i = 2, we obtain

〈(λ′
1, μ

′
1), (λ′

2, μ
′
2); ρ ′

C(λ′
C, μ′

C), (n′
π , 0); (λ′, μ′)|∣∣∣∣[C (1,1)

2 ⊗ C (1,1)
2

](2,2)∣∣∣∣|(λ1, μ1), (λ2, μ2); ρC(λC,μC), (nπ, 0); (λ,μ)〉ρ

= δnπ ,n′
π
δ(λ1,μ1),(λ′

1,μ
′
1)

∑
ρ̃C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λC,μC) (2, 2) (λ′
C, μ′

C) ρ̃C

(nπ, 0) (0, 0) (nπ, 0) 1

(λ,μ) (2, 2) (λ′, μ′) ρ

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∑
ρ̃

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λ1, μ1) (0, 0) (λ1, μ1) 1

(λ2, μ2) (2, 2) (λ′
2, μ

′
2) ρ̃

(λC,μC) (2, 2) (λ′
C, μ′

C) ρ̄C

ρC 1 ρ ′
C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

×〈(λ′
2, μ

′
2)|∣∣∣∣[C (1,1)

2 ⊗ C (1,1)
2

](2,2)∣∣∣∣|(λ2, μ2)〉ρ̃ , (A15)
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where

〈(λ′
2, μ

′
2)|∣∣∣∣[C (1,1)

2 ⊗ C (1,1)
2

](2,2)∣∣∣∣|(λ2, μ2)〉ρ̃
=

∑
(λ′′

2 ,μ
′′
2)ρ⊗ρ∗

〈(λ′
2, μ

′
2)|∣∣∣∣C (1,1)

2

∣∣∣∣|(λ′′
2, μ

′′
2)〉ρ⊗〈(λ′′

2, μ
′′
2)|∣∣∣∣C (1,1)

2

∣∣∣∣|(λ2, μ2)〉ρ∗

×
∑
ρk

�1ρk
[(1, 1), (1, 1), (2, 2)]U [(λ2, μ2)(1, 1)(λ′

2, μ
′
2)(1, 1); (λ′′

2, μ
′′
2)ρ∗ρ⊗(2, 2)ρkρ̃]

= δ(λ2,μ2),(λ′
2,μ

′
2)
[〈(λ2, μ2)|∣∣∣∣C (1,1)

2

∣∣∣∣|(λ2, μ2)〉1
]2

U [(λ2, μ2)(1, 1)(λ2, μ2)(1, 1); (λ2, μ2)11(2, 2)1ρ̃]. (A16)

Similarly, we can obtain for the case i = R the next result,

〈(λ′
1, μ

′
1), (λ′

2, μ
′
2); ρ ′

C(λ′
C, μ′

C), (n′
π , 0); (λ′, μ′)|∣∣∣∣[C (1,1)

R ⊗ C (1,1)
R

](2,2)∣∣∣∣|(λ1, μ1), (λ2, μ2); ρC(λC,μC), (nπ, 0); (λ,μ)〉ρ

= δ(λ1,μ1),(λ′
1,μ

′
1)δ(λ2,μ2),(λ′

2,μ
′
2)δ(λC,μC ),(λ′

C,μ′
C )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λC,μC) (0, 0) (λC,μC) 1

(nπ, 0) (2, 2) (n′
π , 0) 1

(λ,μ) (2, 2) (λ′, μ′) ρ

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

〈(n′
π , 0)|∣∣∣∣[C (1,1)

R ⊗ C (1,1)
R

](2,2)∣∣∣∣|(nπ, 0)〉1,

(A17)

where

〈(n′
π , 0)|∣∣∣∣[C (1,1)

R ⊗ C (1,1)
R

](2,2)∣∣∣∣|(nπ, 0)〉1

=
∑

n′′
π ρ⊗ρ∗

〈(n′
π , 0)|∣∣∣∣C (1,1)

R

∣∣∣∣|(n′′
π , 0)〉ρ⊗〈(n′′

π , 0)|∣∣∣∣C (1,1)
R

∣∣∣∣|(nπ, 0)〉ρ∗

×
∑
ρk

�1ρk
[(1, 1) , (1, 1) , (2, 2)]U [(nπ, 0)(1, 1)(n′

π , 0)(1, 1); (n′′
π , 0)ρ∗ρ⊗(2, 2)ρk1]

= δnπ ,n′
π

[〈(nπ, 0)|∣∣∣∣C (1,1)
R

∣∣∣∣|(nπ, 0)〉1
]2

U [(nπ, 0)(1, 1)(nπ, 0)(1, 1); (nπ, 0)11(2, 2)11]. (A18)

Finally, when i = C, we have

〈(λ′
1, μ

′
1), (λ′

2, μ
′
2); ρ ′

C(λ′
C, μ′

C), (n′
π , 0); (λ′, μ′)|∣∣∣∣[C (1,1)

C ⊗ C (1,1)
C

](2,2)∣∣∣∣|(λ1, μ1), (λ2, μ2); ρC(λC,μC), (nπ, 0); (λ,μ)〉ρ

= δnπ ,n′
π

∑
ρ̃C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λC,μC) (2, 2) (λ′
C, μ′

C) ρ̃C

(nπ, 0) (0, 0) (nπ, 0) 1

(λ,μ) (2, 2) (λ′, μ′) ρ

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

〈(λ′
C, μ′

C)|∣∣∣∣[C (1,1)
C ⊗ C (1,1)

C

](2,2)∣∣∣∣|(λC,μC)〉ρ̃C
, (A19)

where

〈(λ′
C, μ′

C)|∣∣∣∣[C (1,1)
C ⊗ C (1,1)

C

](2,2)∣∣∣∣|(λC,μC)〉ρ̃C

=
∑

(λ′′
C,μ′′

C )ρ⊗ρ∗
〈(λ′

C, μ′
C)|∣∣∣∣C (1,1)

R

∣∣∣∣|(λ′′
C, μ′′

C)〉ρ⊗〈(λ′′
C, μ′′

C)|∣∣∣∣C (1,1)
R

∣∣∣∣|(λC,μC)〉ρ∗

×
∑
ρk

�1ρk
[(1, 1) , (1, 1) , (2, 2)] U [(λC,μC)(1, 1)(λ′

C, μ′
C)(1, 1); (λ′′

C, μ′′
C)ρ∗ρ⊗(2, 2)ρkρ̃C]

= δ(λC,μC ),(λ′
C,μ′

C )
[〈(λC,μC)|∣∣∣∣C (1,1)

C

∣∣∣∣|(λC,μC)〉1
]2

U [(λC,μC)(1, 1)(λC,μC)(1, 1); (λC,μC)11(2, 2)1ρ̃C]. (A20)

Next we need to evaluate the following interaction terms which appear in the Hamiltonian (2) and (3),

Qi · Qj = −3

√
15

8

[
C (1,1)

i ⊗ C (1,1)
j

](2,2)
100 + 5

√
9

8

[
C (1,1)

i ⊗ C (1,1)
j

](0,0)
100 , (A21)
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with i = 1, 2, and j = R, additionally

Li · Lj =
√

15

8

[
C (1,1)

i ⊗ C (1,1)
j

](2,2)
100 +

√
9

8

[
C (1,1)

i ⊗ C (1,1)
j

](0,0)
100 , (A22)

where C (1,1)
i are the generators of the SUi(3) group. For the case of i = 1 we obtain

〈(λ′
1, μ

′
1), (λ′

2, μ
′
2); ρ ′

C(λ′
C, μ′

C), (n′
π , 0); (λ′, μ′)|∣∣∣∣[C (1,1)

1 ⊗ C (1,1)
R

](0,0)∣∣∣∣|(λ1, μ1), (λ2, μ2); ρC(λC,μC), (nπ, 0); (λ,μ)〉1

= δnπ ,n′
π
δ(λ,μ),(λ′,μ′)δ(λ1,μ1),(λ′

1,μ
′
1)δ(λ2,μ2),(λ′

2,μ
′
2)

∑
ρ̃C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λC,μC) (1, 1) (λ′
C, μ′

C) ρ̃C

(nπ, 0) (1, 1) (nπ, 0) 1

(λ,μ) (0, 0) (λ,μ) 1

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λ1, μ1) (1, 1) (λ1, μ1) 1

(λ2, μ2) (0, 0) (λ2, μ2) 1

(λC,μC) (1, 1) (λ′
C, μ′

C) ρ̃C

ρC 1 ρ ′
C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

×〈(λ1, μ1)|∣∣∣∣C (1,1)
1

∣∣∣∣|(λ1, μ1)〉(nπ, 0)
∣∣∣∣∣∣C (1,1)

R

∣∣∣∣|(nπ, 0)〉 (A23)

and

〈(λ′
1, μ

′
1), (λ′

2, μ
′
2); ρ ′

C(λ′
C, μ′

C), (n′
π , 0); (λ′, μ′)|∣∣∣∣[C (1,1)

1 ⊗ C (1,1)
R

](2,2)∣∣∣∣|(λ1, μ1), (λ2, μ2); ρC(λC,μC), (nπ, 0); (λ,μ)〉ρ

= δnπ ,n′
π
δ(λ1,μ1),(λ′

1,μ
′
1)δ(λ2,μ2),(λ′

2,μ
′
2)

∑
ρ̃C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λC,μC) (1, 1) (λ′
C, μ′

C) ρ̃C

(nπ, 0) (1, 1) (nπ, 0) 1

(λ,μ) (2, 2) (λ′, μ′) ρ

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λ1, μ1) (1, 1) (λ1, μ1) 1

(λ2, μ2) (0, 0) (λ2, μ2) 1

(λC,μC) (1, 1) (λ′
C, μ′

C) ρ̃C

ρC 1 ρ ′
C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

×〈(λ1, μ1)|∣∣∣∣C (1,1)
1

∣∣∣∣|(λ1, μ1)〉(nπ, 0)
∣∣∣∣∣∣C (1,1)

R

∣∣∣∣|(nπ, 0)〉, (A24)

similar formulas can be obtained for the second cluster (i = 2).

APPENDIX B

1. Matrix elements for the electric quadrupole transitions

The relations of the quadrupole operator to the C
(1,1)
2m generators of the SU(3) group, expressed in terms of SU(3)-coupled

π -boson creation and annihilation operators [26], are

Q(2)
i m = 1√

3
C

(1,1)
2m =

√
2

3
[π † ⊗ π ](1,1)

2m , (B1)

where i = 1, 2 and, for the relative motion, Q(2)
R m is given by

Q(2)
R m =

√
3C

(1,1)
2m =

√
6[π † ⊗ π](1,1)

2m . (B2)

With the standard SU(3) coupling and recoupling techniques the following matrix elements are obtained in terms of SU(3)
isoscalar factors and 9(λ,μ) symbols.

〈
(λ′

1, μ
′
1), (λ′

2, μ
′
2); ρ ′

C(λ′
C, μ′

C), (n′
π , 0); (λ′, μ′)K ′L′∣∣∣∣Q(2)12

1

∣∣∣∣(λ1, μ1), (λ2, μ2); ρC(λC,μC), (nπ, 0); (λ,μ)KL
〉

= 1√
3
δnπ ,n′

π
δ(λ1,μ1),(λ′

1,μ
′
1)δ(λ2,μ2),(λ′

2,μ
′
2)〈(λ1, μ1)|∣∣∣∣C(1,1)

1

∣∣∣∣|(λ1, μ1)〉ρ1=1

∑
ρ̃

〈(λ,μ)KL, (1, 1)12||(λ′, μ′)K ′L′〉ρ̃

×
∑
ρ̃C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λC,μC) (1, 1) (λ′
C, μ′

C) ρ̃C

(nπ, 0) (0, 0) (nπ, 0) 1

(λ,μ) (1, 1) (λ′, μ′) ρ̃

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λ1, μ1) (1, 1) (λ1, μ1) 1

(λ2, μ2) (0, 0) (λ2, μ2) 1

(λC,μC) (1, 1) (λ′
C, μ′

C) ρ̃C

ρC 1 ρ ′
C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (B3)

Note that in several places the multiplicities of the SU(3) couplings turn out to be 1, partly due to the fact that the multiplication
involved SU(3) irreps of the type (λ, 0) or (0, μ) and partly because the group generator appeared in the product.
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A similar formula results for the quadrupole momentum operator of the other cluster,

〈
(λ′

1, μ
′
1), (λ′

2, μ
′
2); ρ ′

C(λ′
C, μ′

C), (n′
π , 0); (λ′, μ′)K ′L′∣∣∣∣Q(2)12

2

∣∣∣∣(λ1, μ1), (λ2, μ2); ρC(λC,μC), (nπ, 0); (λ,μ)KL
〉

= 1√
3
δnπ ,n′

π
δ(λ1,μ1),(λ′

1,μ
′
1)δ(λ2,μ2),(λ′

2,μ
′
2)〈(λ2, μ2)|∣∣∣∣C(1,1)

2

∣∣∣∣|(λ2, μ2)〉ρ2=1

∑
ρ̃

〈(λ,μ)KL, (1, 1)12||(λ′, μ′)K ′L′〉ρ̃

×
∑
ρ̃C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λC,μC) (1, 1) (λ′
C, μ′

C) ρ̃C

(nπ, 0) (0, 0) (nπ, 0) 1

(λ,μ) (1, 1) (λ′, μ′) ρ̃

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λ1, μ1) (0, 0) (λ1, μ1) 1

(λ2, μ2) (1, 1) (λ2, μ2) 1

(λC,μC) (1, 1) (λ′
C, μ′

C) ρ̃C

ρC 1 ρ ′
C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (B4)

Somewhat simpler formulas hold for the joint cluster (C) and relative (R) quadrupole momentum operators. Of these, the first
is not independent, but rather it should be the sum of Eqs. (B3) and (B4), but we present it because it has a simpler form this way:

〈
(λ′

1, μ
′
1), (λ′

2, μ
′
2); ρ ′

C(λ′
C, μ′

C), (n′
π , 0); (λ′, μ′)K ′L′∣∣∣∣Q(2)12

C

∣∣∣∣(λ1, μ1), (λ2, μ2); ρC(λC,μC), (nπ, 0); (λ,μ)KL
〉

= 1√
3
δnπ ,n′

π
δ(λC,μC ),(λ′

C,μ′
C )δρ ′

C,ρC
〈(λC,μC)|∣∣∣∣C(1,1)

C

∣∣∣∣|(λC,μC)〉ρ̃C=1

×
∑

ρ̃

〈(λ,μ)KL, (1, 1)12||(λ′, μ′)K ′L′〉ρ̃

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λC,μC) (1, 1) (λ′
C, μ′

C) ρ̃C = 1

(nπ, 0) (0, 0) (n′
π , 0) 1

(λ,μ) (1, 1) (λ′, μ′) ρ̃

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (B5)

Similarly, for the relative (R) quadrupole momentum operator, one obtains

〈
(λ′

1, μ
′
1), (λ′

2, μ
′
2); ρ ′

C(λ′
C, μ′

C), (n′
π , 0); (λ′, μ′)K ′L′∣∣∣∣Q(2)12

R

∣∣∣∣(λ1, μ1), (λ2, μ2); ρC(λC,μC), (nπ, 0); (λ,μ)KL
〉

=
√

3δnπ ,n′
π
δ(λC,μC ),(λ′

C,μ′
C )δρ ′

C,ρC
δ(λ1,μ1),(λ′

1,μ
′
1)δ(λ2,μ2),(λ′

2,μ
′
2)〈(nπ, 0)|∣∣∣∣C(1,1)

R

∣∣∣∣|(nπ, 0)〉ρ̃R=1

×
∑

ρ̃

〈(λ,μ)KL, (1, 1)12||(λ′, μ′)K ′L′〉ρ̃

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λC,μC) (0, 0) (λC,μC) 1

(nπ, 0) (1, 1) (n′
π , 0) ρ̃R = 1

(λ,μ) (1, 1) (λ′, μ′) ρ̃

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (B6)

In all the above formulas the triply reduced matrix elements can be evaluated from the equation

〈(λj , μj )|∣∣∣∣C(1,1)
j

∣∣∣∣|(λj , μj )〉ρj =1 = (−1)φ
[

4

3

(
λ2

j + μ2
j + λjμj + 3λj + 3μj

)]1/2

, (B7)

where j = 1, 2, C or R, and φ = 0 holds if μj = 0 and φ = 1 otherwise. This choice is in accordance with the convention
adopted by Escher and Draayer [26].

2. Matrix elements for the electric dipole transitions

The electric dipole transition operator given by

〈
e

(1)
R D(1)

R,m

〉 = e
(1)
R 〈π †

ms + s†πm〉, (B8)

and is the sum of two SUR(3) tensors, π
†
m with (λR,μR) = (1, 0) and πm with (λR,μR) = (0, 1). The first increases the number

of π bosons by one unit, while the latter decreases it by one unit. Considering the general form of the dipole transition
operator D(λR,μR ), and having in mind that this operator acts only on the radial part of the wave function, its matrix element is
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given by〈
(λ′

1, μ
′
1), (λ′

2, μ
′
2); ρ ′

C(λ′
C, μ′

C), (n′
π , 0); (λ′, μ′)K ′L′∣∣∣∣D(λR,μR )01

R

∣∣∣∣(λ1, μ1), (λ2, μ2); ρC(λC,μC), (nπ, 0); (λ,μ)KL
〉

= δ(λC,μC ),(λ′
C,μ′

C )δρ ′
C,ρC

δ(λ1,μ1),(λ′
1,μ

′
1)δ(λ2,μ2),(λ′

2,μ
′
2)〈(n′

π , 0)|∣∣∣∣D(λR,μR )
R

∣∣∣∣|(nπ, 0)〉ρ̃R=1

∑
ρ̃

〈(λ,μ)KL, (λR,μR)01||(λ′, μ′)K ′L′〉ρ̃

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λC,μC) (0, 0) (λC,μC) 1

(nπ, 0) (λR,μR) (n′
π , 0) ρ̃R = 1

(λ,μ) (λR,μR) (λ′, μ′) ρ̃

1 1 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (B9)

The triply reduced matrix elements can be calculated from that of the π -boson creation and annihilation operators. In the former
case they are

〈(n′
π , 0)|∣∣∣∣D(1,0)

R

∣∣∣∣|(nπ, 0)〉 = 〈(n′
π , 0)|∣∣∣∣π †(1,0)

∣∣∣∣|(nπ, 0)〉 = δn′
π ,nπ +1(nπ + 1)1/2. (B10)

This result follows from the fact that D(1,0)
R is nothing but a π -boson creation operator coupled trivially to the σ -boson annihilating

operator. A similar formula can be obtained for D
(0,1)
R as follows:

〈(n′
π , 0)|∣∣∣∣D(0,1)

R

∣∣∣∣|(nπ, 0)〉 = 〈(n′
π , 0)|∣∣∣∣π (0,1)

∣∣∣∣|(nπ, 0)〉 = δn′
π ,nπ −1(nπ )1/2. (B11)

3. Matrix elements for the magnetic dipole transitions

Similarly to the quadrupole momentum matrix elements, there are three independent operators L
(1)
j , j = 1, 2, R, while the

matrix elements of the dependent operators L
(1)
C = L

(1)
1 + L

(1)
2 and L = L

(1)
C + L

(1)
R can also be calculated in a simplified form.

Actually, since these operators are also (rank-1) generators of the appropriate SUj (3) group, their matrix elements can be
evaluated in analogy to Eqs. (B3) to (B6) with the following considerations:

(i) Everywhere the isoscalar factor 〈(λ,μ)KL, (1, 1)12||(λ′, μ′)K ′L′〉ρ̃ appears it must be replaced with
〈(λ,μ)KL, (1, 1)11||(λ′, μ′)K ′L′〉ρ̃ .

(ii) According to the convention used by Escher and Draayer [26], L
(1)
i mj

= C (1,1)1 1
i mj

, so there is no additional coefficient to be
considered for these matrix transition operators.
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[42] G. Lévai, J. Cseh, and P. van Isacker, Eur. Phys. J. A 12, 305

(2001).
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