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Extension of the Siegert theorem for photon emission
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When the long-wavelength approximation is not performed, extensions of the Siegert theorem can take various
forms. An alternative expression is derived for the electric multipole fields, which is inspired by earlier works on
photonuclear reactions. It is applied to the Siegert transformation of electric transition operators for single photon
emission. In the particular case of isospin forbidden E1 transitions, which can be useful for some important
radiative capture reactions, an approximation of this electric transition operator is established and discussed.
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I. INTRODUCTION

The electric transition operators describing photon emission
or absorption depend on a current operator that is not com-
pletely known. Corrections due to meson exchange currents
are difficult to establish and must be consistent with the
nucleon-nucleon force employed in the nuclear Hamiltonian.
For these reasons, electric transition operators are better
expressed by using the so-called Siegert theorem (i.e., using
current conservation to replace the nuclear current as a function
of the charge density of the nucleus). At the long-wavelength
approximation, the Siegert hypothesis states that the main
effects of meson exchange currents are then included in the
operator [1]. Spontaneous photon emission usually occurs at
energies where the long-wavelength approximation is valid.

Beyond the long-wavelength approximation, the Siegert
transformation of the electric term can not be performed
fully [2] and is not unique any more [3]. Even when the gauge
is fixed, the electric multipoles of the electromagnetic field can
be written in an infinite number of ways [3] as

AEλ
μ (r) = ∇�λμ(r) + A′Eλ

μ (r). (1)

Any modification of �λμ can be compensated by a modifi-
cation of A′Eλ

μ . The compatibility with the long-wavelength
approximation restricts �λμ to forms possessing the limit,
when the photon wave number k vanishes,

�λμ(r) ∼
k→0

rλYλμ(�). (2)

A part of the nuclear current is then eliminated from transition
operators with the Siegert theorem,∫

J c(r) · ∇�λμ(r)d r = i

h̄

∫
�λμ(r)[H, ρ(r)]d r, (3)

where J c(r) is the convection current density, ρ(r) is the
charge density, and H is the Hamiltonian of the nuclear system.
Physical results would be independent of the choice of �λμ as
long as the term involving A′Eλ

μ is taken into account, if exact
energies and wave functions and currents consistent with the
Hamiltonian are used [3].
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For many applications involving spontaneous photon emis-
sion, the long-wavelength approximation is excellent and
the residual term involving A′Eλ

μ can safely be neglected
if condition (2) is satisfied. The situation is very different
in photonuclear physics where higher photon energies are
used [3]. In this case, different extensions of the Siegert
theorem have been studied and compared. Friar and Fallieros
have introduced a variant of the Siegert theorem where the
non-Siegert part only depends on a magnetic density [4,5].
Some aspects of their approach were anticipated by Foldy
[6]. These variants are said to differ by the gauge by some
authors [3] although they are derived within the same Coulomb
gauge. The various gauges referred to in Ref. [3] correspond
to different choices of �λμ, rather than a change of gauge in
the usual sense.

There is however a situation in single photon emission
where the long-wavelength approximation may not be suf-
ficient and the choice of �λμ may play a role. This can occur
when E1 transitions are forbidden by the isospin selection
rule. Then the isoscalar part of the E1 operator vanishes at
the long-wavelength approximation and higher-order terms
may contribute. This occurs for Ti = 0 → Tf = 0 transitions
in N = Z nuclei. The study of radiative capture reactions of
N = Z nuclei that occur in the context of nuclear astrophysics
are important applications. Well known examples are the
d(d, γ )4He, α(d, γ )6Li, and 12C(α, γ )16O reactions [7] where
the forbidden E1 component is in competition with the allowed
E2 component. A reliable evaluation of the nonresonant part
of the E1 component is difficult to obtain in these cases.

The aim of the present paper is to establish a variant
of the standard expression of electric multipoles of the
electromagnetic field, inspired by the works of Foldy [6],
and Friar and Fallieros [4], and to study its consequences
for photon emission. This leads to alternative forms for the
electric transition operators. Then the special case of isospin
forbidden E1 transitions is analyzed with emphasis on the
dominant isoscalar and isovector terms.

In Sec. II, some properties of the multipoles of the
electromagnetic field are recalled and a variant of the elec-
tric multipoles is presented. Proofs are given in Appendix.
In Sec. III, various expressions of the transition operators
are presented, with or without Siegert transformation. The

034306-10556-2813/2012/86(3)/034306(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.86.034306


DANIEL BAYE PHYSICAL REVIEW C 86, 034306 (2012)

particular case of E1 transitions is discussed in Sec. IV.
Concluding remarks are presented in Sec. V.

II. MULTIPOLES OF THE ELECTROMAGNETIC FIELD

The solutions of the Helmholtz equation for the electromag-
netic field that are eigenfunctions of the orbital momentum
operators L2 and Lz are characterized by a multipolarity λ and
a projection μ. The electric multipoles have parity (−1)λ+1

and can be defined as [8]

AE
λμ = k−1[λ(λ + 1)]−1/2∇ × Lφλμ

= i

k[λ(λ + 1)]1/2

{
∇

[
∂

∂r
(rφλμ)

]
+ k2rφλμ

}
, (4)

where L = −ir × ∇ is dimensionless and

φλμ(kr) = jλ(kr)Yλμ(�). (5)

Other definitions may differ by the normalization or by a phase
factor [9,10]. The magnetic multipoles have parity (−1)λ and
can be defined as [8]

AM
λμ = [λ(λ + 1)]−1/2 Lφλμ. (6)

The longitudinal multipoles have the same parity (−1)λ+1 as
the electric multipoles and read

AL
λμ = k−1 pφλμ. (7)

With the present normalizations and phases, the electric and
magnetic multipoles are equal to the rotational of each other,
divided by k. Their divergences vanish. This is not the case
for the longitudinal multipoles, which do not play a role in
the Coulomb gauge. In other gauges, the electric multipole
potentials are linear combinations of AE

λμ and AL
λμ [11]. From

now on, I only consider the Coulomb gauge.
A photon traveling in direction k̂ = (θk, ϕk) is described in

the Coulomb gauge by a polarized plane wave with circular
polarizations εq orthogonal to k (q = ±1). This wave can be
expanded in partial waves as

εqe
ik·r = −

√
2π

∑
λμ

iλ
√

2λ + 1
(

AE
λμ + q AM

λμ

)
Dλ

μq(�k),

(8)

where Dλ
μq is a Wigner matrix element depending on

�k = (−ϕk,−θk, 0). (9)

A variant of expansion of the polarized plane wave has been
analyzed by Foldy [6] in the context of photonuclear physics,

εqe
ik·r =

∫ 1

0
[∇(εq · reisk·r ) − isr × (k × εq)eisk·r ]ds (10)

(see Appendix for a brief proof). A partial wave expansion
of the corresponding electric current has been performed by
Friar and Fallieros [4]. These authors have used it to extend
the Siegert theorem. The principle of their approach can be
applied to the electromagnetic field itself to find a variant
of AE

λμ.

As proved in Appendix, the electric multipoles can also be
written as

AE
λμ = i

k
[λ(λ + 1)]1/2∇[Yλμ(�)Gλ(kr)]

− k

[λ(λ + 1)]1/2
r × LYλμ(�)Hλ(kr), (11)

where

Gλ(z) =
∫ 1

0
s−1jλ(sz)ds (12)

and

Hλ(z) =
∫ 1

0
sjλ(sz)ds. (13)

Expression (11) is at the root of the derivation in Ref. [4] but
does not seem to be available in the literature. It is strictly
equivalent to Eq. (4) as can be verified with Taylor series
expansions. The notations Gλ and Hλ are inspired by, but
different from, the functions gλ and hλ of Friar and Fallieros
[4]. Function gλ (respectively hλ) is equal to Gλ (respectively
Hλ) divided by the first term of its Taylor expansion [see
Eqs. (30) and (31) below]. The first term of both Taylor
expansions of gλ and hλ is thus unity.

III. TRANSITION MULTIPOLE OPERATORS

The transition multipole operators are defined [9,10] by

MEλ
μ = 1

c

√
λ

λ + 1

(2λ + 1)!!

kλ

∫
J · AE

λμd r (14)

and

MMλ
μ = − i

c

√
λ

λ + 1

(2λ + 1)!!

kλ

∫
J · AM

λμd r, (15)

where J is the current density. This current is the sum of
a convection current J c depending on the motion of the
protons and a magnetization current Jm depending on the spins
of all nucleons. It should also contain a component arising
from meson exchange. However a correct and consistent
treatment of that part is difficult, and depends on the choice of
nuclear forces. This problem is partly solved with the Siegert
hypothesis.

Assuming a system of A point nucleons with coordinates
rj and momenta pj , the charge density is

ρ(r) = e

A∑
j=1

glj δ(rj − r). (16)

The factor glj = 1
2 − tj3 depends on is the third component tj3

of the isospin of nucleon j . For simplicity, the modifications
related to Galilean invariance are postponed to Sec. IV. The
convection current density reads

J c(r) = e

mp

A∑
j=1

glj

1

2
[ pj δ(rj − r) + δ(rj − r) pj ], (17)

034306-2



EXTENSION OF THE SIEGERT THEOREM FOR PHOTON . . . PHYSICAL REVIEW C 86, 034306 (2012)

where mp is the proton mass. The magnetization current
density

Jm(r) = ∇ × μm(r) (18)

depends on the density of intrinsic magnetic moment,

μm(r) = μN

A∑
j=1

gsj δ(rj − r)Sj , (19)

where the spin operator Sj of nucleon j is dimensionless,
μN = eh̄/2mp, and gsj = gp( 1

2 − tj3) + gn( 1
2 + tj3) as a func-

tion of the proton (gp) and neutron (gn) gyromagnetic factors.
With Eqs. (4) and (14), one obtains the electric transition

operators

MEλ
μ = eh̄

mpc

(2λ + 1)!!

(λ + 1)kλ

A∑
j=1

{
glj

k

[(
k2r + ∇ ∂

∂r
r

)
φλμ

]
j

· ∇j

+ 1

2
kgsj [Lφλμ]j · Sj

}
, (20)

where the subscript j means that the term is evaluated at rj .
This expression is rather standard for photon emission [2,12]
but is called the Partovi gauge [13] in studies of photonuclear
reactions [3]. With Eqs. (6) and (15), the magnetic operators
read

MMλ
μ = eh̄

mpc

(2λ + 1)!!

(λ + 1)kλ

A∑
j=1

{
glj [∇φλμ]j · Lj

+ 1

2
gsj

[(
k2r + ∇ ∂

∂r
r

)
φλμ

]
j

· Sj

}
. (21)

The nuclear current J or J c is related to the charge density
ρ by the continuity equation

∇ · J(r) = − i

h̄
[H, ρ(r)]. (22)

According to the Siegert hypothesis, if the gradient of the
current in the electric operators is transformed as a function of
the charge density, one obtains an expression where the effects
of exchange currents are partially included [4]. Using Eq. (22)
in matrix elements 〈f |MEλ

μ |i〉 and neglecting recoil effects
leads to a Siegert form of the electric transition operators [2]

M̃Eλ
μ = (2λ + 1)!!

(λ + 1)kλ

A∑
j=1

{
eglj

(
φλμ + r

∂φλμ

∂r

)
j

+ eh̄k

2mpc

[
glj

(
3φλμ + r

∂φλμ

∂r
+ 2φλμr

∂

∂r

)
j

+ gsj (Lφλμ)j · Sj

]}
. (23)

A problem, however, is the occurrence of additional terms that
make the calculation without long-wavelength approximation
complicated. Results when the conservation equation (22) is
used like in Eq. (23) or not used like in Eq. (20) are different
for several reasons. First, the eigenenergies and eigenfunctions
of the nuclear Hamiltonian are approximate. Second, the
contribution of the meson exchange currents is missing. This

contribution should be consistent with realistic nuclear forces.
According to the Siegert hypothesis, Eq. (23) is preferable
because meson exchange effects are partially included.

An alternative expression for these effective operators based
on Eq. (11) is given by

M̃Eλ
μ = (2λ + 1)!!

(λ + 1)kλ

A∑
j=1

{
egljλ(λ + 1)Gλ(krj )Yλμ(�j )

+ eh̄k

2mpc
(gljHλ(krj )[λ(λ + 1)Yλμ(�j )

+ 2(LYλμ)j · Lj ] + gsj (Lφλμ)j · Sj )

}
(24)

(see also Ref. [5]). The spin term is unchanged. But Eqs. (23)
and (24) will not only give results different from the non-
Siegert equations but also different from each other. Following
Ref. [4], the non-Siegert corrections to the charge density term
should be less important with Eq. (24). Calculations with this
equation should be more realistic.

IV. ELECTRIC DIPOLE OPERATOR FOR
ISOSPIN-FORBIDDEN TRANSITIONS

The E1 operator contains isoscalar and isovector compo-
nents. At the long-wavelength approximation, it has a simple
expression with the Siegert theorem. However, beyond the
leading-order approximation, the expression of the charge
density part depends on the chosen variant [3]. Although it
is quite possible to use the exact expressions (23) and (24)
in practical calculations, I now present truncated expressions
that give an idea of how the various terms in the two variants
differ. Since the energy of emitted photons is usually not large
(�5 MeV), these truncated expressions can often provide good
approximations of the full ones.

From expression (23), one obtains the expansion truncated
at the first order beyond the long-wavelength approximation

M̃Eλ
μ ≈

A∑
j=1

{
eglj

[
rλ
j − (λ + 3)k2rλ+2

j

2(λ + 1)(2λ + 3)

]
Yλμ(�j )

+ eh̄k

2mpc

rλ
j

λ + 1

[
gljYλμ(�j )

(
λ + 3 + 2rj

∂

∂rj

)
+ gsj (LYλμ)j · Sj

]}
. (25)

For E1, it becomes

M̃E1
μ ≈

A∑
j=1

{
eglj

(
rj − k2r3

j

5

)
Y1μ(�j )

+ eh̄k

4mpc
rj

[
2gljY1μ(�j )

(
2 + rj

∂

∂rj

)
+ gsj (LY1μ)j · Sj

]}
. (26)
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In fact, the coordinates rj and momenta pj should be replaced
by Galilean invariant expressions [6,14]

r ′
j = rj − R, (27)

p′
j = pj − A−1 P, (28)

where R and P are the coordinate and momentum of the center
of mass. Hence, the operator (26) is replaced by

M̃E1
μ ≈ −e

A∑
j=1

tj3r
′
jY1μ(�′

j ) − e
k2

10

A∑
j=1

r ′3
j Y1μ(�′

j )

+ eh̄k

8mpc

A∑
j=1

r ′
j

[
2i

h̄
Y1μ(�′

j )r ′
j · p′

j

+ (gp + gn)(LY1μ)′j · Sj

]
, (29)

where all higher-order isovector corrections are neglected and
L′

j = r ′
j × p′

j . The first term in the square bracket of Eq. (26)
vanishes for the same reason that there is no isoscalar term
at the long-wavelength approximation. The first two terms of
Eq. (29) have been used to evaluate the role of E1 transitions
in the 16O(α, γ )20Ne reaction [15]. It is not clear whether the
remaining terms give a large contribution or not.

The advantage of expression (24) is that the term outside the
Siegert part should be less important and could be neglected
[3]. With

Gλ(z) = zλ

λ(2λ + 1)!!

[
1 − λ

2(λ + 2)(2λ + 3)
z2 + · · ·

]
(30)

and

Hλ(z) = zλ

(λ + 2)(2λ + 1)!!

[
1 − λ + 2

2(λ + 4)(2λ + 3)
z2 + · · ·

]
,

(31)

the operator (24) can be approximated as

M̃Eλ
μ ≈

A∑
j=1

{
eglj

[
rλ
j − λk2rλ+2

j

2(λ + 2)(2λ + 3)

]
Yλμ(�j )

+ eh̄k

2mpc

rλ
j

λ + 1

[
glj

λ(λ + 1)

λ + 2
Yλμ(�j )

+ (LYλμ)j ·
(

2glj

λ + 2
Lj + gsj Sj

)]}
. (32)

For E1, neglecting all higher-order isovector corrections leads
to the Galilean invariant expression

M̃E1
μ ≈ −e

A∑
j=1

tj3r
′
jY1μ(�′

j ) − e
k2

60

A∑
j=1

r ′3
j Y1μ(�′

j )

+ eh̄k

8mpc

A∑
j=1

r ′
j (LY1μ)′j ·

[
2

3
L′

j + (gp + gn)Sj

]
.

(33)

One observes a large difference between the coefficients of the
first isoscalar term in Eqs. (29) and (33) (i.e., 1/10 vs 1/60).
This indicates that neglecting the remaining spin-independent
isoscalar terms in Eq. (29) is not a good approximation. An

advantage of expression (33) is that the matrix elements of the
correction terms should be small if they act on a wave function
with a largely dominant component with zero total orbital
momentum and intrinsic spin. In this case, the first or first two
terms of Eq. (33) should give a reasonable approximation.

V. CONCLUDING REMARKS

In this note, a variant of the electric multipole fields
[Eq. (11)] is established starting from an expansion used by
Foldy [6] and employing techniques derived by Friar and
Fallieros [4] for photonuclear reactions. A variant of the Siegert
theorem is then discussed in the case of photon emission
leading to an expression for the electric transition operators
[Eq. (24)], without making use of the long-wavelength approx-
imation. Going beyond the long-wavelength approximation
is usually not crucial for spontaneous nuclear emissions of
photons. However it should be useful in microscopic studies
of the isospin forbidden E1 component of some low-energy
radiative capture reactions.

Equation (33) shows that several types of terms may
contribute to isospin forbidden E1 transitions. Contributions of
the well known isovector term arise from the existence of small
T = 1 components in the wave functions of the final fused
nucleus and/or the initial colliding nuclei. The contribution
from the dominant isoscalar term (at order k2) comes from
the larger T = 0 components. A comparison of Eqs. (29)
and (33) shows that the first isoscalar term is quite different.
Equation (33) should provide a better approximation. Correc-
tions coming from the neutron-proton mass difference are also
possible. However, the np mass difference only contributes to
the isovector term and can thus most probably be neglected.

The d(d, γ )4He capture reaction offers a nice opportunity
to make a detailed study of isospin forbidden E1 transitions. It
has been studied in an ab initio model with realistic forces [16].
The cross sections are however limited to the contribution of
E2 transitions. Scattering wave functions are available for the
Jπ = 1− scattering wave [17]. In the d + d case, the final 4He
state on which the transition operator acts has mostly zero
total orbital momentum and intrinsic spin. The first two terms
of expansion (33) should provide a good approximation. An
exact calculation with all terms of Eq. (33) is possible.
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APPENDIX: PROOFS OF EQS. (10) AND (11)

For information, I give a proof of Eq. (10) [6]. It is based
on an integration by parts,

εqe
ik·r =

∫ 1

0
εqe

isk·rds +
∫ 1

0
s

d

ds
(εqe

isk·r )ds

=
∫ 1

0
eisk·r∇(εq · r)ds + i(k · r)

∫ 1

0
sεqe

isk·rds
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=
∫ 1

0
[∇(εq · reisk·r ) − is(εq · r)keisk·r

+ is(k · r)εqe
isk·r ]ds

= ∇[(εq · r)α(k · r)] − 1

2
ir × (k × εq)β(k · r)

(A1)

with, in the notation of Ref. [4],

α(z) =
∫ 1

0
eiszds = eiz − 1

iz
(A2)

and

β(z) = 2
∫ 1

0
seiszds = −2iα′(z). (A3)

The proof of Eq. (11) closely follows the treatment in
Ref. [4]. We assume that wave vector k is in the z direction.
The expansion of the first term of Eq. (A1) reads

(εq · r)α(k · r) = −iεq · ∇k

∫ 1

0
s−1eisk·rds

= −
√

2πk−1
∑

λ

iλ+1
√

λ(λ + 1)(2λ + 1)

× YλqGλ(kr), (A4)

where Eq. (12) and

εq · (∇kY
∗
λμ)(0, 0) = (k

√
8π )−1

√
λ(λ + 1)(2λ + 1)δμq

(A5)

have been used [4].
As noted by Foldy [6] and explicitly treated in Ref. [4], the

second term of Eq. (A1) is a mixing of electric and magnetic
contributions. Function 1

2εqβ can be separated according to

the (−1)λ or (−1)λ+1 parity into an electric part

1

2
εqβ

E = −q
√

2π

∞∑
λ=1

iλ
√

2λ + 1Yλλ
q Hλ(kr) (A6)

and a magnetic part

1

2
εqβ

M =
√

2π

∞∑
λ=0

iλ
(√

λ+ 2 Yλ + 1λ
q + √

λ−1 Yλ−1λ
q

)
Hλ(kr)

=
√

2π

∞∑
λ=1

iλ+1
[√

λ Yλλ+1
q Hλ+1(kr)

− √
λ + 1 Yλλ−1

q Hλ−1(kr)
]
, (A7)

where Y jλ
q is a vector spherical harmonics with j � |q| = 1,

and β = βE + βM . With

r × (k × εq) = −iqkr × εq, (A8)

one obtains for k along the z axis
1

2
r × (k × εq)βE =

√
2πk

∑
λ

iλ+1
√

2λ + 1 r × Yλλ
q Hλ(kr)

(A9)

and
1

2
r × (k × εq)βM

= q
√

2πkr
∑

λ

iλ+1

√
2λ + 1

[λHλ+1 − (λ + 1)Hλ−1] Yλλ
q

= −q
√

2π
∑

λ

iλ+1
√

2λ + 1 Yλλ
q jλ(kr). (A10)

Equation (11) follows from Eqs. (8), (A1), (A4), (A9), and

Yλλ
m = [λ(λ + 1)]−1/2 LYλm. (A11)

With Eqs. (8), (A1), (A10), and (A11), one recovers Eq. (6).
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