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We consider nucleon-nucleon interactions from chiral effective field theory applying the N/D method. The
case of coupled partial waves is treated, extending Albaladejo and Oller [Phys. Rev. C 84, 054009 (2011)], where
the uncoupled case was studied. As a result, three N/D elastic-like equations have to be solved for every set of
three independent coupled partial waves. As in the previous reference the input for this method is the discontinuity
along the left-hand cut of the nucleon-nucleon partial wave amplitudes. It can be calculated perturbatively in
chiral perturbation theory because it involves only irreducible two-nucleon intermediate states. We apply our
method to the leading-order result consisting of one-pion exchange as the source for the discontinuity along
the left-hand cut. The linear integral equations for the N/D method must be solved in the presence of � − 1
constraints, with � the orbital angular momentum, in order to satisfy the proper threshold behavior for � � 2.
We dedicate special attention to satisfy the requirements of unitarity in coupled channels. We also focus on the
specific issue of the deuteron pole position in 3S1-3D1 scattering. Our final amplitudes are based on dispersion
relations and chiral effective field theory, involving only convergent integrals. They are amenable to a systematic
improvement order by order in the chiral expansion.
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I. INTRODUCTION

Recently we employed, in Ref. [1], the N/D method [2]
to study nucleon-nucleon (NN ) uncoupled partial waves in
connection with chiral perturbation theory (ChPT) [3,4]. In this
approach the chiral counting is applied to the imaginary part of
the NN partial waves along the left-hand cut (LHC), owing to
(multi-)pion exchanges. This can be done because Cutkosky’s
rules require putting pionic lines on-shell to calculate the
discontinuity across the LHC, giving rise to irreducible
nucleon diagrams. For more details see Ref. [5]. At this
point we avoid calculating perturbatively contributions that
involve N -nucleon reducible graphs.1 This method provides
NN partial waves by solving a linear integral equation that,
by construction, involves convergent integrals and subtraction
constants that can be calculated in terms of physical quantities.
As a result, no need for any type of cutoff arises in our novel
approach.

The idea of applying ChPT to evaluate irreducible N -
nucleon contributions was originally put forward in Ref.
[6]. There it was applied to calculate the effective multi-
nucleon potential, which is later implemented in a Lippmann-
Schwinger (LS) equation (or Schrödinger equation) in order
to derive the full S-matrix. However, owing to the singular
nature of the chiral potentials resulting from their calculation
in ChPT, solution of the LS equation requires some kind of
regularization, typically a three-momentum cutoff � [7–9].
Several works [10–14] have shown that the chiral counterterms
that appear in the ChPT potential following standard ChPT
counting [6] are not enough to reabsorb the cutoff dependence
that stems from the solution of the LS equation. Stable results
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1The latter require an extended version of the standard chiral

counting as derived in Ref. [5].

with the NN potential determined from one-pion exchange
(OPE) are obtained in Refs. [10,15] for � → ∞, by promoting
counterterms from higher orders to lower ones.2 This implies
a violation of the standard ChPT counting and of the low-
energy theorems relating the parameters in the effective range
expansion [16]. One counterterm is needed for each partial
wave with an attractive OPE tensor force [10], so that the NN

scattering amplitude from the OPE potential would require an
infinite number of them, so that it is nonrenormalizable. A
result compatible with this conclusion is also obtained in Ref.
[17], where it is found that the NN scattering amplitude from
the OPE potential is nonrenormalizable unless the tensor force
part vanishes for � → ∞ [17]. One should be aware that when
� → ∞, a more involved counting emerges [17–19]. The
extension of these ideas to higher orders in the chiral potential
is not straightforward and, up to now, cannot avoid cutoff
dependence [15,20]. On the other hand, the application of
Weinberg’s scheme has given rise to a great phenomenological
success in the reproduction of NN phase shifts if the cutoff
is fine-tuned in a region around 600 MeV, not beyond the
breakdown scale of the effective field theory (EFT) [8,9]. Of
course, the cutoff dependence is not removed then.

We present the generalization of Ref. [1] to the case of
coupled channels in Sec. II, where the corresponding three
linear integral equations needed for each set of coupled partial
waves are derived. We apply this method to leading order (LO),
which implies taking OPE as the source for the discontinuity
along the LHC. References [21–24] applied the N/D method
to study NN scattering quantitatively. Reference [21] was
restricted to S waves and took only OPE as input along the
LHC. References [22,23] included other heavier mesons as
the source for the discontinuity along the LHC, in line with
the meson theory of nuclear forces, so popular those days,
while Ref. [24] modeled the LHC discontinuity by OPE and

2In Ref. [10] the cutoff range was taken as � < 4 GeV.
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one or two ad hoc poles. We stress that we present here a
novel way to introduce the N/D method in harmony with the
modern perspective of EFT. In this way, we show that one
can calculate systematically within ChPT, according to the
standard chiral counting, the discontinuity along the LHC that
is the basic input for the N/D method. This allows one to
improve the results order by order, which was not the case
when applying previous schemes [24–27]. This is a point of
foremost importance.

In addition, the threshold behavior of partial waves with
orbital angular momentum � � 2 is satisfied within our
approach by including zeros at ∞ in NN partial waves, which
is always allowed within the N/D method (these are the so
called Castillejo-Dalitz-Dyson (CDD) poles [28]). However,
in previous works [22,23] the correct threshold behavior was
achieved in an ad hoc way by including a fictitious pole below
threshold, with the subsequent dependence of the results on its
location, which was fitted to data. Furthermore, in our results
we always respect coupled-channel unitarity, which was not
the case in Refs. [21–24].

The results obtained with this formalism are first considered
for 3S1-3D1 coupled waves in Sec. III A, where the specific issue
of the deuteron pole is also discussed. Higher partial waves
are considered in Sec. III C. Our conclusions are collected in
Sec. IV. Finally, we show in the Appendix the cancellation of
a potential divergence in a function involved in our equations.
This cancellation occurs thanks to the constraints already
imposed to satisfy the right threshold behavior for partial
waves with � � 2.

II. COUPLED PARTIAL WAVES

For spin triplet NN partial waves with total angular
momentum J , one has the mixing of the orbital angular
momenta � = J − 1 and �′ = J + 1 (except for the 3P0 partial
wave). Each set of coupled partial waves is determined by the
quantum numbers S, J , �, and �′, where S is the total spin. In the
following, to simplify the notation we omit them and indicate
the different partial waves by tij , with i = 1 corresponding
to � = J − 1 and i = 2 to �′ = J + 1, a convention that we
adopt henceforth. As a result, a two-coupled-channel T -matrix
results. In our normalization, the resulting S-matrix reads

S(A) = I + i2ρ(A)T (A)

=
(

cos 2ε e2iδ1 i sin 2ε ei(δ1+δ2)

i sin 2ε ei(δ1+δ2) cos 2ε e2iδ2

)
, (1)

such that δ1 corresponds to the phase shifts for the channel with
� = J − 1, and δ2 to that with �′ = J + 1. The argument A

refers to the center-of-mass (CM) three-momentum squared.
We have indicated the phase space by ρ(A), which reads, in
our nonrelativistic approximation, ρ(A) = m

√
A/4π , where

m is the nucleon mass.
Along the right-hand cut (RHC), which corresponds to the

physical region with A > 0, the unitarity of the S-matrix,
SS† = S†S = I, can be written in terms of the (symmetric)
T -matrix as ImT −1(A) = −ρ(A) I. In the following, the
imaginary parts above the threshold of the inverse of
the T -matrix elements, denoted tij (A), play an important

role:

Im
1

tij (A)
≡ −νij (A), A > 0. (2)

Employing the relationship between the T - and the S-matrices,
Eq. (1), we can express the different νij in terms of phase
shifts and the mixing angle along the physical region above
threshold. In this way, one can write the diagonal partial
waves as tii = (e2iδi cos 2ε − 1)/2iρ, while for the mixing
amplitude t12 = ei(δ1+δ2) sin 2ε/2ρ. From these expressions it
is straightforward to obtain, for A > 0,

ν11(A) = ρ(A)

[
1 −

1
2 sin2 2ε

1 − cos 2ε cos 2δ1

]−1

, (3)

ν22(A) = ρ(A)

[
1 −

1
2 sin2 2ε

1 − cos 2ε cos 2δ2

]−1

, (4)

ν12(A) = 2ρ(A)
sin(δ1 + δ2)

sin 2ε
. (5)

Although not explicitly indicated, it should be understood that
the phase shifts and mixing angle depend on A. Equation (2)
generalizes that of an uncoupled partial wave, ImT −1 = −ρ,
employed in Ref. [1]. Indeed, if we set ε = 0 in ν11(A)
and ν22(A), the uncoupled case is recovered. Note also that
νii(A)/ρ(A) � 1.

We apply the N/D method [2] to solve our equations for
the T -matrix. A general NN partial wave has two types of
cuts, the LHC and RHC, the former owing to crossed-channel
dynamics and the latter to unitarity. The lightest particle that is
exchanged between two nucleons is the pion, which determines
the onset of the LHC for A < L ≡ −m2

π/4, with mπ the
pion mass. The unitarity cut occurs for A > 0. See Fig. 1,
where the LHC and RHC are indicated separately. In the
N/D method a partial wave tij is written as the quotient of
a numerator function Nij (A) and a denominator one Dij (A).
The function Nij has only a LHC, while the function Dij has
only a RHC. In Refs. [25,26], a straightforward generalization
of the one-channel N/D method of Chew and Mandelstam [2]
was given by writing T = N · D−1 in matrix notation. This
T -matrix would be symmetric, as it is required by temporal
inversion, only under the assumption that DT (T T − T )D
vanishes for A → ∞ [26], where the superscript T indicates
the transpose of the corresponding matrix. However, this is
not the case for the chiral potentials, even at LO, e.g., in
3S1-3D1 coupled partial waves. This condition is thus too
restrictive for its application to chiral EFT, where different
numbers of subtractions are taken in the different partial waves
involved, whose number also varies according to the chiral
order considered in the calculation of the imaginary part of the
NN partial-wave amplitude along the LHC.

In what follows, we generalize the procedure of Ref. [1] to
the coupled case. Instead of making use of a matrix notation as
in Refs. [25,26], we write three N/D equations, one for each
of the three independent partial waves tij , as in Ref. [27]:

tij (A) = A�ij
Nij (A)

Dij (A)
. (6)

034005-2



NUCLEON-NUCLEON INTERACTIONS FROM DISPERSION . . . PHYSICAL REVIEW C 86, 034005 (2012)

RHC

→ 0

R → ∞

CI

→ 0

R → ∞
CII

−m2
π

4
LHC

FIG. 1. Thick lines correspond to the RHC and LHC, from top to
bottom. The integration contours CI and CII for evaluating Dij (A)
and Nij (A), respectively, are also shown. One must take the limit
ε → 0+.

The factor A�ij guarantees the proper threshold behavior with
�11 = �, �22 = �′ = � + 2, and �12 = (� + �′)/2 = � + 1. We
focus here on the specific features of the coupled-channel
mechanism, referring the reader to Ref. [1] for further details
on the general procedure followed to apply an N/D equation.
As stated above, the splitting of the tij (A) function is such that
Nij bears the LHC and Dij the RHC, and then

ImDij (A) = −Nij (A)A�ij νij (A), A > 0, (7)

ImNij (A) = Dij (A)	ij (A)/A�ij , A < L, (8)

with Imtij ≡ 	ij along the LHC. The imaginary parts of Dij

and Nij are 0 elsewhere along the A-real axis.3 As argued in
Refs. [1,5], 	ij can be calculated perturbatively in ChPT along
the LHC, as it originates from multipion exchanges putting
pion propagators on-shell. The intermediate states thus require
at least one pion so that we apply ChPT always to irreducible
N -nucleon diagrams, responsible for the discontinuity along
the LHC.

3Because the Schwartz reflection principle is satisfied by tij , Dij ,
and Nij the discontinuity across the RHC or LHC is given by 2i times
the imaginary part of the function.

Two dispersion relations (DRs) can be written for the
functions Dij and Nij , employing the contours CI and CII

in Fig. 1, respectively. The integration along the circle at
infinity vanishes, if necessary, by taking sufficient number
of subtractions. At LO in the chiral counting [5,29], the only
contribution to 	ij along the LHC is OPE. Asymptotically,
for p2 → −∞, OPE tends to constant, so that, according to
the Sugawara and Kanazawa theorem [30,31], one subtraction
is necessary for the DR of Nij (A) in the S wave, even though
	ij (A) → 1/A in the case of OPE. On general grounds, a
partial-wave amplitude is bounded because of unitarity by
constant/

√
A for A → +∞ so that tijDij (A)/A�ij tends to

constant for an S wave and 0 for any other partial wave.4

As a result, the same theorem then requires that at least one
subtraction is necessary for the S waves:

Dij (A) = 1 − A

π

∫ +∞

0
dq2 νij (q2)Nij (q2)q2�ij

q2(q2 − A)
, (9)

Nij (A) = N0 + A

π

∫ L

−∞
dk2 	ij (k2)Dij (k2)

k2(k2 − A)
, �ij = 0, (10)

Nij (A) = 1

π

∫ L

−∞
dk2 	ij (k2)Dij (k2)

k2�ij (k2 − A)
, �ij �= 0. (11)

The subtraction point is taken at threshold (see Ref. [1] for
expressions with the subtraction point at any other position).
One subtraction is taken for the Dij (A) function, which is fixed
to 1 because, in view of Eq. (6), only the ratio Nij/Dij matters
in order to determine tij . Thus, there is the freedom to fix the
value of Dij at one point, e.g., at threshold, by simultaneously
dividing Dij and Nij by the appropriate constant. For �ij = 0,
S wave, one subtraction is taken in Nij (A), as just discussed.
In our present work, dedicated to the NN coupled partial
waves, this is the case only for the 3S1 channel. The subtraction
constant N0 is the amplitude at threshold, t11(0) = N0, and then
it can be fixed in terms of the 3S1 scattering length, at ,

N0 = −4πat

m
, (12)

with the value at = 5.424 ± 0.004 fm. In Sec. III A we also
fix N0 in terms of the experimental deuteron binding energy.

An integral equation for the function Dij (A) results by
inserting Eqs. (10) or (11) into Eq. (9). However, as argued in
detail in Ref. [1], divergent integrals appear for � � 2 unless a
set of � − 1 constraints is satisfied by Dij (A). These constraints
are a generalization of those satisfied by OPE. We just quote
the final result from Ref. [1], which is given in terms of the set
of sum rules:∫ L

−∞
dk2 	ij (k2)Dij (k2)

k2λ
= 0, λ = 2, 3, . . . , �ij � 2. (13)

4Here we are taking that Dij diverges as
√

A for A → ∞ as in
the uncoupled case [1]. This is consistent with the results obtained
explicitly in this work.
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Expanding the denominator inside the integral of Eq. (11),
Nij (A) can be written as

Nij (A) = 1

πA�ij −1

∫ L

−∞
dk2 	ij (k2)Dij (k2)

k2(k2 − A)

− 1

π

�ij −2∑
m=0

1

Am+1

∫ L

−∞
dk2 	ij (k2)Dij (k2)

k2(�ij −m) , (14)

and the terms within the sum vanish if the constraints of
Eq. (13) are fulfilled. This guarantees that Nij (A) vanishes as
1/A�ij , which ensures the convergence of the resulting integral
equation for Dij (A).

Let us first take �ij �= 0. By inserting the nonvanishing piece
of Nij into Eq. (9), once the constraints Eq. (13) are satisfied,
we find the following integral equation for Dij (A):

Dij (A) = 1 + A

π

∫ L

−∞
dk2 	ij (k2)Dij (k2)

k2
gij (A, k2), (15)

gij (A, k2) = 1

π

∫ +∞

0
dq2 νij (q2)

(q2 − A)(q2 − k2)
. (16)

The functions gij (A, k2) are the generalization of g(A, k2)
given in Ref. [1] for the uncoupled case. An important technical
detail is discussed in the Appendix. We show there how the
constraints in Eq. (13) guarantee that the functions gij (A, k2)
are finite curing a potential divergence for ij = 22 in the
q2 → 0 limit. This divergence was noticed in Ref. [27] but
no procedure for removing it was given there.

The N/D method in the presence of the constraints,
Eq. (13), was solved in Ref. [1] by means of the insertion
of CDD poles [28] by taking advantage of the fact that the
Dij functions are determined modulo the addition of CDD
poles [30,32,33]. The main points from Ref. [1], briefly
summarized, consist of using this ambiguity to include �ij − 1
CDD poles (if �ij � 2) in Dij (A). These poles are gathered at
the same position B, and finally, the limit B → ∞ is taken.
The following equations are then obtained [1]:

Nij (A) = 1

π

∫ L

−∞
dk2 	ij (k2)Dij (k2)

k2�ij (k2 − A)
, (17)

Dij (A) = 1 + A

π

∫ L

−∞
dk2 	ij (k2)Dij (k2)

k2
gij (A, k2)

+ A
∑�ij −2

n=0 cnA
n

(A − B)�ij −1 . (18)

The latter sum corresponds to the addition of the �ij − 1 CDD
poles. The coefficients ci are determined in such a way that
the constraints in Eq. (13) are satisfied (see Ref. [1] for further
details).

Note that for P waves (�ij = 1) (in the present study we
have the mixing partial wave in the 3S1-3D1 system and the 3P2

in 3P2-3F2 scattering), no constraints are needed [1], so that the
sum over the CDD poles is dropped and the same formalism
applies. This is also clear because, for this case, Eq. (11)
vanishes as 1/A so that there is no room for restrictions.

Let us now take the case �ij = 0, which only occurs for the
3S1 wave. Because a subtraction is needed in N11, Eq. (10),
one should change Eq. (18) in two ways, as there is no sum

over CDD poles and one has to include an extra term associated
with the subtraction in Nij (A) for this case. It is straightforward
to obtain, by inserting Eq. (10) into Eq. (9), the appropriate
integral equation for D11(A) for the 3S1 partial wave,

D11(A) = 1 − AN0g11(A, 0)

+ A

π

∫ L

−∞
dk2 	11(k2)D11(k2)

k2
g11(A, k2), (19)

with g11(A, k2) given by Eq. (16). Note also that, from Eq. (10),
it is clear that Nij (A) tends to constant for �ij = 0 and A → ∞,
so that there is no need for constraints. This is why no sum
over CDD poles is present in the previous equation.

To obtain the final amplitudes, the Dij (A) functions are
obtained along the LHC (A < −m2

π/4) by solving the integral
equations in Eqs. (18) or (19). Next, the functions Dij (A) are
obtained along the RHC (A > 0) from the same equations
because the integrand is known. To obtain the functions
Nij (A), as the constraints in Eq. (13) are obeyed, one can use
for �ij �= 0 either Eq. (17) or the first term on the right-hand
side of Eq. (14) (but the former is more suitable numerically,
as it converges more rapidly). For the 3S1 wave, one should use
Eq. (10). The partial waves tij (A) are obtained by employing
the resulting Dij (A) and Nij (A) functions in Eq. (6).

The main difference with respect to the uncoupled case
treated in Ref. [1] is that now one has to solve simultaneously
three N/D equations for ij = 11, 12, and 22 with the
functions gij (A, k2) linked between each other. They depend
on the phase shifts δ1 and δ2 and on the mixing angle ε,
defined in Eq. (1), which are also the final output of our
approach. Thus, we employ an iterative procedure (similar
to Ref. [27]) as follows. Given an input for δ1, δ2, and
ε, one solves the three integral equations for Dij (A) along
the LHC, and then the amplitudes for the RHC can be
calculated. The new phase shifts δ1 and δ2 are obtained
from the phase of the S-matrix elements S11 and S22, while
sin 2ε = 2ρA�12N12/|D12|, according to Eq. (1). In this way a
new input set of functions νij , Eqs. (3)–(5), results. These are
used again in the integral equations, and the iterative procedure
is finished when convergence is found (typically, the difference
between one iteration in the three independent Dij functions
along the LHC is required to be less than one per mil). As initial
input, one can use the results given by UChPT [5] or some
placed-by-hand phase shifts and mixing angle, and we find no
dependence of our final unitary results on the input employed.

It can be shown straightforwardly that unitarity is fulfilled
in our coupled-channel equations, solved in the way just
explained, if |S11(A)|2 = |S22(A)|2 = cos2 2ε for A > 0. From
the fact that Imt12 = ν12|t12|2, as follows from Eq. (2),
and sin 2ε = 2ρ|t12| (the latter equality is valid only when
convergence is reached), it follows that the phase of t12 is
δ1 + δ2, as required by unitarity, Eq. (1). By construction, the
phase shifts are equal to one-half the phase of the S-matrix
diagonal elements when convergence is achieved.

III. RESULTS

We now present the reproduction of the phase shifts
and mixing angles for the NN coupled partial waves with
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J � 3 compared with the data from the Nijmegen partial-wave
analysis (PWA) [34]. We pay special attention to the 3S1-3D1

system.

A. 3S1-3D1 coupled waves

In this section we discuss our results for 3S1-3D1 coupled
waves. Previous papers applying the N/D method to adjust
NN scattering are Refs. [21–24]. We already commented
on Refs. [21,24]. The other two works, by Wong and Scotti
[22,23], include, together with OPE, other heavier mesons, η,
ρ, and ω, and φ is also included in Ref. [23]. Thus, these works
follow the basic ideas of meson theory of nuclear forces, which
were also used for the construction of NN potentials [35].
There are some approximations in Refs. [21–23] that we avoid
in our work. For example, only elastic unitarity is used in
Refs. [21,22], neglecting the mixing between coupled partial
waves. Reference [23] considers the mixing only for 3S1-3D1

coupled partial waves. In addition, in order to satisfy the
threshold behavior for partial waves with � � 2, so that they
vanish as A�, Refs. [22,23] make use of a rather ad hoc formula.
This method was criticized in Ref. [36] because it includes an
unphysical pole for every partial wave at a CM squared energy
s1, somewhat below 4m2 (the threshold for NN scattering).
In addition, Refs. [22,23] also have a cutoff dependence in
the way the vector resonance exchanges damp to avoid their
divergences at infinity. Though the results in Refs. [21–23] are
interesting and typically obtain a good reproduction of data
at the phenomenological level, we offer here a novel way of
employing the N/D method in light of EFT. We then present
the method ready to be used in a systematic way by improving,
order by order, the discontinuity of the partial-wave amplitudes
along the LHC, as it involves only NN irreducible diagrams,
as discussed above [5]. We satisfy exact unitarity for all the
partial waves as well. It is also important to stress that the N/D

method for coupled channels is now presented in a way ready
to be used at any chiral order, without being constrained to
satisfy the too demanding Bjorken-Nauenberg condition [26]
in order to end with symmetric partial waves. We accomplish
the right threshold behavior for � � 2 by adding CDD poles
at infinity, which is always legitimate in the N/D method
if there are good reasons to include them (which have been
offered before [1]). Thus, we do not need to modify the right
analytical properties of partial waves by including a fictitious
pole in s1 which is then fine-tuned to the data, as done in
Refs. [22,23].

The deuteron (d) is a neutron-proton (np) bound state with
total angular momentum J = 1 and spin S = 1 (and isospin
0). As such, it is seen as a pole below threshold (|p|2 < 0) in
the physical Riemann sheet in 3S1-3D1 coupled partial waves.
The binding energy of the deuteron, Ed (defined positive), is
given by

Ed = −k2
d

m
, (20)

where k2
d is the three-momentum squared at which the pole is

located, so that it is negative. Specifically, in our approach
it appears as a zero in the functions Dij (A). From the

amplitudes calculated in Sec. II we find the deuteron at the
position k2

d = −0.08m2
π in the 3S1 amplitude, corresponding

to Ed � 1.7 MeV. Recall that the subtraction constant N0

appearing in the 3S1 partial wave is determined by fixing the
3S1 scattering length to its experimental value, Eq. (12). There
is still a remnant input dependence for the 3S1-3D1 coupled
partial waves in our unitary solutions that we fix by requiring
that the deuteron pole position is the same in the 3S1 and in the
mixing partial wave. Independently of the input we do not find
any pole in the 3D1 partial wave. Indeed, if we disregard the
coupling between 3S1 and 3D1 and use the method in Ref. [1]
for uncoupled waves, the pole appears in the same position in
3S1, and again, it does not appear in 3D1. However, the pole
should be located at the same energy in every channel, but this
is not the case because we are not using a matrix formalism but
solving the three linked N/D equations independently. Note
also that the deuteron is found mainly in a 3S1 state, and thus
the coupling to 3D1 is very weak.

In order to cure this deficiency and have the right pole
structure guaranteeing the presence of the deuteron pole in
3D1, we write a twice-subtracted DR for the 3D1 partial wave,
such that the function D22(A) has a zero at a given k2

d . The DR
reads

Dij (A) = 1 − A

k2
d

− A
(
A − k2

d

)
π

×
∫ +∞

0
dq2 νij (q2)Nij (q2)q2�ij

q2(q2 − A)
(
q2 − k2

d

) , (21)

written in a way that is valid both for the 3D1 partial wave
(ij = 22) and for the mixing partial wave (ij = 12), although
we do not use it for the latter. By inserting the expression for
Nij (A), Eq. (11), into the previous equation, we end up with
the integral equation

Dij (A) = 1 − A

k2
d

+ A
(
A − k2

d

)
π

×
∫ L

−∞
dk2 	ij (k2)Dij (k2)

k2�ij
g

(d)
ij (A, k2), (22)

where g
(d)
ij (A, k2) is a generalization of the functions gij (A, k2)

in Eq. (16),

g
(d)
ij (A, k2) = 1

π

∫ +∞

0
dq2 νij (q2)q2(�ij −1)

(q2 − A)(q2 − k2)
(
q2 − k2

d

) .

(23)

For 3S1-3D1 waves, we have � = 0 and �′ = 2, so that �12 = 1
and �22 = 2, and the previous integrals are convergent because
of the extra subtraction taken. Recall that, in the formalism first
presented in Sec. II, one must take into account a constraint
for the D22(A) partial wave in order to end with a convergent
integral equation. Note that from Eqs. (22) and (23) the high-
energy behavior of the functions Dij changes, now diverging
as A3/2, instead of A1/2 as in Sec. II or in Ref. [1]. As a result,
the criterion of imposing that Nij → 1/A�ij for A → ∞, the
one used in Ref. [1] to deduce the need for constraints, does not
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FIG. 2. (Color online) Comparison of our results for the 3S1 and 3D1 phase shifts and the mixing angle ε1 to the Nijmegen PWA [34],
shown by the dot-dashed (red) lines. Solid (black) lines correspond to fixing the 3S1 scattering length to experiment, while dashed (blue) lines,
in addition, fix the deuteron pole position in 3D1 at the same value as that in 3S1. On the other hand, the double-dotted (green) lines stem by
fixing the deuteron pole position in the 3S1 partial wave at its experimental value. The dash-double-dotted (cyan) lines correspond to having
additionally fixed the deuteron pole in the 3D1 partial wave at the same point as in 3S1.

hold in this case because of the extra subtraction.5 The price to
pay for having included the second subtraction is the need for
an input value for k2

d , which has to be provided. It is then more
natural for the 3S1-3D1 system to fix the binding energy of the
deuteron to its experimental value than the scattering length,
as we do below.

As stated in Sec. II, an iterative procedure is followed in
order to obtain our final results for the phase shifts and the
mixing angle from the three N/D equations coupled. For
every iteration along that procedure, one obtains from the
3S1 wave amplitude the deuteron pole position, k2

d . This is
the value used as an input for the function D22(A) at every
step. In this way it is not fitted as a free parameter in order
to fix the deuteron binding energy, but it comes out in a
natural way from 3S1 and the coupled-channel mechanism.
The results that we obtain with this approach are shown in
Fig. 2 by the dashed (blue) lines, while those obtained when
there is no deuteron pole in 3D1, using Eq. (18) instead of
Eq. (22) with �ij = 2, correspond to the solid (black) lines.
The results are compared with the Nijmegen PWA [34], given
by the dash-dotted (red) lines. For the 3S1 phase shifts both
lines are very similar. The differences are larger for 3D1 phase
shifts, which are then quite sensitive to reproducing correctly
the deuteron pole also in the 3D1 partial wave. Indeed, the
result without imposing the deuteron in this partial wave is
very similar to that obtained from perturbative OPE [37].
Differences are rather small for the mixing angle ε1. As the
main contribution to the deuteron comes from 3S1, its position
remains almost unchanged compared with the uncoupled case,
with a value obtained for the binding Ed � 1.7 MeV, once the
experimental scattering length is fixed. This corresponds to
an effective range r � 0.46 fm, which is much smaller than
the experimental value of r = 1.749 fm, the difference being
around a 70%. This fact is already well documented in the
literature [33]. Indeed, Ref. [21] shows that when the N/D

method is used with only OPE as the source of the imaginary

5From Eq. (11) it follows immediately that N22 → 1/A, which is
the behavior required for N22 = t22D22/A

2, taking into account the
high-energy behavior of D22(A) just discussed.

part along the LHC, one needs to fit two experimental inputs
for every NN S wave in order to reproduce the scattering
length and effective range. For 3S1 the scattering length and
the deuteron binding energy are taken (we take the same
input in Sec. III B), while for 1S0 two well-measured phase
shifts at different energies are employed. This result from
Ref. [21] and our own results presented in Sec. III B make us
confident that a next-to-leading-order (NLO) study in ChPT
with the N/D method will be phenomenologically successful
because a new counterterm enters at this order, multiplying an
energy-dependent monomial. The authors of Ref. [21] make
the approximation of considering only elastic unitarity for 3S1,
neglecting its coupling with 3D1, while our treatment is exact.

It is also interesting to fix the subtraction constant N0 in
terms of the deuteron binding energy and then compare with
our previous results when the scattering length was fixed.
Imposing D11(k2

d ) = 0 from Eq. (19) and solving for N0,
one has

N0 = 1 + k2
d

π

∫ L

−∞ dk2	11(k2)d11(k2)g11
(
k2, k2

d

)/
k2

k2
d

(
g11

(
k2
d, 0

) + G
(
k2
d

)) , (24)

where we have first split

D11(A) = d11(A) − k2N0g11(A, 0), (25)

from where the function d11(A) is defined. We have also
introduced in Eq. (24) the function G(A) given by

G(A) = 1

π

∫ L

−∞
dk2	11(k2)g11(k2, 0)g11(A, k2). (26)

The integral equation for d11(A) can be obtained from that in
Eq. (19) taking into account Eq. (25) and replacing N0 with its
expression, Eq. (24). This results in

d11(A) = 1 + A

π

∫ L

−∞
dk2 	11(k2)d11(k2)

k2

{
g11(A, k2)

− g11
(
k2, k2

d

)
G(A)

g11
(
k2
d, 0

) + G
(
k2
d

)
}

− A

k2
d

G(A)

g11
(
k2
d , 0

) + G
(
k2
d

) .

(27)
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As in the previous case we fix the dependence on the input
by requiring that the deuteron pole in the mixing wave is
located at the same position as in the 3S1 wave, at the k2

d corre-
sponding to the binding energy Ed = 2.2 MeV. Regarding the
3D1 partial wave, no pole position is found unless one imposes
it in the D22(A) function, making use of Eq. (22), having then
the right pole structure. Once the deuteron pole is imposed the
value that we obtain for the 3S1 scattering length is 4.6 fm,
and that for the effective range 0.41 fm. The latter is indeed
very similar to the values obtained before when the scattering
length was taken as input. The resulting scattering length
is about 15% lower than its experimental value. We show
in Fig. 2, by the dash-double-dotted (cyan) lines, the results
obtained when the deuteron pole is imposed in the 3S1 and
3D1 partial waves, while the double-dotted (green) line shows
the case when the deuteron pole position is imposed only in
the former. The results are rather similar to the case when the
scattering length was fixed. The most sensitive observable is
the mixing angle ε1, where the largest difference happens in
the peak, somewhat less than 1◦.

It is worth comparing our results with the pionless EFT. In
this case pions are integrated out as heavy degrees of freedom.
We can reach this limit by taking gA → 0 in our results, which
implies 	ij = 0. Only the term proportional to N0 survives in
Eq. (19), and N11(A) = N0 from Eq. (10). We can determine
N0 by fixing the experimental scattering length, Eq. (12), or by
reproducing the deuteron binding energy N0 = −4π/

√
m3Ed .

The former case is given by the solid (black) line and the latter
by the double-dotted (green) one in Fig. 3. For comparison we
also show the lines corresponding to our full results, obtained
by fixing the scattering length and the deuteron binding energy
to their experimental values. The former case corresponds to
the dashed (blue) line and the latter to the dash-double-dotted
(cyan) line, as shown in Fig. 2. One observes that the inclusion
of pions significantly improves the phase shifts and also makes
the results more stable independently of whether the scattering
length or the deuteron pole is adjusted.
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FIG. 3. (Color online) Comparison between the results obtained
for the theory without pions and our full results at LO. The Nijmegen
PWA [34] corresponds to the dot-dashed (red) lines. When the 3S1

scattering length is fixed, one has the dashed (blue) line for the case
with pions and the solid (black) line for the pionless case. When the
deuteron binding energy is fixed the result is the dash-double-dotted
(cyan) line for the theory with pions and the double-dotted (green)
line for the pionless case.

B. One extra subtraction

Now we impose that the 3S1 partial wave reproduces the
experimental values for the 3S1 scattering length, at , and the
deuteron binding energy simultaneously. Similar restrictions
were considered in Refs. [21,24]. To accomplish it we
introduce one extra subtraction constant in the D11(A) function
by taking one more subtraction in the DR. In this way we
enhance the role played by the low-energy region because the
extra subtraction gives more weight to the low-energy part of
the integrand in the DR, so that it vanishes more rapidly as
A → ∞. The new DRs for N11(A) and D11(A) read

N11(A) = N0 + A

π

∫ L

−∞
dk2 	11(k2)D11(k2)

k2(k2 − A)
,

D11(A) = 1 − A

k2
d

− A
(
A − k2

d

)
π

N0

∫ ∞

0
dk2 ν11(k2)

(k2 − A)
(
k2 − k2

d

)
k2

+ A
(
A − k2

d

)
π

∫ L

−∞
dk2 	11(k2)D11(k2)

k2
g

(d)
11 (A, k2),

(28)

with

g
(d)
11 (A, k2) = 1

π

∫ ∞

0
dq2 ν11(q2)

(q2 − k2)(q2 − A)
(
q2 − k2

d

) . (29)

By construction D11(k2
d ) = 0 in Eq. (28), which guarantees the

presence of the deuteron in its experimental position. Having
the right value for the 3S1 scattering length fixes the constant N0

to Eq. (12). The extra subtraction taken in D11, Eq. (28), will
also be studied when considering the NLO ChPT contribution
to the discontinuity across the LHC because then the resulting
	ij (A) diverges as A for A → ∞.

The deuteron pole is also imposed in the 3D1 partial
wave by employing Eq. (22) so that the right pole structure
is accomplished. The input is fixed such that the resulting
deuteron pole position in the mixing partial wave 3S1-3D1 is
located in the same position as for the other two coupled partial
waves, as discussed above.

In Fig. 4 we show, from left to right, the 3S1 and 3D1 phase
shifts and the mixing angle ε1 resulting from Eq. (28), in
that order. A clear improvement compared with Fig. 2 is
observed, so that now the resulting curve runs closer to the
Nijmegen PWA [34] for the 3S1 phase shifts. An improvement
also happens for the mixing angle ε1, which now overlaps
better with the Nijmegen results for three-momentum up to
about 100 MeV and later the trend of the curve tends to follow
that of the Nijmegen PWA. Let us also stress that the failure
to reproduce ε1 in the Kaplan-Savage-Wise scheme [14] was
the main reason to conclude that its perturbative treatment
of pion exchange was not appropriate [38]. In contrast, our
LO reproduction of ε1 in Fig. 2 is already quite close to the
Nijmegen results [34] and improves when considering the extra
subtraction, as shown in Fig. 4. This is a clear indication that
ε1 will also be properly reproduced at NLO in the calculation
of 	ij (A), although the adjusted value for this subtraction
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FIG. 4. (Color online) From left to right we plot our results [solid (black) curves] for the 3S1 and 3D1 phase shifts and the mixing angle
ε1, when the experimental 3S1 scattering length and deuteron binding energy are imposed. The Nijmegen PWA [34] data are shown by the
dot-dashed (red) lines.

constant would change owing to the addition of the two-pion
exchange contributions.

Next we evaluate the three independent deuteron parame-
ters that can be calculated from NN scattering [39]. The first
quantity is the binding energy of the deuteron, which is fixed
to its experimental value as input. The second quantity that we
consider is the asymptotic D/S ratio η. For that we make use of
the Blatt and Beidenharn parametrization [40] and diagonalize
the 3S1-3D1 S-matrix, S1, by an orthogonal real matrix O,

S1 = O S1;diagO−1, O =
(

cos ε1 − sin ε1

sin ε1 cos ε1

)
,

(30)

S1;diag ≡
(

S0 0
0 S2

)
.

In terms of ε1 one can write the asymptotic D/S ratio η as
[39,41]

η = − tan ε1. (31)

The third quantity that we calculate is i times the residue of
the eigenvalue S0 at the deuteron pole position α ≡

√
−k2

d :

S0 = N2
p

α + i|p| + regular terms. (32)

We should remark that because we do not employ NN

potential to study NN scattering, we cannot compute the
wave function of the deuteron and, in terms of it, evaluate
straightforwardly (in the simplest approximation) other quan-
tities, e.g., the deuteron electric quadrupole moment Q and
the mean-square deuteron radius 〈r2〉1/2. This does not mean
that we cannot obtain such observable quantities from our
T -matrix but simply that we should consider other processes
beyond pure NN scattering. For instance, in order to calculate
the mean-square deuteron radius 〈r2〉 we should proceed as in
Ref. [42] to calculate the same quantity but for the f0(500) or
σ resonance, where ππ scattering in the presence of a scalar
source was calculated. Similarly, we should study here NN

scattering in the presence of a scalar source giving rise to the
matter form factor of the deuteron. This is beyond the present
study and requires an independent study.

The resulting values that we obtain are

η = 0.028, N2
p = 0.74 fm−1. (33)

Our results compare well with the experimental determi-
nations, η = 0.0271(4) [43] and η = 0.0263(13) [44]. They
are also close to those evaluated in the Nijmegen PWA in
1993 [34]:

η = 0.02543(7), N2
p = 0.7830(7) fm−1. (34)

Thus, once we reproduce simultaneously the deuteron bind-
ing energy and the 3S1 scattering length, the other properties
of the deuteron that can be extracted from scattering compare
well with the values determined in partial-wave analyses or
experiment.

We obtain the following value for the effective range r ,

r = 1.56(3) fm, (35)

where the error is just statistical by fitting the low-energy phase
shifts generated by our own amplitudes. This number is quite
close to the Nijmegen PWA 1993 [34] result, r = 1.753(2) fm.

In Ref. [45] the OPE potential from ChPT is employed in
a LS equation solved by making use of an interesting method
based on identifying the input with the T -matrix deep in the
LHC, writing the potential in terms of it. Their results for η and
r are very similar to ours in Eqs. (34) and (35), obtaining the
intervals of values η = 0.0281–0.0293 and r = 1.36–1.58 fm.
Their results for the elastic 3S1 phase shifts are also quite
similar to ours, though for 3D1 they are closer to Nijmegen
points [34]. Regarding the mixing angle ε1, Ref. [45] obtains
that for a large renormalization scale μ the resulting curves
depart from the Nijmegen data [34] by an absolute amount
similar to ours for |p| � 100 MeV (our results lie above, while
theirs lie below). One should keep in mind that we have taken
the scattering length and the binding energy as input for our
calculations, while Ref. [45] only adjusts the scattering length.

It has been well known since the 1960s that for 3S1-3D1

coupled partial waves, solving a LS equation in terms of the
OPE potential gives a significantly better phenomenology than
solving the N/D method taking for 	ij (A) the discontinuity
along the LHC induced by OPE [36]. However, it is worth
keeping in mind that [45], as well as [10], obtain phase shifts
for 1S0 which are very similar to ours in Ref. [1]. It is known
that the 1S0 phase shift data of Nijmegen [34] are reproduced
quite closely [9] once two-pion exchange contributions and
NLO LECs in the four-nucleon Lagrangian are included. In

034005-8



NUCLEON-NUCLEON INTERACTIONS FROM DISPERSION . . . PHYSICAL REVIEW C 86, 034005 (2012)

our novel theory, which calculates the NN partial waves from
ChPT by employing the N/D method, there is no reason to
expect that the phase shifts should be reproduced at LO worse
in the 1S0 partial wave than in the 3S1-3D1 coupled waves
(which results correspond strictly to Fig. 2 in terms of only
one subtraction being needed). In this respect, it is rewarding
that by considering NLO contributions to the NN potential
in the standard Weinberg approach [9], one can obtain good
results for 1S0. This should also be expected for the 3S1-3D1

case within our approach. Indeed, we have already seen that the
reproduction of phase shifts (particularly for 3S1) and mixing
angle clearly improves. When considering two-pion exchange
at NLO some extra counterterms are needed because 	ij (A)
diverges as A for A → −∞ along the LHC.

Solving a LS equation with OPE for the 3S1-3D1 system
is much more successful phenomenologically than for the
1S0 case. One should be aware that this is something that is
checked a posteriori and is not rooted in the chiral counting
(in which our approach is based). From our point of view the
ladder resummation in the LS for the 3S1-3D1 case provides
higher orders terms to 	ij (A) in the right direction. However,
this improvement should occur when applying the N/D

method to (just a few) higher orders, because along the LHC
	ij (A) is perturbative and amenable to a chiral expansion as
discussed. For 1S0 the higher orders in 	(A) provided by the
LS equation are not the important source of dynamics and
one has to consider the full machinery in order to incorporate
at higher orders two-pion exchange with the associated chiral
counterterms. It is our aim to develop for the time being a NLO
(or NNLO) study of NN scattering with our approach based
on the N/D method and the ChPT calculation of 	(A) in
order to definitively settle this important issue. We would like
to stress that at this stage our study is mostly exploratory and
not competitive with the current sophisticated potentials [34]
or calculated at higher orders from ChPT [8,9].

The set of works [19,46–49] gives rise to a remarkable
description of deuteron properties employing the NN potential
given by OPE in a LS equation, e.g., Ref. [19] achieves
for many observables a 2–3% deviation with respect to the
experimental values. But this is not the only aim of an EFT.
That is, one does not expect such a high degree of convergence
by taking only the LO ChPT NN potential. This is more a
matter of phenomenological success and not rooted in the
chiral EFT. For baryon ChPT the expansion scale is not
so great, � � 12π2f 2

π /g2
Am � 500 MeV [5,50], and such

great precision is thus difficult to understand from the ChPT
expansion. We want to emphasize this point (consider, e.g.,
the not so great achievement for the 1S0 case) and develop
a formalism where contributions to a given process can be
obtained order by order systematically in the chiral EFT
expansion of 	(A).

C. Higher partial waves

In this section, we present the results for the spin triplet
waves with total angular momentum J = 2 and 3, obtained
with the formalism derived in Sec. II. They are shown by
solid (black) lines in Fig. 5, where they are compared with the
Nijmegen PWA [34] [dash-dotted (red) lines].
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FIG. 5. (Color online) Comparison of our results for the 3P2, 3F2,
3D3, and 3G3 phase shifts and the mixing angles ε2 and ε3, shown by
solid (black) lines, to the Nijmegen PWA results [34], represented by
dot-dashed (red) lines.

We already see a good agreement with data for 3F2 and 3G3

as well as for the mixing angles ε2 and ε3. The lower partial
waves 3P2 and 3D3 are not well reproduced with only OPE
yet. This fact for the 3D3 partial wave was already observed
in Ref. [37], where OPE was treated perturbatively. In this
reference 3D3 is also obtained with opposite sign to the data.
In Ref. [10], with one counterterm promoted to LO for the 3P2

wave, the situation is similar. The 3P2 and 3D3 phase shifts are
not well reproduced at LO, while the others compare well with
the data. We expect to restore the agreement with experiment
at higher orders in the application of our method to 3P2

and 3D3.

IV. CONCLUSIONS

We have developed a new set of equations for the N/D

method in coupled partial waves, extending our previous work,
Ref. [1], restricted to uncoupled partial waves. This method
is presented in a novel way, adequate to improve the results
systematically by taking higher orders in the chiral expansion
of the calculation of the discontinuity of the partial-wave
amplitudes along the LHC, 	ij (A) with A < 4m2

π . This
extension is accomplished by providing three N/D equations
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for each set of partial waves coupled. The solution is obtained
in an iterative and self-consistent way. The correct solution
satisfies unitarity, and for the case of the 3S1-3D1 system the
deuteron pole is located at the same position in all waves,
having the correct pole structure.

As in Ref. [1] our approach guarantees the right threshold
behavior for partial waves with orbital angular momentum
�ij � 2 by satisfying �ij − 1 constraints. Because the function
Dij (A) is determined modulo the addition of CDD poles
(which correspond to zeros of the NN partial waves along the
real axis), we have then added �ij − 1 of such poles at infinity
in Dij for �ij � 2. By sending such poles to infinity we do not
include any zero of any NN partial wave at finite energies.
In addition, the residues of these poles in Dij (A) are fixed
once the sum rules are satisfied, so that no new parameters are
included. At low energies the CDD poles behave like adding
a polynomial of degree �ij − 2 to Dij (A).

We have studied 3S1-3D1 coupled waves by fixing the
resulting subtraction constant to either the experimental value
of the 3S1 scattering length or the deuteron binding energy.
We find that the 3D1 phase shifts are the most sensitive
to this choice. As expected, in all cases the triplet S-wave
effective range comes out much smaller than in experiments.
Thus, we added one extra subtraction to calculate the 3S1

wave requiring the simultaneous reproduction of the deuteron
binding energy and triplet S-wave scattering length. The
resulting 3S1 phase shifts are much improved and we then
obtain the effective range and deuteron properties close to their
experimental values. We have also considered the pionless case
and compared it with our full results, which include OPE. It
was seen that the results clearly improve for the latter case.
For waves with orbital angular momentum � � 1 at LO there
is no subtraction constant and the results are parameter free.
The resulting phase shifts and mixing angles agree well with
the Nijmegen PWA results, except for the 3P2 and 3D3 partial
waves.

Certainly, including OPE as the only source of discontinuity
along the LHC is phenomenologically just a first step and
a NLO calculation should be undergone to establish the
capability of the method to reproduce properly NN scattering
data. However, one should stress at this point that our approach
based on the N/D method offers a way to calculate NN

scattering independently of cutoff, because only convergent
integrals appear, while keeping the chiral power counting. The
dispersive integrals are convergent by taking the appropriate
number of subtractions with the related subtraction constants
fixed to experimental data. At LO only two subtraction
constants appear in the 1S0 and 3S1 partial waves, the same
number as for LO ChPT counterterms [6]. This method allows
one to perform calculations systematically, order by order,
in ChPT.
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APPENDIX: THE gi j (A, k2) FUNCTIONS

On general grounds, the following threshold behaviors are
found for the νij (A) functions:

ν11(A) ∝ A1/2, ν12(A) ∝ A−1/2, ν22(A). ∝ A−3/2

This can also be seen by inserting the low-energy behavior of δ1

(∝A�+1/2), δ2 (∝A�′+1/2), and ε (∝ A(�+�′+1)/2) in the explicit
expression for νij (A), Eqs. (3)–(5). No problem occurs in the
integrand for the functions g11(A, k2) and g12(A, k2), when
these low-energy behaviors are inserted, but the divergence in
ν22(A) could lead to a divergence in the function g22(A, k2).
This was pointed out in Ref. [27] as a potential source of
divergences. However, a more careful analysis shows that this
divergence vanishes owing to the sum rules, Eqs. (13). For the
g22(A, k2) integral one has

g22(A, k2) = 1

π

∫ +∞

λ→0
dq2 ν22(q2)

(q2 − A)(q2 − k2)

= 2ν0

πAk2
√

λ
+ regular terms,

where ν22(A) = ν0A
−3/2 for A → 0. In the previous equation

the regular terms refer to the rest of the contributions to the
integral, which do not diverge for λ → 0. The divergent term in
the previous equation enters into the integral Eq. (18) through
the function g22(A, k2), giving rise to a term proportional to∫ L

−∞
dk2 	22(k2)D22(k2)

k4
= 0,

which vanishes owing to the constraints of Eq. (13). Note
that every channel in which g22(A) is involved has �′ � 2
(the lowest value for �′ corresponds to the 3D1 wave), and
thus the sum rule above applies. The constraints Eq. (13) thus
show a new important facet beyond the original motivation for
their introduction.
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