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Three-body breakup within the fully discretized Faddeev equations
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A novel approach is developed to find the three-body breakup amplitudes and cross sections within the modified
Faddeev equation framework. The method is based on the latticelike discretization of the three-body continuum
with a three-body stationary wave-packet basis in momentum space. The approach makes it possible to simplify
drastically all the three- and few-body breakup calculations due to discrete representation for the few-body
continuum and lattice representation for all the scattering operators entering the integral equation kernels. As a
result, the few-body breakup can be treated as a particular case of multichannel scattering in which part of the
channels represents the true few-body continuum states. As an illustration for the novel approach, an accurate
calculations for the three-body breakup process n + d → n + n + p with nonlocal and local NN interactions are
calculated. The results obtained reproduce nicely the benchmark calculation results using the traditional Faddeev
scheme which requires much more tedious and time-consuming calculations.
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I. INTRODUCTION

The past few decades have inaugurated great success in
precise ab initio calculations for few-body scattering processes
[1–7]. These calculations made it possible to describe accu-
rately the results of numerous recent experiments on elastic nd

scattering at energies up to 350 MeV and also the three-body
breakup n + d → n + n + p at low and moderate energies
En � 10–30 MeV. However, some problems remain unsettled
even at such low energies. These are the so-called Ay puzzle (as
well as other puzzles for various tensor and vector analyzing
powers) in elastic scattering, the problems with an adequate
description of the pairwise 1S0-channel contribution to three-
body breakup at low energies [8], and breakup cross section
in some particular three-particle configurations such as the
quasifree scattering [9] and the space-star [10] configurations.
The most plausible reason for the visible discrepancies with ex-
perimental data in this area is likely not insufficient accuracy of
numerical calculations but rather some deficiency in the input
2N and 3N interactions. At the same time, the progress in the
field of precise few-nucleon calculations, particularly in testing
of new models for 3N interactions, is restrained strongly by a
high complexity of few-nucleon calculations, especially above
the three-body threshold. Because of these complications of
traditional computational schemes for the direct solution
of the Faddeev-Yakubovsky equations, there has been a rise
of interest in recent years in alternative approaches [11–13] to
calculate the scattering observables by simpler methods.

Among such alternative approaches, one can note a pref-
erence for the so-called L2 methods. These methods are
based on expansions of the scattering solution into a basis
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of square-integrable functions [14–21]. Such L2 methods
have proved to be very well suited and quite efficient for
numerous applications. One of the most successful approaches
of this type is the continuum-discretized coupled-channels
(CDCC) method developed 3 decades ago for treatment of
breakup processes in direct nuclear reactions [19–22]. The
CDCC approach in its traditional form was unable to treat
other channels than elastic scattering and projectile (or target)
breakup. Recently, a few groups generalized the traditional
CDCC approach to scattering of three-fragment projectiles
by a stable target [21]. However, this generalized approach
can be considered as a hybrid method: L2 discretization of
inner motion in the three-body projectile and the conventional
treatment of a coupled-channels problem.

On the other hand, the present authors have developed some
alternative L2 technique [23–26] which is based on the idea of
complete continuum discretization with a special stationary
wave-packet basis in momentum space (three-body lattice
basis). The basic distinction of such an approach from the
traditional CDCC scheme for the three-body systems is that
the wave-packet approach is dealing with a full discretization
of the three-body continuum. In other words, the discretization
on both Jacobi coordinates is used here rather than the
discretization on the alone coordinate of the projectile inner
motion as in the CDCC approach.1

Our approach with the global discretization over all valence
coordinates leads immediately to a few important advantages

1We note that a similar idea of global three-body discretization
in a momentum space has been proposed earlier [15] within the
pseudostate extension of the coupled-reaction-channels method. The
author solved as an illustration of the approach the simple model
problem of 2 → 2 scattering and also the breakup 2 → 3 process
using the Laguerre polynomial basis. Unfortunately, this prospective
approach has not been developed further.
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in the accurate treatment of few-body scattering. Among these,
the following are the most important:

(i) The few-body scattering problem is consistently for-
mulated in a Hilbert space of three-body normalized
states, similarly to the bound-state problem.

(ii) The approach employs the integral equation framework
of scattering theory instead of the differential equation
approach (e.g., in the CDCC) where the boundary
conditions in few-body scattering channels are not
easy to formulate, especially in terms of the L2 basis
used. Contrary to this, the integral equation formulation
allows us to avoid any explicit account of the boundary
conditions.

(iii) When working within the wave-packet formulation of
the scattering problem, one can derive explicit formulas
for some scattering operators (e.g., channel resolvents).
Such fully analytical finite-dimensional approxima-
tions, being substituted into integral equation kernels,
lead immediately to their algebraic matrix analogs.
Thus, our final equations are simple matrix linear
equations with regular matrices.

In our previous works [24,25] we have demonstrated how
to find the elastic 2 → 2 scattering amplitudes in lattice rep-
resentation. In the present paper, we generalize the technique
to the three-body breakup treatment. So we present here the
complete formalism for determination of three-body breakup
amplitudes. It is important to emphasize in this connection
that the accurate treatment of three-body breakup within the
L2 type approach is much less obvious than that of elastic ones
and thus requires some additional delicate theoretical studies.
In particular, the matrix elements in the breakup amplitude
are not truncated over all spatial coordinates (in contrast to
the elastic and rearrangement amplitudes), so the validity of the
L2 scheme in the treatment of the breakup processes should be
studied carefully. As some substantiation for such an approach,
one can consider the three-body breakup calculations within
the CDCC approach where the discretization of the continuum
in the projectile inner sub-Hamiltonian has been used for the
description of the breakup amplitudes [21,22]. So the natural
generalization of such a partial continuum discretization to the
case of full three- and few-body continuum within the Faddeev
equation approach is an important next step. Moreover, this
fully discretized approach studied in the present work allows
us to simplify drastically all calculations and makes it more
universal and elegant.

The present work has the following structure. In Sec. II,
a three-body latticelike free wave-packet basis is described in
detail together with a similar basis for the channel Hamiltonian.
Here we also discuss the properties of these bases. The
complete formalism for elastic scattering and breakup, as
applied to the nd system in the packet representation, is
presented in Sec. III. In Sec. IV, a few useful numerical
illustrations and their comparison with the standard Faddeev
benchmark calculations are given. Our results are summarized
in the Sec. V. For the sake of convenience for the reader
we add three appendices. In Appendix A we describe the
detailed scheme for calculation of the three-body overlap
matrix in the three-body lattice basis for recoupling of

different Jacobi coordinates. In Appendix B we give the
convenient wave-packet formalism for the solution of three-
body scattering problem with separable pairwise interactions.
In Appendix C we discuss some features of our numerical
calculations.

II. LATTICE REPRESENTATION FOR THE
THREE-BODY CONTINUUM

We consider here the problem of a scattering of three
identical particles 1, 2, and 3 (nucleons) with mass m,
interacting via pairwise short-range potentials va (a = 1, 2, 3).
It is convenient to use three Jacobi momentum sets (pa, qa)
corresponding to three channel Hamiltonians Ha (a = 1, 2, 3)
which define the asymptotic states of the system. For example,
the channel Hamiltonian H1 has the form of the direct sum of
two-body sub-Hamiltonians

H1 ≡ h1 ⊕ h1
0, (1)

where sub-Hamiltonian h1 describes NN subsystem consist-
ing of particles 2 and 3 with interaction v1 and sub-Hamiltonian
h1

0 corresponds to the free motion of nucleon 1 relative to the
center of mass of the subsystem {23}. As we study the identical
particle system, we will omit, where it is possible, the Jacobi
coordinate index a.

A. The two-body free wave-packet states

We start from the free-motion three-body Hamiltonian
defined in the given Jacobi momentum set (p,q)

H0 = h0 ⊕ h1
0, (2)

where the sub-Hamiltonian h0 defines the free motion of
two nucleons with the relative momentum p and the sub-
Hamiltonian h1

0 defines the free motion of the third nucleon
with the momentum q relative to the pair NN subsystem.

We will now construct our three-body L2 basis using dis-
cretization of the continua of the two above sub-Hamiltonians.
In doing this, we will employ the complete sets of continuum
wave functions |p〉 and |q〉 (for every partial wave) normalized
according to the conditions

〈p|p′〉 = δ(p − p′), 〈q|q ′〉 = δ(q − q ′). (3)

When discretizing, we truncate the continuum of h0 and
h1

0 by maximal values εmax and Emax, respectively, so the con-
tinuous spectra above these values can be neglected. Further,
the selected energy regions [0, εmax] and [0, Emax] are divided
onto nonoverlapping bins {[εi−1, εi]Mi=1} and {[Ej−1, Ej ]Nj=1}.
Such energy bins correspond to momentum bins [pi−1, pi]
and [qj−1, qj ], so the end points of both sets are interrelated

by conventional formulas pi =
√

mεi and qj =
√

4
3mEj . To

further simplify the notation, we will denote the intervals in
the variable p (both the energy and momentum ones) as Di

and those in the variable q as D̄j . We use also the following
notations for the widths of the corresponding momentum
intervals:

di = pi − pi−1, d̄j = qj − qj−1. (4)
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Now let us define a set of free stationary wave packets
(WPs) as integrals of the plane waves (corresponding to the
free motion) over the above momentum bins for both sub-
Hamiltonians,2

|pi〉 = 1√
Ai

∫
Di

dpf (p)|p〉, i = 1, . . . ,M, (5)

|qj 〉 = 1√
Bj

∫
D̄j

dqw(q)|q〉, j = 1, . . . , N. (6)

where f (p) and w(q) are some known weight functions and
Ai and Bj are normalization factors, directly related to the
weight functions

Ai =
∫

Di

dp|f (p)|2, Bj =
∫

D̄j

dq|w(q)|2, (7)

so the WP states are normalized to unity,

〈pi |pi ′ 〉 = δii ′ , 〈qj |qj ′ 〉 = δjj ′ . (8)

It is important to stress that these WP states belong to a
Hilbert space (similarly to the bound-state functions) and WP
functions are square integrable. In configuration space they
vanish at infinity in contrast to the initial plane waves. But,
in the relevant restricted range of configuration space, the WP
states still resemble quite closely the exact scattering states
taken at the bin center energy (or momentum) [24]. The sets of
such WP states |pi〉Mi=1 and |qj 〉Nj=1 form an orthonormalized
bases in Hilbert space, which can be used as normal L2 bases,
e.g., also for variational calculations.

In our previous papers [24,25] we have discussed the
properties of WPs in detail. A distinctive feature of WP bases
is that the matrices of the sub-Hamiltonians found in such
bases are diagonal,

〈pi |h0|pi ′ 〉 = ε∗
i δii ′ , 〈qj |h1

0|qj ′ 〉 = E∗
j δjj ′ , (9)

where values ε∗
i and E∗

j are defined via corresponding end
points of bins Di and D̄j [24]. The most useful property
of WPs is that the matrices of the resolvents g0(ε) = [ε +
i0 − h0]−1 and g1

0(E) = [E + i0 − h1
0]−1 are diagonal in the

corresponding WP bases and their elements have explicit
analytical forms [24].

Different choices of weight functions lead to different sets
of WPs. In practical calculations in this work we use the
momentum wave packets with the unit weight functions,

f (p) = 1, Ai = di, w(q) = 1, Bj = d̄j . (10)

It is easy to see that the overlap of such free momentum
WPs with a plane wave, i.e., the momentum representation of
packet state (5) itself, has the form

〈p|pi〉 = ϑ(p ∈ Di)√
di

, (11)

where we have introduced the function ϑ(p ∈ Di), which is
equal to unity if the momentum p belongs to the interval
[pi−1, pi] and vanishes in the other case. So the wave packet

2Below we will use the Gothic letters to denote objects (wave
functions and operators) in the WP subspace.

|pi〉 takes a form of a simple steplike function in the momentum
representation.

The sets of the constructed free WP states can be used to
find two-body bound states and to solve a two-body scattering
problem, e.g., for finding the two-body off-shell t matrix [24].
In the present paper we will use these two-body L2 bases
to construct three-body WPs to solve three-body scattering
problem.

B. Three-body lattice basis and the permutation matrix

Three-body wave packet states are built as direct products
of two-body ones. However, here one should take into account
the spin and angular parts of the functions. The total three-body
WP basis function can be written as∣∣X�αβ

ij

〉 = ∣∣pα
i

〉 ⊗ ∣∣qβ

j

〉|α, β : �〉, (12)

where |α〉 is the spin-angular state of the NN pair and |β〉 is the
spin-angular state of third nucleon, while |�〉 is the set of the
three-body quantum numbers. The state (12) is a WP analog
of the exact state of the three-body continuum |p, q〉|α, β : �〉
for the free Hamiltonian H0.

The properties of such three-body WPs are very similar
to those of two-body wave packets [24]. In particular, the
matrix of the three-body free Hamiltonian H0 and its resolvent
G0(E) = [E + i0 − H0]−1 are diagonal in the so-constructed
basis. In other words, such a WP basis defines an “eigen”
wave-packet subspace for the free three-body Hamiltonian
H0.

Since the basis functions are the products of both steplike
functions in variables p and q, the solution of the three-body
scattering problem in such a basis corresponds to a formulation
of the scattering problem on a two-dimensional momentum
lattice. Therefore, we will refer to such a basis as a lattice
basis. Let us denote the two-dimensional bins (i.e., the lattice
cells) as Dij = Di ⊗ D̄j . In the few-body case, the lattice basis
functions are constructed as direct products of the two-body
free WPs, so the basis space corresponds to a multidimensional
lattice.

In principle, using the above lattice basis, one can solve
a general three-body scattering problem by projecting all the
scattering operators onto such a basis. In particular, the matrix
of the three-body free resolvent G0 can be expressed in the
above lattice representation fully analytically [26].

Let us consider the particle permutation operator P which
enters the Faddeev equation for three identical particles and is
defined as

P = P12P23 + P13P23. (13)

The matrix of the operator P in the lattice basis corresponds
to the overlap between basis functions defined in different
Jacobi sets,〈

X
�αβ

ij

∣∣P ∣∣X�α′β ′
i ′j ′

〉 = 〈
X

�αβ

ij (1)
∣∣X�α′β ′

i ′j ′ (2)
〉
, (14)

where the argument 1 (or 2) in the basis functions means
a corresponding Jacobi set. Such a matrix element can
be calculated with the definition of the basis functions in
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momentum space (11),

[P 0]αβ,α′β ′
ij,i ′j ′ ≡ 〈

X
�αβ

ij

∣∣P ∣∣X�α′β ′
i ′j ′

〉 =
∫

Dij

dpdq

∫
D′

i′j ′
dp′dq ′

× P �
αβ,α′β ′ (p, q, p′, q ′)√

didi ′ d̄j d̄j ′

, (15)

where the prime at the lattice cell D′
i ′j ′ indicates that the cell

belongs to the other Jacobi set while the P �
αβ,α′β ′ (p, q, p′q ′)

is the kernel of particle permutation operator in a momentum
space. This kernel, as is well known [27], is proportional to the
product of the Dirac δ and Heaviside θ functions. However,
due to “packetting” [i.e., integration over momentum bins in
Eq. (15)], these singularities get averaged over the cells of
the momentum lattice and, as a result, the elements of the
permutation operator matrix in the WP basis are finite.

Using the above “packetting” procedure and the hy-
perspherical momentum coordinates, the calculation of the
matrix element in Eq. (15) can be done using only a one-
dimensional numerical integration over the hypermomentum
K =

√
p2 + 3

4q2. The technique of this calculation for the
s-wave basis functions is given in Appendix A of the
present paper. The generalization for higher partial waves is
straightforward.

It should be emphasized here that the fixed latticelike
form for the permutation operator matrix makes it possible to
avoid the complicated and time-consuming multidimensional
interpolations of the current solution when solving the Faddeev
equations (in momentum space) by iterations in a conventional
approach [1,3]. Such numerous multidimensional interpola-
tions at each iteration step take up a big portion of the
computational time in practical numerical procedure. When
solving the four-body Yakubovsky equations, the dimensions
for these interpolations increase and, thus, the computational
efforts get even higher. So, avoiding the very numerous multi-
dimensional interpolations in each step of the iterations leads
to a tremendous acceleration for all three-body calculations in
momentum space.

Thus, the two-dimensional momentum lattice basis con-
structed above can be applied directly to solving the Faddeev
equations for the conventional transition operator U . However,
by using the very convenient form for the spectral represen-
tation of the resolvent operators in the WP basis, one can
employ some alternative (but equivalent) form of the Faddeev
equation, which makes it possible to avoid the time-consuming
calculation of the fully off-shell t matrix at many energies
(which requires to solve very often the Lippmann-Schwinger
equations at every energy and for different spin-orbit channels)
and to replace it by calculating the resolvent of the NN

sub-Hamiltonian h1 in the corresponding scattering WP
representation. The latter can be made easily by straight-
forward onefold diagonalization of the h1 sub-Hamiltonian
matrix.

C. The scattering WPs for the sub-Hamiltonian h1

As has been demonstrated earlier [24–26], the stationary
wave packets can be built not only for free Hamiltonians

but also for perturbed two-body h1 = h0 + v1 and three-body
channel Hamiltonians H1.

In the case of the h1 sub-Hamiltonian, its continua [0, εmax]
for every spin-angular configuration α are divided into separate
bins {[εα

k−1, ε
α
k ]Kk=1} and one can build the scattering wave

packet for every such bin 
α
k ≡ [εα

k−1, ε
α
k ] in the form

∣∣zα
k

〉 = 1√
Dα

k

∫

α

k

dp
∣∣φα

p

〉
, (16)

i.e., as an integral over the exact scattering wave function |φα
p〉

on the energy interval 
α
k . Here we use the unit weight function

and Dα
k is the width of interval 
α

k .
It is easy to show that such packet states have the same

properties with respect to their “eigen” Hamiltonian h1 as
free WPs with respect to the free Hamiltonian h0. The
only difference is that the set of scattering WPs should be
accomplished with the bound-state functions of h1 (if they
exist). Jointly with the possible bound-state wave functions for
the h1 sub-Hamiltonian, the scattering WPs form an orthonor-
malized basis in which both the matrix of the Hamiltonian
h1 and the matrix of its resolvent g1(ε) = [ε + i0 − h1]−1 are
diagonal [24].

The projection properties for the WP of h1 will be similar
to those for h0 (11), viz.,

〈
φα

p

∣∣zα
k

〉 = ϑ
(
p ∈ 
α

k

)√
Dα

k

. (17)

D. Pseudostates as approximations for scattering WPs

At first glance, it may appear that the exact scattering WP
basis is useless because its construction would require knowl-
edge of exact scattering wave functions of the Hamiltonian
h1. However, as has been demonstrated [24], the properties of
the exact scattering WPs for h1 are quite similar to those of
respective pseudostates obtained by the diagonalization of the
Hamiltonian matrix in some complete L2 basis. Therefore, in
actual calculations, one can replace the set of WPs |zα

k 〉 by the
set of respective pseudostates [24]. Such an L2 basis can be
used as a very good approximation for the free WP basis (5).
As a result of such Hamiltonian matrix diagonalization, one
gets a set of pseudostates

∣∣z̄α
k

〉 =
M∑
i=1

Oα
ki

∣∣pα
i

〉
, k = 1, . . . ,M, (18)

together with a set of their eigenvalues εα∗
k .

In this paper, we restrict ourselves to s-wave spin-dependent
pair interactions only. We assume that there is a single bound
state |z0〉 (deuteron) with binding energy ε∗

0 in the NN spin-
triplet channel and there are no bound states in the NN spin-
singlet channel.

In the case of s-wave scattering with s-wave NN interac-
tions, the indices α, β, and � in Eq. (12) include only the spin
quantum numbers. Therefore, we will use the value of the spin
of the NN pair, s = 0, 1 instead of index α, while index β,
which indicates the spin value of the third nucleon (i.e., 1

2 ),
will be omitted everywhere. Index �, which defines the set of
quantum numbers for three-body states, is reduced to the total
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FIG. 1. (Color online) Comparison of the exact deuteron wave
function obtained in the momentum space for the Yamaguchi
potential (dashed curve) with its approximation in the lattice basis
(solid line).

spin of the three-body system � = 1
2 , 3

2 , which, in the s-wave
case, is equal to the total angular momentum of the system
and, therefore, is conserved.

After the above diagonalization in the spin-triplet channel
(s = 1), one gets a set of pseudostate functions, the first of
which |z̄1

1〉 ≈ |z0〉, with the energy ε∗
0 , is an approximation

for the deuteron wave function, while the other M − 1
pseudostates with energies ε1∗

k are localized in the continuum
spectrum and correspond to scattering WP states for h1. In the
spin-singlet channel there are no NN bound states, so all func-
tions |z̄α

k 〉 in Eq. (18) are approximated by scattering WPs. It is
important to note that, as a by-product of our diagonalization
procedure, one gets simultaneously the discrete representation
for NN partial phase shifts δs(εs∗

k ) for all pseudostates energies
(i.e., in one step)—see the details in Ref. [28].

Since the free WP basis functions (in the momentum
space) are steplike functions, the momentum dependence of
all functions expressed via such a basis have a histogram-like
form. An example of the momentum dependence for the
bound-state (deuteron) function in such a steplike basis, in
comparison with the exact function for the Yamaguchi triplet
NN potential (see Appendix B), is displayed in Fig. 1.

Figure 2 displays the functions of two pseudostates (with
k = 4, 8) obtained in the lattice basis in comparison with
the corresponding exact scattering wave packets which can
be calculated exactly for the separable Yamaguchi potential.
It is interesting to see that, although functions of the exact
scattering WPs (16) (dashed lines in the figure) have the
logarithmic singularities at the boundaries of the “on-shell”
interval (i.e., the one which the state energy belongs to), they
are square integrable as well as the free-motion WPs.

It is clear from the comparison that the pseudostates
composed from steplike wave packets reproduce very well the
structure of the exact scattering wave packets “on average.”

Now having at our disposal the two-body bases for sub-
Hamiltonians h1 and h1

0, one can construct the three-body
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FIG. 2. (Color online) The functions of pseudostates (k = 4, 8)
obtained in the lattice basis (solid lines) in comparison with exact
scattering packets (dashed lines) for the NN spin-triplet Yamaguchi
potential.

WP basis for the channel Hamiltonian H1 which defines the
asymptotic motion in the system.

E. Construction of three-body WP basis for
the channel Hamiltonian

The three-body WP states corresponding to the channel
Hamiltonian H1 can be defined similarly to the WP states for
the three-body free Hamiltonian H0, i.e., as direct products of
two-body WP states for h1

0 and h1 sub-Hamiltonians (jointly
with the bound state) multiplied by the spin functions of the
system, ∣∣Z�s

kj

〉 ≡ ∣∣zs
k

〉 ⊗ |qj 〉
∣∣s, 1

2 : �
〉
, (19)

where s and � are the NN subsystem and the total three-body
spins correspondingly.3

When using the above pseudostate approximation, these
three-body states, similarly to two-body scattering WPs, are
related to the three-body lattice basis states by a simple rotation
transformation [similar to Eq. (18)],

∣∣Z�s
kj

〉 =
M∑
i=1

Os
ki

∣∣X�s
ij

〉
. (20)

Hence, starting from the free WP bases for every pair
subsystem, one gets a set of basis states both for the three-body
free H0 and the channel H1 Hamiltonians. The basis defined
in Eq. (19) defines an “eigen” WP subspace for the channel
Hamiltonian H1.

This allows us to construct an analytical finite-dimensional
approximation for the channel resolvent G1(E) ≡ [E + i0 −

3We consider here the three-body states with total isospin T = 1
2

only. Since in case of s-wave NN pairwise interactions the spin-
and isospin quantum numbers are interrelated uniquely by the Pauli
principle, we also can omit the isospin parts of the wave functions
and corresponding quantum numbers.
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H1]−1. Indeed, the exact three-body channel resolvent is
the convolution of the two-body subresolvents g1(ε) and
g1

0(E),

G1(E) = 1

2π i

∫ ∞

−∞
dεg1(ε)g1

0(E − ε). (21)

Using further the spectral expansions for the two-body resol-
vents and integrating over ε, one gets an explicit expression
for the channel resolvent G1 as a sum of two terms G1(E) =
GBC

1 (E) + GCC
1 (E). Here the bound-continuum part GBC

1 (E) is
the spectral sum over the three-body states corresponding to the
free motion of the deuteron relatively to the third nucleon. So,
the imaginary part of GBC

1 (E) is related to a discontinuity on the
two-body cut of the Riemann surface of the three-body energy
E. The continuum-continuum part GCC

1 (E) of the channel
resolvent includes the channel three-body states with the NN

pair interacting in the continuum and ImGCC
1 (E) is defined by

a discontinuity across the three-body cut on the energy surface
(see the details in Ref. [24]).

Projecting the exact channel resolvent onto the three-body
channel WP basis defined in Eq. (19), one can find analytical
formulas for the matrix elements of the G1 operator. The
respective matrix is diagonal in all wave-packet and spin
indices, 〈

Z�s
kj

∣∣G1(E)
∣∣Z�s ′

k′j ′
〉 = δkk′δjj ′δss ′G�s

kj (E). (22)

Here the diagonal matrix elements G�s
kj (E) are defined as

integrals over the respective momentum bins and depend,
in general, on the spectrum partition parameters (i.e., the
pi and qj values) and the total energy E only. They do
not depend explicitly on the interaction potential v1. If the
solution of scattering equations in the finite-dimensional WP
basis converges with increasing the basis dimension, the final
result turns out to be independent on the particular spectral
partition parameters. We have found [26] the explicit formulas
for the resolvent matrix elements (22) when one uses the
energy WPs,4 i.e., WPs with the weight functions f (p) = √

p,
w(q) = √

q.
The representation (22) for the channel resolvent is the

basic expression for our wave-packet approach, since it gives
explicit analytical formulas for the three-body resolvent and,
thus, it allows us to simplify drastically the solution of
a general three-body scattering problem. This expression
can be used directly to solve the finite-dimensional analog
of the Faddeev equations for the three components of the
total scattering wave function [25]. Alternatively, the very
convenient representation (22) can also be used to solve some
particular three-body scattering problems using the three-body
Lippmann-Schwinger equations [24].

4The matrix elements of the three-body channel resolvent take
a simple analytical form in the WP basis constructed from the
continuum wave functions normalized to the δ function on the energy
(the energy WPs). For finding the resolvent matrix elements with
WPs with various weight functions, one uses renormalization factors
for a transition from the given wave packet states to the energy ones.

III. SOLUTION OF THE nd SCATTERING PROBLEM

Now let us proceed with solving the nd elastic and breakup
scattering problems.

A. The elastic and breakup nd scattering amplitudes

The elastic scattering observables can be found from the
Faddeev equation (FE) for the transition operator Ū , e.g., in
the AGS form [1]

Ū = PG−1
0 + P tG0Ū , (23)

where t is two-body t matrix in three-body space and P is the
particle permutation operator. The equivalent form of FE for
the transition operator U has the form

U = Pv1 + Pv1G1U, (24)

where G1 is the resolvent of the channel Hamiltonian H1.
Since tG0 ≡ v1G1 the operators Ū and U coincide to each
other on the energy shell and half-shell.

Since the determination of the off-shell channel resolvent
in three-body space is a rather time-consuming solution of
the FE in the form (24), it is very seldom employed for
practical solutions. Actually, a similar form of the equations is
associated with formalisms of the configuration-space Faddeev
equations, where numerical approaches have been employed
[29,30] that differ from those for the momentum-space FE.
However, since in the lattice approach one has explicit
analytical formulas for the three-body channel resolvent G1

the form (24) of FE turns out to be very appropriate for the
numerical solution in a WP basis.

The elastic nd scattering amplitude (for a given value of
total spin �) can be defined as matrix element of the solution
of the Eq. (24) taken in the initial state |z0, q0, �〉,

A�
el (q0) = 2

3

m

q0
〈z0, q0, �|U |z0, q0, �〉. (25)

The breakup amplitude for one Faddeev component of
the three-body wave function (the so-called single-component
amplitude) can be found from the elastic transition operator U

after applying the operator tG0 from the left,

T �s(p, q) = 〈p, q,�s|tG0U |z0, q0, �〉
pqq0

. (26)

To obtain the differential breakup cross sections, the total
breakup amplitudes can be found by taking the contributions
of all three single-component amplitudes.

Thus, we change the conventional treatment of the breakup
process [1] and consider the three-body asymptotic states as
scattering states for the channel Hamiltonian H1 rather than as
the states of the three-body continuum for the free Hamiltonian
H0. It is a quite natural when treating the elastic-scattering
amplitudes because the initial-state wave functions correspond
to the channel Hamiltonian H1. In full analogy with this,
one can treat the deuteron breakup as its excitation into a
continuum NN state in the two-body subsystem governed by
the h1 sub-Hamiltonian.5 As was already indicated above such

5It is of interest to remark that while just such a scheme has been
used in the CDCC treatment of breakup processes [22], in the Faddeev
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a treatment of breakup processes is close to the configuration-
space approach.

In fact, when solving the three-body Faddeev equations
in the configuration space [29–31] one finds the breakup
amplitude A(θ ) which determines the asymptotic behavior
of the three-body wave function in hyperspherical coordinates
ρ =

√
x2 + 4

3y2 and ϑ = arctan( 2y√
3x

) as follows:

ψ(x, y) −−−→
ρ→∞

A(θ )

(Kρ)5/2
, K =

√
p2 + 3

4
q2, (27)

where x and y are two Jacobi coordinates and K is the
hypermomentum.

This breakup amplitude is defined for every spin-angular
configuration and interrelated to the partial single-component
breakup amplitudes (26) by the following formula:

A�s(θ ) = 4πm

3
√

3
q0K

4eiπ/4T �s(p, q), θ = arctan

(√
3q

2p

)
,

(28)

where θ is the hyperangle in momentum space.
Now, if one transforms the formulas for the breakup

amplitudes A from Ref. [29] to the integral form, one receives
the following definition for the breakup amplitudes in the
momentum hyperspherical representation:

A�s(θ ) = 4πm

3
√

3

K4

pq
eiπ/4〈z0, q0, �|U ∣∣φs(+)

p , q,�
〉
, (29)

where |φs(+)
p 〉 is a scattering function for the Hamiltonian

h1 corresponding to the outgoing boundary condition. These
functions are distinguished from the real-valued functions |φα

p〉
used in our approach by only a phase factor,∣∣φs(+)

p

〉 = eiδs (p)
∣∣φs

p

〉
, (30)

where δs(p) is the s-wave phase shift of the NN scattering in
the channel with spin s.

Using formulas (28) and (29), one can derive an alternative
to formula (26) for the single-component breakup amplitude
via the scattering functions of the channel Hamiltonian H1

T �s(p, q) = eiδs (p)
〈z0, q0, �|U |φs

p, q,�〉
pqq0

. (31)

Summarizing this derivation, one can conclude that the
breakup amplitudes can be defined quite similarly to a
matrix element for the elastic-scattering transition opera-
tor U with replacement of the the NN bound-state wave
function with the exact scattering functions for the NN

sub-Hamiltonian.
Having now the required representations for both the elastic

and breakup amplitudes, we will proceed in solving the
Faddeev equation in “eigen” WP subspace of the channel
Hamiltonian H1.

approach the final states used for the breakup treatment are the free
three-body states.

B. Solution of the Faddeev equation in the three-body WP basis

In our wave-packet approach, all the operators in
Eq. (24) are projected onto a three-body wave-packet basis
corresponding to the channel Hamiltonian H1. In other words,
every operator, e.g., U , is replaced with its finite-dimensional
WP representation,

U� =
∑
s,kj

∑
s ′,k′j ′

∣∣Z�s
kj

〉〈
Z�s

kj

∣∣U ∣∣Z�s ′
k′j ′

〉〈
Z�s ′

k′j ′
∣∣. (32)

Finally, one gets the matrix analog for the Eq. (24) (for the
given value of �),

U = PV1 + PV1G1U . (33)

Here V1 and G1 are the matrices of the pair interaction and the
channel resolvent, respectively, the matrix elements of which
can be found in an explicit form.

The matrix V1 of the potential v1 is diagonal in the indices
j, j ′ of the wave-packet basis (6) for the free sub-Hamiltonian
h0 and has the block form

[V1]ss
′

kj,k′j ′ = δjj ′δss ′
〈
zs
k

∣∣vs
1

∣∣zs
k′
〉
. (34)

These matrix elements do not depend on the index j and can
be written with the usage of the rotation matrix O defined in
Eq. (18) as 〈

zs
k

∣∣vs
1

∣∣zs
k′
〉 =

∑
i,i ′

Os
kiO

s
k′i ′

〈
ps

i

∣∣vs
1

∣∣ps
i ′
〉
.

In the last expression, the potential matrix elements in the free
WP basis are used which have the form〈

ps
i

∣∣vs
1

∣∣ps
i ′
〉 = 1√

didi ′

∫
Di

dp

∫
Di′

dp′ vs
1(p, p′), (35)

where vs
1(p, p′) is the momentum representation for the

interaction potential. It implies that the matrix elements (35)
can be found analytically for a wide variety of the potential
forms.

An important ingredient of our lattice approach presented
here is the representation of the permutation operator P

as an overlap matrix P between the channel WP basis
functions for different sets of the Jacobi coordinates. Using
the approximation (18) for the scattering wave packets |zs

k〉,
these matrix elements can be expressed through the overlap
matrix P 0 for the free lattice basis function of Eq. (15) with
the help of the rotation matrices O,〈

Z�s
kj

∣∣P ∣∣Z�s ′
k′j ′

〉 ≈
∑
ii ′

Os
kiO

s ′∗
k′i ′

〈
X�s

ij

∣∣P ∣∣X�s ′
i ′j ′

〉
. (36)

Now let us replace the exact operator U in the formula
for the elastic nd scattering amplitude (25) with its lattice
counterpart U� and employ further the projection rule for the
free WP states (11). One then gets that the on-shell elastic
amplitude in the wave-packet representation can be calculated
as a diagonal (on-shell) matrix element of the U matrix,

A�
el (E) ≈ 2m

3q0

〈
Z�1

0j0

∣∣U�
∣∣Z�1

0j0

〉
d̄j0

, � = 1

2
,

3

2
, (37)

where |Z�1
0j0

〉 is the WP basis state corresponding to the initial
state. Index 0 denotes the bound state of the NN pair (deuteron)
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and index j0 denotes the “on-shell” q-bin D̄j0 with the on-shell
momentum q0 =

√
4
3m(E − ε∗

0): q0 ∈ D̄j0 .
It has been shown above that the breakup amplitude is

proportional to the matrix element 〈z0, q0, �|U |φs
p, q,�〉.

Substituting, similarly to the calculation of the elastic-
scattering amplitude, the finite-dimensional operator U� into
the expression for the breakup amplitude and utilizing the
projection rules for the free-motion and scattering wave
packets, one gets

T �s(p, q) ≈ eiδ(p∗
k )
T�s

0j0,kj

p∗
kq

∗
j q0

,

T�s
0j0,kj

≡
〈
Z�1

0j0

∣∣U�
∣∣Z�s

kj

〉
√

d̄j0D
s
kd̄j

,

q0 ∈ D̄j0 ,

q ∈ D̄j ,

p ∈ 
s
k,

(38)

where p∗
k = √

2mε∗s
k and q∗

j = 1
2 [qj−1 + qj ] are momenta

corresponding to 
s
k and D̄j bins, respectively, and the Ds

k

is the momentum width of the 
s
k bin.

Thus, we just have found that the elastic and breakup
amplitudes can be calculated directly using the diagonal and
nondiagonal matrix elements of the same operator U� .

However, a problem still arises here regarding how to
define correctly which of the basis states Z�s

kj correspond
to the on-shell states of the H1. Due to the discretization
of the spectrum, every WP basis state corresponds to the
energy Es

kj = εs∗
k + E∗

j and, thus, one does not get the exact
coincidence of these energies for different “on-shell” three-
body WP states with the energy E of the initial state. In
other words, the energy conservation for three-body WP
states is fulfilled only approximately within the corresponding
bin widths. To avoid this difficulty, we apply some energy
averaging procedure to the transition matrix elements which
is quite natural for the latticelike representation.

C. The energy averaging procedure for the breakup amplitudes

Let us to rewrite expression (31) for the breakup amplitude
via wave functions of pair subsystems normalized to Dirac
δ functions in energy. Then, when calculating the breakup
amplitudes, one will need the transition operator matrix
elements of the form (we omit, for the sake of brevity, all
the spin labels)

u(E, ε) = 〈z0, ψ0(E − ε∗
0)|U |φ(ε)ψ0(E − ε)〉, (39)

where |φ(ε)〉 is the NN -scattering state with energy ε,
|ψ0(E − ε)〉 is the wave function of the sub-Hamiltonian h1

0
describing the free motion of the third nucleon relative to
the NN subsystem, and E is the total energy in the center-
of-mass system. In the framework of the fully discretized
representation, it is quite natural to make an energy averaging
for the transition matrix elements u(E, ε) over the excitation
energy ε, which leads to the following integrals:

un(E) ≡ 1


n

∫ εn

εn−1

dε〈z0, ψ0(E − ε∗
0)|U |φ(ε)ψ0(E − ε)〉,

(40)

where {[εn−1, εn]} is some set of intervals, in general inde-
pendent of the initial partition of the excitation energy ε.

n = εn − εn−1 are the corresponding widths.

Further, by replacing the exact U operator with its wave-
packet counterpart (32) and using the projection rules for the
scattering and free WPs, one can define a new approximation
for the breakup amplitudes,

T�s
n (E) =

∑
kj

T�s
0j0,kj

1


n

[
min

(
εn, ε

s
k, E − Ej−1

)
− max

(
εn−1, ε

s
k−1, E − Ej

)]
. (41)

Here the sum runs over all possible indices k and j for which
the difference in the square brackets is positive and the non-
averaged amplitudes T�s

0j0,kj
are defined by Eq. (38).

Then, for the single-component breakup amplitudes, one
obtains the following approximate expression with the ele-
ments Tn,

T �s(p∗
n, q

∗
n ) ≈ eiδ(p∗

n) T�s
n

p∗
nq

∗
nq0

,

p∗
n = √

mε∗
n,

q∗
n =

√
4
3m(E − ε∗

n),

ε∗
n = 1

2 [εn−1 + εn].

(42)

Now, using the energy averaged WP amplitudes, one can get
easily the following formula for the breakup amplitude in the
hyperspherical representation:

A�s
n (θ ) = 4πm

3
√

3

K4

p∗
nq

∗
n

eiδ(p∗
n)T�s

n , cos θ =
√

ε∗
n

E
. (43)

D. Breakup differential cross section

After the determination of the single-component breakup
amplitudes, the total breakup amplitude is derived using
contributions of all three Faddeev components and can be
written with the help of the particle permutation operator P in
the following way:

Atot
br (p, q; q0) = 〈p, q|(1 + P )tG0U |z0, q0〉. (44)

The differential breakup cross section is related to this total
breakup amplitudes as follows [1]:

d5σ

dk̂1dk̂2dS
= (2π )4 2m

3q0
k̄S

∣∣Atot
br (p, q; q0)

∣∣2
. (45)

Here k1 and k2 are momenta of particles to be registered, S

is the arclength of the kinematical curve, and k̄S is the phase
space volume defined as

k̄S = m2k1k2√[ 2k2−k̂2(klab−k1)
k2

]2 + [ 2k1−k̂1(klab−k2)
k1

]2
, (46)

where klab = 3
2 q0 is the center-of-mass momentum in the

laboratory system.
In the case of s-wave NN interactions, the total breakup

amplitude is defined as the sum of spin-quartet (� = 3
2 )

and spin-doublet (� = 1
2 ) single-component terms defined for

all different Jacobi sets, e.g., the S-wave amplitude of the
two-neutron emission can be represented as a sum of three
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terms, ∣∣Atot
br

∣∣2 = (2|M 3
2 1|2 + |M 1

2 0|2 + |M 1
2 1|2)/3, (47)

where M�s are the total amplitudes for the quartet and doublet
channels. In accordance with Ref. [32], they are expressed
through single-component breakup amplitudes defined for
different sets of Jacobi momenta (pa, qa) as follows (we
assume here that neutrons are particles 1 and 2 and the proton
is the particle 3):

M
3
2 1 = T

3
2 1(p1, q1) − T

3
2 1(p2, q2),

M
1
2 0 = 2√

3

{1

4
[T

1
2 0(p1, q1) + T

1
2 0(p2, q2)]

− 3

4
[T

1
2 1(p1, q1) + T

1
2 1(p2, q2)] + T

1
2 0(p3, q3)

}
,

M
1
2 1 = 1

2
{T 1

2 0(p1, q1) − T
1
2 0(p2, q2)

+ T
1
2 1(p1, q1) − T

1
2 1(p2, q2)}. (48)

Finally, the differential cross section of the nd breakup is
expressed through the partial total amplitude (47) as

d5σ

dk̂1dk̂2dS
= π

4

2m

3q0
k̄S

∣∣Atot
br

∣∣2
. (49)

To determine the differential cross section for the two-
neutron emission, one has to calculate the elements Tn (41)
for every spin component (�s) of the total breakup amplitude
and then substitute them into the explicit formulas (47) and
(48).

Thus, it has been demonstrated above that, in our WP
approach, one can find quite naturally all breakup amplitudes
together with the elastic-scattering amplitude. This gives a very
nice universal and unified calculation scheme. Some details of
the numerical procedure for solving the matrix equation (33)
are discussed in Appendix C.

IV. ILLUSTRATIVE EXAMPLES

Because we have developed this approach for the treatment
of the three-body breakup processes, we would need precise
and reliable tests to check our new procedure. In all the tests
below we employ as a convenient universal WP basis the
free momentum wave packets for Jacobi momenta q and p

constructed using the generalized Tchebyshev grid,

qi = qm

[
tan

(
i

2N + 1
π

)]t

, i = 1, . . . , N, (50)

where qm is the common scale parameter and the t parameter
determines the “sparseness degree” of the bin set. A similar
grid with the size M and common scale pm is introduced for
discretization of the momenta p.

A. nd breakup amplitudes for a separable N N potential

As a first, extremely convenient, test we have chosen the
three-body model with a separable NN potential. This model,
which can be treated numerically very accurately in various

kinematical breakup situations, seems to be very appropriate
for such a test (see below).

We consider here the nd breakup with pairwise separable
NN interactions in the form

vs = λs |ϕs〉〈ϕs |, s = 0, 1. (51)

As is well known, the Faddeev equations for such potentials
can be reduced to one-dimensional integral equations in
momentum space. Such equations, as demonstrated in our
previous work [24], can be solved quite accurately using
the two-body free WP basis. For convenience of the reader
we describe all the details of this procedure in Appendix B.
Here we will refer to the results found in such approach as to
the “exact ones.” We will compare the latter with the results
of the solution of the general three-body WP scheme with the
Eq. (33) for the separable potential.

Figure 3 shows the unaveraged (i.e., having a histogram
form) and energy-averaged breakup amplitudes for the Yam-
aguchi potential obtained from the general matrix FE (33) in
the lattice basis. The energy-averaged amplitudes have been
calculated using the averaging procedure described above.
It is clearly seen from Fig. 3 that the method developed
makes it possible to find rather smooth energy dependence
for the breakup amplitudes. Using the averaged amplitudes,
we have found the single-component breakup amplitudes T�s

as functions of hyperangle θ for both quartet and doublet
three-body spin channels.

We now can compare the approximated WP breakup
amplitudes (41) found within our general formalism for a
separable model with the exact amplitudes derived from a
direct solution of the one-dimensional Faddeev equations.
In Figs. 4–6 such a comparison between approximated and
“exact” results is presented. The two-body free WP bases with
size M = 200 and N = 200 have been used in the calculation
of the approximated amplitudes.

We observe, in Figs. 4–6, very good agreement between
the lattice approximations and the “exact” amplitudes. The
corresponding curves are almost indistinguishable in the

FIG. 3. (Color online) Comparison of the energy unaveraged
(solid curve) and averaged (dashed-dotted curve) breakup amplitudes
T

3
2 1 for the separable NN potential (51) calculated with the general

WP technique at the basis size M = N = 100.
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FIG. 4. (Color online) The breakup amplitude T
3
2 1 in the quartet

channel calculated for the separable NN potential via the general WP
technique for basis dimensions M = N = 100 (dotted curves) and
M = N = 200 (dash-dotted curves) in comparison with the “exact”
values (full curves). With the resolution of this figure the three curves
practically cannot be distinguished.

figures. The only differences are seen at the hyperangle region
θ ∼ 90◦ for the spin-doublet T

1
2 0 amplitude. It is clear also

that the WP amplitudes calculated in a finite-dimensional L2

basis converge to the exact ones with increasing basis size.

B. n-d breakup amplitudes for a local N N potential

Having tested our novel approach using the simple separa-
ble model for the NN force, one can move to a more realistic
case of a local NN interaction. For this, we have chosen the
so-called MT I-III NN central potential which was frequently
used in the past for the tests of few-body calculations. We
then can compare our results for this model with very accurate
benchmark calculations [33]. For the present WP calculations
we use again the three-body lattice basis constructed on a
Tchebyshev two-dimensional grid.

FIG. 5. (Color online) The breakup amplitude T
1
2 1 in the spin-

doublet channel for a separable NN model. The notations are the
same as described in the caption to Fig. 4.

FIG. 6. (Color online) The breakup amplitude T
1
2 0 in the spin-

doublet channel for the separable NN model. The notations are the
same as described in the caption to Fig. 4.

The results of such a comparison are presented in Figs. 7–9
for our single-component hyperspherical amplitudesA�s . One
can observe in Figs. 7–9 a quite satisfactory general agreement
with the results of the benchmark calculations [33] except in
the region θ ∼ 90◦, similarly to the case of the separable NN

interaction. It should be mentioned that the amplitude A given
in Eq. (43) has an additional factor inversely proportional to
the relative momentum p as compared to the amplitude T
discussed in the previous subsection. The differences from the
exact solution ofA are more visible at the region corresponding
to small values of p. Moreover, the convergence of the WP
amplitudes to the exact ones is very slow at this region
(especially for the spin-quartet case).

Similar difficulties at θ ∼ 90◦ have been also observed in
other works [29–31] in which the breakup calculations have
been done in the configuration space. In Ref. [31] it has been

FIG. 7. (Color online) The breakup amplitudes A 3
2 1 in the spin-

quartet channel calculated using the WP technique for the NN force
MT I-III for basis size M = N = 100 (dashed curves) and M = N =
200 (solid curves) in comparison with the results of the benchmark
calculations (solid circles) [33].
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FIG. 8. (Color online) The breakup A 1
2 1 amplitudes in the spin-

doublet channel for the MT I-III NN potential. The notations are the
same as in Fig. 7.

demonstrated that for the correct calculation of the breakup
amplitudes in the area of small relative NN momenta, one has
to employ the explicit integral form for the breakup amplitude
T (p, q).

In our discretized momentum-space approach some dis-
agreement of the WP breakup amplitudes and the exact
benchmark results at very low relative momenta (especially
for the quartet amplitude) can be related to some uncertainties
in the determination of the bin widths and the corresponding
values of momenta for the WP scattering states of the pair
continuum very close to the threshold. Thus, the case of
very low relative momenta in the lattice approach deserves
a separate study, which is underway.

Using further the single-component amplitudes, we have
found the total (i.e., with inclusion of all three Faddeev
components) breakup amplitudes as well as differential cross
sections of two-neutron emission for different kinematical
configurations. In Figs. 10 and 11, the differential cross
sections for two-neutron emission with our WP technique are

FIG. 9. (Color online) The breakup amplitudes A 1
2 0 in the spin-

doublet channel for the MT I-III NN force. The notations are the
same as in Fig. 7.

FIG. 10. (Color online) The differential cross section for two-
neutron emission at the kinematical configuration, θ1 = 45◦, θ2 =
60.54◦, φ12 = 180◦, at the incident neutron energy Elab = 42 MeV
found with usage of the WP technique (dash-dotted curve) and
the conventional Faddeev calculations (solid curve). The detailed
comparison of two curves near the FSI peak position is given in the
small panel.

presented for two configurations and compared to the results
of Ref. [33]. One configuration includes the FSI peak while
the second one is related to the so-called “space-star” breakup
kinematics. For derivation of the Faddeev cross sections, we
used an interpolation of the data in the table presented in
Ref. [33] for the single-component amplitudes.

Despite the fact that the FSI configuration is determined by
the amplitudes at very small relative momenta where our WP
approach gives the maximum errors, the FSI cross section as
a whole is in good agreement with the exact one (see Fig. 10).
This is explained by the fact that the main contribution to this
cross section is given by the doublet amplitudes for which the
discrepancies with the accurate ones are not very large, even
at low momenta, while the most inaccurate quartet amplitude
makes no noticeable contribution. However, as seen from the
inset in Fig. 7, the cross section in the vicinity of the FSI peak
still differs somewhat from the exact one.

FIG. 11. (Color online) The same as in Fig. 10 but for the kinemat-
ical configuration θ1 = 53.6◦, θ2 = 53.6◦, φ12 = 120◦ (“space star”).
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For the another kinematic configuration shown in Fig. 11,
the agreement between the WP results and benchmark ones is
better, because the region of low momenta does not contribute
to this cross section. Some small oscillations in the cross
section that can be seen in this figure are due to probably some
lack of averaging procedure for WP amplitudes. We propose
to correct this deficiency in the future.

In general, the agreement between conventional and lattice
results is very reasonable. The curves in Figs. 10 and 11 are
almost indistinguishable.

V. SUMMARY

In the present work we generalized the wave-packet method
developed by the present authors earlier for the discretization
of the three-body continuum and used it for finding the
three-body breakup amplitudes. In this study, the Faddeev
breakup amplitudes are obtained completely in the three-body
L2 basis.6 Thus, it would be appropriate to enumerate some
important distinctive features of our latticelike approach.

(i) Due to projection of the scattering integral equations
onto the wave-packet L2 basis corresponding to the
three-body channel Hamiltonian H1, we get an explicit
analytical representation for the three-body channel
resolvent G1 that is used in all further calculations.
For this we employ the version of the integral Faddeev
equations with the kernel Pv1G1 instead of the conven-
tional form P t1G0. This simplifies drastically the whole
calculations scheme as compared to the conventional
one, because, first, we do not need to know the full
off-shell pair t matrix at many different energies and, in
addition, we get the matrix kernel in a very convenient
finite-dimensional form. As an input information for
the NN interaction, we use only the results of a
single diagonalization (for every spin channel) of the
NN Hamiltonian matrix. From such a diagonalization
we get immediately the whole set of pseudostates
(the scattering WPs) and partial phase shifts at many
energies corresponding to these pseudostates [28].

(ii) For the matrix of the transition operator, one gets
an universal linear matrix equation with finite ma-
trix elements. The diagonal elements of this solution
determine the elastic-scattering amplitudes while the
nondiagonal elements determine the single-component
breakup amplitudes up to some known phase factor.

(iii) The structure of the kernel for the matrix equation
obtained is very convenient for numerical realization.
Due to the fact that the kernel is a product of a diagonal
matrix, two block matrices, and a very sparse matrix, it
is possible to greatly reduce requirements for the RAM
storage size and noticeably decrease the computation
time.

(iv) The effect of the particle permutation operator in the
Faddeev kernel is represented now with the help of
the universal matrix of basis functions overlapping for
different Jacobi coordinate sets. It allows us to avoid

6As the present authors are aware, such calculations have not been
done before.

very time-consuming numerous re-interpolations of the
current solutions (at iterations) from one set of Jacobi
coordinates to another one at every iteration step [1].

(v) Due to an averaging of the integral kernels over the
cells in momentum space, the very complicated energy
singularities of the kernel above the breakup threshold
(e.g., the moving branching points) are smoothed
and one can solve the few-body scattering equations
directly at real energies, i.e., without any contour
deformation to the complex-energy plane. This fact
also facilitates enormously the practical solution of
few-body equations above the breakup threshold.

(vi) The comparison of the results obtained in our approach
with those for the model for the separable NN potential
and with benchmark breakup calculations (with a
semirealistic local NN potential) has demonstrated
that the WP method allows us to get quite accurate
three-body breakup amplitudes and cross sections. Still,
the region of very low relative NN momenta requires
some additional study. Some inaccuracy of our results
in this area can be related to two factors: (a) a slow
convergence of the WP amplitudes in this region and
(b) some uncertainty of the WP representation of the
two-body continuum in the region of very low relative
momenta. We plan to devote a special study toward the
solution of this problem.

The important feature of the developed lattice approach is
that it can be generalized straightforwardly to the case of
two charged particles in the three-body system, e.g., for pd

scattering. For this purpose, the Coulomb wave packets rather
than the free ones should be used as a basis of the discretization.
Such a basis has been used successfully to solve the problem
of deuteron scattering off a heavy nucleus [23]. We propose to
use a Coulomb WP basis in our future investigations to treat
the elastic and breakup pd scattering.

In summary, one can conclude that the total latticelike L2

discretization of the three-body continuum allows us to find
an accurate solution for the three-body Faddeev equations for
breakup amplitudes and simplifies enormously the calculation
together with a noticeable reduction of the computational cost.
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APPENDIX A: THE PERMUTATION MATRIX IN THE
LATTICE BASIS

In our approach we employ a lattice basis, i.e., a basis
built by free WPs in momentum space. The two-dimensional
(three-body) wave packets in momentum space are steplike
functions of variables p and q,

〈p, q|piqj 〉 ≡ 〈p, q|Dij 〉 = 1√
di d̄j

ϑ(p ∈ Di)ϑ(q ∈ D̄j ),

(A1)

034004-12



THREE-BODY BREAKUP WITHIN THE FULLY . . . PHYSICAL REVIEW C 86, 034004 (2012)

which are nonzero only at the intervals Di = [pi−1, pi] and
D̄j = [qj−1, qj ] (di and d̄j are the widths of corresponding
intervals). Such wave packets are normalized to unity with the
weight dpdq and form an orthonormal basis (it is assumed
that the intervals are not overlapping).

The matrix element of the permutation operator P between
plane waves has a simple form for the s wave,

〈p′, q ′, s ′�|P |p, q, s�〉 ≡ ��
s ′sP

0(p′, q ′, p, q)

= ��
s ′s 4δ

(
p′2 + 3

4q ′2 − (
p2 + 3

4q2
))

ϑ(1 − |x|), (A2)

where ��
ss ′ is a spin-channel coupling matrix. The δ function

guarantees energy conservation and x is the cosine of the angle
between vectors q and q′ which (with taking into account the
δ function) can be expressed as a function of three momenta,
e.g., p, q, q ′,

x = p2 − q ′2 − q2/4

qq ′ . (A3)

The condition |x| < 1 in Eq. (A2) restricts the allowed values
of momenta to a region where the overlap is nonzero.

To find the matrix elements of the permutation operator
P over the free WPs (A1), one has to integrate the func-
tion P 0(p′, q ′, p, q) over rectangular cells Dij = Di ⊗ D̄j ,
D′

i ′j ′ = D′
i ′ ⊗ D̄′

j ′ (where the upper prime at the interval
symbol denotes that it refers to a different set of Jacobi
coordinates),

〈D′
i ′j ′ |P |Dij 〉

= 1√
di d̄j di ′ d̄j ′

∫
D′

i′j ′

∫
Dij

P 0(p′, q ′, p, q) dp dq dp′ dq ′.

(A4)

Actually, the value of the integral in Eq. (A4) is reduced to an
overlapping area of two rectangular cells Dij and D′

i ′j ′ .
Hyperspherical (polar in the s-wave case) coordinates are

most convenient to calculate such overlaps. Let us introduce
the reduced (rescaled) momentum variable q̃,

q̃ =
√

(3/4)q, (A5)

where the energy conservation then takes the “homogeneous”
form p2 + q̃2 = p′2 + q̃

′2. The hyperspherical coordinates
Q,α are introduced as (usually),

q̃ = Q sin α, p = Q cos α, Q2 = p2 + q̃2. (A6)

In these hyperspherical coordinates the integral in Eq. (A4)
takes the following form:∫

δ

(
p′2 + 3

4
q ′2 −

(
p2 + 3

4
q2

))
ϑ(1 − |x|) dp dq dp′ dq ′

= (4/3)
∫

δ(Q2 − Q′2)ϑ(1 − |x|) QdQdαQ′dQ′dα′

= 1/3�(Dij ,D
′
i ′j ′ ), (A7)

where we define the overlapping square,

�(Dij ,D
′
i ′j ′ ) ≡

∫
ϑ(1 − |x|) d(Q2)dαdα′. (A8)

Thus, we obtain that the permutation matrix element is directly
interrelated to this square,

〈D′
i ′j ′ |P |Dij 〉 = 4

3

�(Dij ,D
′
i ′j ′)√

di d̄j di ′ d̄j ′

. (A9)

The condition |x| < 1 can be expressed through the hyperan-
gular variables α, α′ as follows:∣∣∣∣π3 − α

∣∣∣∣ < α′ <
π

2
−

∣∣∣∣α − π

6

∣∣∣∣. (A10)

So, the overlap region S(α, α′) determined by the condition
|x| < 1 is a rectangle in the plane (α, α′) restricted by four
straight lines (see Fig. 12).

Therefore, the integral in Eq. (A7) can be evaluated as the
external (numerical) integral over Q2 in the range between
Q2

min and Q2
max from the area of intersection of the rectangle

S and the rectangle R(αmin, αmax, α
′
min, α

′
max) whose vertices

depend on Q (see Fig. 12),

� =
∫ Q2

max

Q2
min

d(Q2)
∫ ∫

S∩R(Q)
dαdα′. (A11)

The integration limits over Q2 are equal,

Q2
min = max

[
p2

i−1 + q̃2
j−1, p

′2
i ′−1 + (q̃ ′

j ′−1)2
]

(A12)

Q2
max = min

[
p2

i + q̃2
j , p

′2
i ′ + (q̃ ′

j ′)2
]

(A13)

If Q2
max < Q2

min, then the cells do not overlap and the matrix
element is equal to 0.

The coordinates of vertices of the rectangle R(Q) are
computed directly (see Fig. 13 for further details) as

0 π/6 π/3 π/2 2π/3
α

0

π/6

π/3

π/2

2π/3

α
’

π/3+
α

−π/3+
α

π/3−α

2π/3−α

R(Q)

S

FIG. 12. The integration region in the plane (α, α′) which is
the intersection of the area of allowable values of α, α′—the large
rectangle S determined by the inequalities (A10)—and the rectangle
R(Q) which boundaries depend on the value of Q.
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α max’ α min’

α
min

α max

α

Q

Q

Q

max

min

p

q~

FIG. 13. On the definition of the integration limits (A12)–(A15)
in the variables Q,α, α′. The cells Dij and D′

ij in the plane (p, q̃)
and their polar coordinates (αmin, αmax) and (α′

min, α
′
max) are shown.

follows:

αmin(Q) = max

(
arcsin

q̃j−1

Q
, arccos

pi

Q

)
;

αmax(Q) = min

(
arcsin

q̃j

Q
, arccos

pi−1

Q

)
; (A14)

α′
min(Q) = max

(
arcsin

q̃ ′
j ′−1

Q
, arccos

p′
i ′

Q

)
;

α′
max(Q) = min

(
arcsin

q̃ ′
j ′

Q
, arccos

p′
i ′−1

Q

)
. (A15)

Here, if pi > Q, then arccos pi

Q
should be replaced by 0, and,

if q̃j > Q, then arcsin q̃j

Q
should be replaced by π/2; the same

rule should be applied also to primed values.
The area of intersection S ∩ R(Q) in the plane α, α′ is

evaluated analytically by the formulas of elementary geometry.

APPENDIX B: WAVE-PACKET SOLUTION FOR THE
THREE-BODY SCATTERING PROBLEM WITH A

SEPARABLE POTENTIAL

We consider here a system of three nucleons with
equal masses m interacting by a separable NN force in
s-wave spin-singlet (s = 0) and spin-triplet (s = 1) states
correspondingly,

vs = λs |ϕs〉〈ϕs |, s = 0, 1. (B1)

The two-body t matrices are also separable,

ts(E) = |ϕs〉τs(E)〈ϕs |, (B2)

where τ are known functions,

τ−1
s (E) = λ−1

s − 〈ϕs |g0(E)|ϕs〉, (B3)

and g0(E) is the free two-particle resolvent. Function τ1 for
the triplet state has the pole at the deuteron binding energy ε∗

0 .

The corresponding bound-state wave function |z0〉 is defined
as follows:

|z0〉 =
√

R(ε∗
0)g0(ε∗

0)|ϕ1〉, (B4)

where R(ε∗
0) is the residue of τt (E) at the pole.

We use here the two-parameter Yamaguchi potentials with
the form factors

ϕs(p) = (
p2 + β2

s

)−1
. (B5)

In this case, τs(E) and R(ε∗
0) take the form

τ−1
s =

[
λ−1

s + πm

βs

1

(βs − i
√

mE)2

]
,

R(ε∗
0) = β1

(
b2 + p2

b

)3
pb

πm2
, pb =

√
−mε∗

0 . (B6)

The potential parameters βs and λs are taken from Ref. [32].
The AGS equation for the elastic transition operator U in

this case reduces to the system of one-dimensional integral
equations of the Lippmann-Schwinger type [27] for the
elastic-scattering amplitudes corresponding to the total spin
� = 1

2 , 3
2 and orbital momentum L (in the case of the s-wave

pair interactions the � and L are conserved separately),
F�L

ss ′ (q, q ′; E)

= Z�L
ss ′ (q, q ′; E) +

∑
s ′′

∫
(q ′′)2dq ′′

×Z�L
ss ′′ (q ′, q ′′; E)τs1

[
E − 3(q ′′)2

4m

]
F�L

s ′′s ′ (q ′′, q ′; E),

(B7)

where

F�L
ss ′ (q, q ′; E) ≡ 〈q, ϕs,�L|g0(E)U (E)g0(E)|q ′, ϕs ′ , �L〉.

(B8)

The kernels Z�L
ss ′ (q, q ′; E) in Eq. (B7) are defined as

follows:

Z�L
ss ′ (q, q ′; E)

= ��
ss ′2π

∫ 1

−1
dx PL(x)

ϕs(q′ + q/2)ϕs ′ (−q − q′/2)

E − q2/m − q ′2/m − qq′/m
,

(B9)

where x = cos(q̂q′), PL are the Legendre polynomials, and
��

ss ′ is a spin-channel coupling matrix. In case of quartet

scattering one has the single equation with s = 1 and �
3
2
11 =

−1, while there are two coupled equations with s = 0, 1 in the

case of doublet scattering and �
1
2
00 = �

1
2
11 = 1

2 , �
1
2
01 = �

1
2
10 =

− 3
2 .
After solving Eq. (B7), the partial-wave elastic on-shell

amplitude can be defined from the relation

A�L
el (E) = 2m

3
q0R(ε∗

0)F�L
11 (q0, q0; E), (B10)

where q0 =
√

4
3m(E − ε∗

0).
We now turn to the determination of the breakup amplitude.

Substituting the explicit formulas for the t matrix in Eq. (B2)
and the deuteron wave function (B4) into (26), one can
express the partial “Faddeev” breakup amplitudes via the
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elastic amplitudes F�L
ss ′ :

T �L
s (p, q) =

√
R(ε∗

0)ϕs(p)τs(E − 3q2/4m)F�L
s1 (q, q0; E).

(B11)

Let us now proceed with the lattice version for elastic
amplitude. We introduce the free WP basis (6) and project
Eq. (B7) to this basis. Finally, we find the matrix equation,

F = Z + ZτF , (B12)

where the letters with double lines denote matrices of corre-
sponding operators in the WP subspace for the given values of
total spin � and orbital momentum L (below we shall omit �

and L for brevity). More definitely,

Zss ′
jj ′ = 1√

d̄j d̄j ′

∫
D̄j D̄j ′

dqdq ′Z�L
ss ′ (q, q ′; E),

F ss ′
jj ′ = 1√

d̄j d̄j ′

∫
D̄j D̄j ′

dqdq ′F�L
ss ′ (q, q ′; E),

τ s
j = 1√

d̄j

∫
D̄j

dqq2τs(E − 3q2/4m)(q, q ′; E).

The elastic on-shell amplitude in the WP representation is
defined from the diagonal “on-shell” matrix elements of the
lattice transition matrix X,

Ael(E) ≈ 2m

3
q0

Rb(ε∗
0)F 11

j0j0

d̄j

, E − ε∗
0 ∈ D̄j0 . (B13)

Similarly, the packet approximation for the breakup amplitude
is determined by the off-diagonal matrix elements of F ,

Ts(p, q) ≈
√

R(ε∗
0)ϕs(p)τs(q∗

j )F s1
jj0√

d̄j d̄j0

, q ∈ D̄j , (B14)

where τs(q∗
j ) = τs(E − 3q∗

j
2/4m) and q∗

j is the midpoint of
bin D̄j .

The WP representation for the breakup amplitude A(θ )
which determines the asymptotics of the breakup wave
function in hyperspherical coordinates has the form,

As(θ ) = 4π

3
√

3

m

h̄2 eiπ/4K4q0

√
R(ε∗

0)ϕs(p)τs(q∗
j )F s1

jj0√
d̄j d̄j0

. (B15)

APPENDIX C: FEATURES OF THE
NUMERICAL PROCEDURE

Here we will discuss some details of the numerical
procedure for solving the matrix equation (33). The main

difficulty is its large dimension. Quite satisfactory results can
be obtained with a basis size M ∼ N ∼ 200. This means
that in the simplest one-channel (quartet) case, one gets
a kernel matrix with dimension M × N ∼ 40 000 × 40 000
which occupies ∼6.4 GB (at single precision) of RAM or
external memory of the computer. In the two-channel (doublet)
case, the required amount of memory increases by a factor of 4.

However, the matrix of the kernel K for Eq. (33) can be
written as the product of four matrices which have the specific
structure

K = PV1G1 ≡ OP 0Ṽ1G1, (C1)

where

Ṽ1 = OTV1.

The matrix of the channel resolvent G1 is diagonal and its
elements are defined by simple explicit formulas. The matrix
of the potential V1 has a block-type structure (34); in fact, it
is the direct product of the (M × M) matrix of the two-body
interaction and the unit (N × N ) matrix. The rotation matrix
O has a similar form and the actual dimension (M × M).
The free permutation matrix P 0 is very sparse due to the
energy conservation condition. As a rule, only about 1% of
its elements are distinguished from zero, and the sparsity
increases when the basis dimension increases.

So, to summarize all these details, one finds that the
kernel in the matrix equation (33) is the product of four
matrices: a diagonal one, a very sparse one, and two block
matrices with actual dimension (M × M). If, instead of storing
the entire matrix K, we store its multipliers only (for the
sparse matrix P 0 we store the nonzero elements only), then
we can save a huge portion of physical memory: For the above
example, we shall need only ∼128 MB instead of the initial
6.4 GB. Such an enormous reduction of the required memory
allows us to perform calculations without using an external
memory, which, in its turn, reduces the calculation time by
approximately one order.

This possibility to avoid storing a very large amount of data
is related to the specific procedure we used to solve Eq. (33).
As a matter of fact, to find the elastic and breakup amplitudes,
one needs only the on-shell matrix elements of the transition
operator. Thus, each of these elements can be found without
completely solving the matrix equation (33) but by using a
simple iteration procedure with subsequent summing of the
iterations via the Pade approximant technique. If we do not
store the entire matrix of kernel K, to perform each iteration,
we need only three additional matrix-to-vector multiplications
with the matrices of a special form.

All of these features of the procedure lead to an extremely
economic calculation scheme which can be realized with use
of a typical moderate-sized PC.
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