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We analyze the role played by long-distance symmetries within the context of the similarity renormalization
group (SRG) approach, which is based on phase-shift-preserving continuous unitary transformations that evolve
Hamiltonians with a cutoff on energy differences. We find that there is a SRG cutoff for which almost perfect
fulfillment of Wigner symmetry is found. We discuss the possible consequences of such a finding.
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I. INTRODUCTION

The use of effective interactions in nuclear physics is rather
old (for a review see, e.g., [1,2] and references therein). The
basic idea is to emphasize the role of the physically relevant
degrees of freedom, which in the case of nucleons in finite
nuclei depends very much on the relevant energy scale or
equivalently on the shortest de Broglie wavelength sampling
the interactions. Moreover, the explicit effects of the (hard)
core which traditionally induce strong short-distance correla-
tions actually depend on detailed and accurate knowledge of
the interaction at rather short distances (see, e.g., Ref. [3] and
references therein).

While the issue of scale dependence is best formulated
within a renormalization framework [4], Wilsonian methods
have only been seriously considered as an insightful technique
in the study of nuclear forces about a decade ago (for a balanced
review see [5] and references therein).

Some years ago Glazek and Wilson [6,7] and independently
Wegner [8] showed how high-momentum degrees of freedom
can decouple while keeping scattering equivalence via the
so-called similarity renormalization group (SRG). The SRG
is a renormalization method based on a series of continuous
unitary transformations that evolve Hamiltonians with a cutoff
on energy differences. Such transformations are the group
elements that give the method its name. By viewing the
Hamiltonian as a matrix in a given basis, the similarity
transformations suppress off-diagonal matrix elements as the
cutoff is lowered, forcing the Hamiltonian toward a band-
diagonal form. An important feature of the SRG is that all other
operators are consistently evolved by the same unitary trans-
formation. Quite generally the transformation may involve any
number of particles and allows one to generate well-behaved
multiparticle renormalized interactions. In Refs. [9,10],
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the main features of the SRG formalism were illustrated by
Perry and one of the present authors (SS) through simple
examples from quantum mechanics, namely the Schrödinger
equations for nonrelativistic two-body systems in one and two
dimensions with Dirac-delta contact potentials.

Recently, the SRG has been applied to evolve several
nucleon-nucleon (NN ) potentials to phase-shift-equivalent
softer forms [11], which become extremely handy for many-
body calculations in nuclear physics (for a review see, e.g.,
[12]). The role played by bound states on the SRG evolution
has also been analyzed [13], and it was found that the SRG
generator and evolution SRG scale may be suitably chosen
to avoid undesirable singularities sneaking in and ruining
the low-energy properties of the SRG-evolved interaction.
This has been recently applied to prevent the spurious bound
states which normally appear in meson exchange potentials
[14]. The complicated neutron-nucleus scattering becomes far
simpler within a SRG perspective [15]. A general discussion
of operator evolution and in particular deuteron properties has
also been carried out where a link to the operator product
expansion has been envisaged [16].

A great advantage of the SRG method over other approaches
such as the Vlowk [1] or the unitary correlation operator method
(UCOM) method [17] is the straightforward application to the
scale dependence of few-body forces [18,19] which consis-
tently treat two-body-induced as well as initially introduced
few-body interactions (see Ref. [20] for a discussion on
simple one-dimensional models). A further main advantage of
SRG is the tremendous reduction of the many-body problem,
since effectively the two-body interaction becomes almost
diagonal and consequently the corresponding phase space gets
enormously reduced. This of course is done at the cost of
allowing three- or even four-body forces, which precisely due
to the high-energy decoupling of the SRG remain shorter range
than the two-body effective interaction but with a different,
scale-dependent strength. The connection to the UCOM
configuration space method was discussed in Refs. [21,22]
where it was shown how a suitable rescaling of the radial
coordinate is in fact equivalent to choosing a static generator.
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The relation of the SRG to the Vlowk method was discussed
in Ref. [23] as a block diagonal cutoff representation with
a Hilbert space with high- and low-momentum components
where the mixing between off-diagonal elements becomes
negligible along the SRG evolution.

The momentum-space Vlowk approach [24] (see, e.g.,
Ref. [12] for a review) takes a Wilsonian point of view of
integrating out high-energy components. This allows one to
obtain a self-adjoint Vlowk potential from a bare potential, V .
Given a symmetry group with a generic generator X, standard
symmetry means that [V,X] = 0 implies [Vlowk, X] = 0. The
reverse, however, is not true. We define a long-distance
symmetry as a symmetry of the effective interaction, i.e.,
[Vlowk, X] = 0 but [V,X] �= 0. From a renormalization view-
point that corresponds to a symmetry of the potential broken
only by short-distance counterterms. This is discussed at length
in Refs. [25–27] and summarized in Ref. [28]. On the other
hand, when the interaction is itself evolved to low energies
the symmetry of the long-range part of the potential reappears
explicitly for the Vlowk potential.

In a recent work it has been made clear that the momentum-
space Vlowk approach [24] displays a remarkable symmetry
pattern, which in the case of Wigner SU(4) spin-isospin
symmetry with nucleons in the fundamental representation
may be related unambiguously to large-Nc dynamical features
of QCD [29], as analyzed in detail in Refs. [25–28]. This
possibility of linking a very distinct pattern of QCD to
an observable feature of the NN interaction is extremely
intriguing. However, the symmetries are very well satisfied and
a constructive point of view is to select what definitions of the
effective interaction comply with the symmetries. Of course,
we do not expect them to be perfect, but given the fact that in
the Vlowk (the diagonal elements) approach they work so well, it
is worth testing other definitions. We want to analyze whether
the currently used SRG complies with the symmetry pattern.
In a previous work by one of the present authors (ERA) [30]
the running scale dependence of the effective interaction was
carried out at low momenta with the sole input of low-energy
scattering parameters such as scattering lengths (volumes) and
effective ranges. It was found that the mixing induced by the
tensor force was essential to achieve the Wigner symmetry
condition. It was also found that Wigner symmetry sets in at
a scale predicted just from the lowest threshold parameters.
Also, it is clear from Ref. [25] that the difference in the 1S0 and
3S1 phase shifts comes from difference of the singlet and triplet
scattering lengths while the effective interactions are similar in
the two channels. The realization of the Wigner symmetry does
not arise from the size of the scattering length but rather from
the long-distance properties of the effective interactions. In
Ref. [31], the origin of the Wigner symmetry is unveiled in the
framework of pionless effective field theory at leading order,
but no mention is made concerning what happens when pion
exchange interactions and the tensor coupling are included.

The purpose of the present paper is to outline under what
conditions can these long distance symmetries be displayed.
We will show that this is indeed the case and, moreover, for
the SRG cutoff of about 600 MeV an extremely accurate
fulfillment of Wigner SU(4) symmetry is found. By taking into
account that in the SRG we are at any rate preserving phase

equivalence this result actually suggests a representation of the
interaction based explicitly on the symmetry. This of course
will have some implications for nuclear structure and nuclear
reactions which deserve further study.

The paper is organized as follows. In Sec. II we review the
SRG approach and provide the definition of a long-distance
symmetry within such a framework. One good way to unveil a
symmetry is to construct a set of sum rules where the symmetry
is linearly broken. This is done in Sec. III. In Sec. IV we show
our numerical methods and the corresponding results. Finally,
in Sec. V we present our main conclusions and outlook for
further work. In Appendix A we review the meaning of both
the Wigner and Serber symmetries within the NN context.
In Appendix B we analyze a fixed-point solution of the SRG
equations and its stability properties.

II. SRG AND SYMMETRIES

The formulation of the SRG is well known [10,32,33].
However, the equations are rather complicated (being integro-
differential nonlinear coupled equations) and hence very few
general properties have so far been deduced, so much insight is
provided by numerical calculations or the study of simplified
models. A textbook presentation is available [34] and a
rigorous discussion has been carried out only recently [35]
although the interesting case of unbounded operators which
is the standard situation in nuclear physics has been left out.
Therefore much understanding of these equations relies on
numerical approaches and the use of a discretized momentum-
space basis on a finite Hilbert space (see however [9,36] for
some analytical models). The continuum limit will be analyzed
in some detail in Appendix B.

The SRG makes a transformation which actually drives
the system into a diagonal basis, suppressing exponentially
off-diagonal elements, as we review here. Let us consider the
evolution equation at the operator level in the SRG approach
induced by the unitary transformation Hs = UsH0U

†
s with

η(s) = dU
ds

U
†
s ,

dHs

ds
= [ηs,Hs], (1)

with the anti-Hermitian generator ηs = [Gs,Hs], where Gs

is the SRG Hermitian generator which will be specified
shortly. If Hs=0 = H is the initial Hamiltonian one can
easily see that when [Gs,Hs] = 0 then the SRG equation
has a stationary point. Conversely, stationary points of the
SRG equation fulfill [[Gs,Hs],Hs] = 0. This means that
the invariant subspaces of Hs eigenvectors are also invariant
subspaces of Gs , whence a band-diagonal structure follows.
Due to the commutator character of the equations one has
an infinite set of conservation laws. Indeed, using the cyclic
property of the trace we get

d

ds
Tr

(
Hn

s

) = nTr

(
Hn−1

s

dHs

ds

)
= nTr

(
Hn−1

s [ηs,Hs]
) = 0.

(2)

In this paper we will use as initially suggested by Glazek
and Wilson [6,7] the kinetic energy as the SRG generator,
Gs = T . Using Hs = T + Vs we get for the potential energy
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the evolution equation

dVs

ds
= [[T , Vs], Vs]. (3)

For this choice one has that for any n and s

d

ds
Tr

(
V n

s

) = 0. (4)

In Appendix B we will also show that the diagonal matrix
elements of the standard scattering reaction R matrix is a
stationary point of the previous equation when the potential is
diagonal.

More generally, for an arbitrary operator O we get the
equation

dOs

ds
= [[T , Vs],Os]. (5)

The purpose of the present paper is to outline under what
conditions can the so-called long-distance symmetries be
analyzed. In particular, for a symmetry group generator X

we have
dXs

ds
= [[T , Vs], Xs]. (6)

A symmetry at a given scale s must commute with both kinetic
and potential energy operators and thus fulfills [Xs, T ] =
0 and [Xs, Vs] = 0. Using Jacobi’s identity [[A,B], C] +
[[C,A], B] + [[B,C], A] = 0 we get

dXs

ds
= −[[Xs, T ], Vs] − [[Vs,Xs], T ] = 0. (7)

A standard symmetry corresponds to a vanishing of the left-
hand side, whereas a long-distance symmetry is a fixed point
of the evolution along the similarity renormalization group at a
given point. We will see that such a symmetry pattern appears
within the SRG in regard to Wigner and Serber symmetries
(see Appendix A for a short description). The variable s has
dimensions of energy−2 and it is customary to introduce the
SRG cutoff λ = s−1/4, which has dimensions of momentum.

As we have already mentioned, the previous manipulations
are fully justified in a finite Hilbert space and typically corre-
spond to a discretized momentum-space basis. The discretiza-
tion effects are enhanced as the running Hamiltonian is driven
toward the diagonal form. So one expects to evolve to a scale
where the high-energy components are decoupled from the dy-
namics but also where the discretization effects are also unim-
portant. A feature of the SRG is that much of the SRG scale
evolution happens already at the beginning and slows down as
one approaches the scales of interest in nuclear applications.

We expect the long-distance symmetry to occur (if at all) at
a given SRG scale, but this may depend on the SRG generator.
For definiteness, we use here the SRG equations with the
kinetic energy as the generator, which have T | �p〉 = Ep| �p〉
with Ep = p2/M . In momentum space the equations read

dVs( �p′, �p)

ds

= −(Ep − E′
p)2Vs( �p′, �p)

+
∫

d3q

(2π )3
(Ep + Ep′ − 2Eq)Vs( �p′, �q)Vs(�q, �p). (8)

Note that if we take zero momentum states

dVs(�0, �0)

ds
= −2

∫
d3q

(2π )3
Eq〈�q|VsV

†
s |�q〉 � 0, (9)

which means that zero-momentum matrix elements of the
SRG-evolved potentials always decrease. Note that this does
not prevent the momentum from becoming infinite at some
finite value of s. The conservation of Tr(V n

s ) means that the
zero-momentum strength increases at the cost of depleting the
high- and off-diagonal matrix elements.

III. SYMMETRIES AND PARTIAL WAVE
DECOMPOSITION

A. Kinematical symmetries

The most general self-adjoint interaction in momentum
space which is invariant under parity, time-reversal, isospin,
and Galilean invariance has the following form [37]:

V ( �p′, �p) = VC + �τ1 · �τ2 WC + (VS + �τ1 · �τ2 WS)�σ1 · �σ2

+ (VLS + �τ1 · �τ2 WLS)i(�σ1 + �σ2) · ( �p′ × �p)

+ (VT + �τ1 · �τ2 WT )S12( �p′ − �p)

+ (VQ + �τ1 · �τ2 WQ)S12( �p′ × �p)

+ (VP + �τ1 · �τ2 WP )S12( �p′ + �p),

where the tensor operator is defined as

S12(�q) = [�σ1 · �q �σ2 · �q − 1
3q2 �σ1 · �σ2

]
, (10)

and �σi and �τi are the Pauli matrix spin and isospin operators for
the ith particle respectively. The subscripts refer to the central
(C), spin-spin (S), tensor (T ), spin-orbit (SL), quadratic spin-
orbit (Q), and quadratic-velocity-dependent (P ) components
of the NN interaction, each of which occurs in an isoscalar (V )
and an isovector (W ) version. Here �σ1,2 and �τ1,2 are the usual
spin and isospin operators of the two nucleons. Note that the
so-defined condition of zero angular averaging for the tensor
operator

∫
d2p̂S12( �p) = 0 is fulfilled and, as a consequence,

our results will be stated in a rather simple form. Note also
that the central parts can be deduced by tracing the potential in
the spin-isospin space after appropriate multiplication of the
operators 1, Si , Ta , and Gia (see Appendix A).

An advantage of using the momentum-space basis is that
the generalized Pauli principle can be incorporated directly
into the potential which is antisymmetric under the exchange
of the final states, which in the center-of mass (CM) frame
reads

V1′,2′;1,2( �p′, �p) = −V2′,1′;1,2(− �p′, �p), (11)

where the indices represent a full Pauli spinor-isospinor state.
These kinematical symmetries are preserved by the SRG
equations. This means that if we have a starting potential
V ( �p′, �p) which evolves into Vs( �p′, �p) then V (R �p′, R �p)
evolves into Vs(R �p′, R �p). In particular, a potential remains
rotational invariant along the SRG evolution and the general
form is maintained throughout the evolution. This of course
includes the generalized Pauli principle (11).
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B. Long-distance symmetries

The off-shell T matrix has the same decomposition as for
the potential and hence contains 12 independent amplitudes,
but on-shell, because of the condition | �p′| = | �p|, one just gets
10 different amplitudes since one has the identity σ1 · σ2 = σ1 ·
n̂σ2 · n̂ + σ1 · m̂σ2 · m̂ + σ1 · l̂σ2 · l̂, where n̂, m̂, l̂ are three
orthonormal vectors in three-dimensional space such as those
proportional to �p′ − �p, �p′ + �p, and �p′ × �p.

Following the description in Ref. [38] (see also [39,40]) one
can undertake the projection onto partial waves. The nonlinear
SRG equation can be simplified by using conservation of
angular momentum. If we just define for a given spin the
standard partial wave decomposition

〈 �p′|V S
λ | �p〉 = N

∑
JMLL′

YJM
LS (p̂′)V JS

LL′(p′, p)YJM
L′S

†
(p̂), (12)

with N = 4π2/M , we get an infinite set of coupled equations
with good total angular momentum. The three-dimensional
structure contains central and noncentral forces. Inserting this
into the SRG equation we get the coupled-channel equations

dVs(p, p′)
ds

= −(p2 − p′2)2 Vs(p, p′)

+ 2

π

∫ ∞

0
dq q2 (p2 + p′2 − 2q2)Vs(p, q) Vs(q, p′), (13)

where Vs(p, p′) is used as a brief notation for the projected
NN potential matrix elements,

V (JLL′S;I )
s (p, p′) = 〈p(LS)J ; I |Vs | p′(L′S)J ; I 〉, (14)

in a partial-wave relative momentum-space basis, |q(LS)J ; I 〉,
with normalization such that

1 = 2

π

∫ ∞

0
dq q2 |q(LS)J ; I 〉 〈q(LS)J ; I |. (15)

The superscripts J , L(L′), S, and I denote, respectively,
the total angular momentum, the orbital angular momentum,
the spin, and the isospin quantum numbers of the NN state.
For noncoupled channels (L = L′ = J ), the matrix elements
Vs(p, p′) are simply given by Vs(p, p′) ≡ V (JJJS;I )

s (p, p′).
For coupled channels (L,L′ = J ± 1), the Vs(p, p′) represent
2 × 2 matrices of matrix elements for the different combina-
tions of L and L′. The advantage of using the partial-wave
decomposition is that every single channel may be evolved
independently from a given initial solution, Vs=0(p′, p), to
yield a unitarily equivalent potential

Vs(p
′, p) =

∫
dqqUs(q

′, p′)∗Vs=0(q ′, q)Us(q, p). (16)

A further property is that for low momenta we have the
threshold behavior

Vs(p
′, p) = CL,L′(s)pL(p′)L

′
[1 + O(p2, p′2)], (17)

which means also that the matrix CL,L′(s) is a decreasing
function of the SRG cutoff; i.e., C ′

L,L′(s) is negative definite.

C. Perturbation theory

In the case of rotational invariance, the symmetry is
preserved along the SRG trajectory. In the case of a long-
distance symmetry the symmetry breaking strength depends
on the SRG scale. Let us thus consider the expansion around
the central solution; i.e., let us split

VNN = V0 + V1, (18)

where [ �L,V0] = 0 whereas [ �J , V1] = 0 and [ �L,V1] �= 0.
The zeroth-order potential commutes with L, S, T and so
the corresponding potential may be denoted as V ST

L . The
total potential commutes with the total angular momentum
J = L + S and S2. Of course the goodness of this sepa-
ration depends on the SRG scale λ, but we expect it to
work better the lower the scale. Inserting the decomposi-
tion (18) into the SRG equation we have the zeroth-order
equation

dV (0)
s ( �p′, �p)

ds

= −(Ep − E′
p)2V (0)

s ( �p′, �p)

+
∫

d3q

(2π )3
(Ep + Ep′ − 2Eq)V (0)

s ( �p′, �q)V (0)
s (�q, �p),

(19)

whereas the first-order equation is

dV (1)
s ( �p′, �p)

ds

= −(Ep − E′
p)2V (1)

s ( �p′, �p) +
∫

d3q

(2π )3
(Ep + Ep′ − 2Eq)

× [
V (1)

s ( �p′, �q)V (0)
s (�q, �p) + V (0)

s ( �p′, �q)V (1)
s (�q, �p)

]
. (20)

Clearly, because V0 is central we get that the linear combi-
nations are preserved as long as the noncentral contribution
remains a small correction. Generally, we do not expect it to
be the case, particularly not for the initial potential.

D. Sum rules

Rather than analyzing the evolution of the generators we
prefer to check the running of a set of sum rules based on
first-order perturbation theory in noncentral components of
the potential, which helped to disentangle some correlations in
NN fits [41,42] and have been shown to work well at the level
of phase shifts and Vlowk potentials in Refs. [25,26]. The main
idea is to decompose the potential into central and noncentral
pieces, as in Eq. (18), and assume the noncentral piece to be
of the form

V1 = L · SVLS + S12VT . (21)

One property fulfilled by the noncentral interaction is that the
trace in spin-isospin space vanishes. This suggests a set of sum
rules at the partial wave level. Using first-order perturbation
theory [25,26] we deduce the following linear combinations

034002-4



SYMMETRIES OF THE SIMILARITY RENORMALIZATION . . . PHYSICAL REVIEW C 86, 034002 (2012)

for triplet P waves:

V3PC
= 1

9

(
V3P0 + 3V3P1 + 5V3P2

)
, (22)

V3PT
= − 5

72

(
2V3P0 − 3V3P1 + V3P2

)
, (23)

V3PLS
= − 1

12

(
2V3P0 + 3V3P1 − 5V3P2

)
; (24)

for triplet D waves we have

V3DC
= 1

15

(
3V3D1 + 5V3D2 + 7V3D3

)
, (25)

V3DT
= − 7

120

(
3V3D1 − 5V3D2 + 2V3D3

)
, (26)

V3DLS
= − 1

60

(
9V3D1 + 5V3D2 − 14V3D3

)
; (27)

for triplet F waves we have

V3FC
= 1

21

(
5V3F2 + 7V3F3 + 9V3F4

)
, (28)

V3FT
= − 5

112

(
4V3F2 − 7V3F3 + 3V3F4

)
, (29)

V3FLS
= − 1

168

(
20V3F2 + 7V3F3 − 27V3F4

)
; (30)

and for triplet G waves we have

V3GC
= 1

27

(
7V3G3 + 9V3G4 + 11V3G5

)
, (31)

V3GT
= − 77

2160

(
5V3G3 − 9V3G4 + 4V3G5

)
, (32)

V3GLS
= 1

360

( − 35V3G3 − 9V3G4 + 44V3G5

)
. (33)

In terms of the previous definitions Serber symmetry reads

0 = V3PC
= V3FC

= V3HC
= · · · , (34)

whereas Wigner symmetry implies

V1S0 = V3SC
, V1D2 = V3DC

, V1G4 = V3GC
. (35)

IV. NUMERICAL RESULTS

Here we provide some details on the numerical evolution.
In order to solve the Wegner’s flow equation, we discretize
the momentum space using a Gaussian grid of N mesh points.
This leads us to a system of N2 nonlinear coupled first-order
differential equations. The system can then be solved with an
implementation of a fifth-order Runge-Kutta algorithm with
adaptive step. In this work we use N = 200 points.

Since the potentials we are evolving through the SRG
are all regular, we set an ultraviolet cutoff at � = 30 fm−1,
which is beyond the point where regulated potentials vanish.
In principle, one could take a larger cutoff value provided
the number of points in the grid are enough to ensure the
convergence of the Runge-Kutta algorithm. If the cutoff is
too large, one needs too many points in the grid and the
number of coupled equation becomes too large to be solved in
a reasonable time.

We illustrate our points for the Argonne AV18 potential
[43], which fits not only the NN phase shifts of the Nijmegen
data base PWA [46] but also the deuteron elastic form factors
and has been used quite often successfully for nuclear structure
calculations [3]. The diagonal matrix elements V (p, p) and
fully off-diagonal matrix elements V (p, 0) are depicted in
Figs. 1 and 2, respectively. We compare the initial potentials
and the SRG potentials evolved to λ = 2 fm−1 and λ =
1 fm−1. As we see, already above λ = 2 fm−1 the potentials for

the 1S0 and 3S1 waves cross. This is an indication that Wigner
symmetry works very well around that scale. This trend is also
observed in even partial waves such as D and G, where the
effect of SRG evolution becomes less important as the angular
momentum is increased. On the other hand, odd partial waves
provide hints of the Serber symmetry as one sees that the 1L

potential is much larger than the 3LC combination.
A comparison between the Argonne AV18 potential [43],

the Nijmegen II potential [44], and the chiral next-to-next-to-
next-to leading order (N3LO) potential of Entem and Mach-
leidt [45] is presented in Fig. 3 for the similarity cutoff λ =
2 fm−1 and for the S and P waves. As we see, there is some
degree of universality, as one might expect since these poten-
tials are phase equivalent, although the strength is distributed
differently, particularly in the N3LO chiral potential case.

As we see, the potential for the 3S1 wave changes rather
dramatically when going from λ = 2 to 1 fm−1, in contrast
to the other waves where apparently a much more stable
result is obtained. This feature is due to the use of the simple
generator ηs = [T ,Hs], where T is the kinetic energy. In
Wegner’s original formulation [8] the generator η = [Ds,Hs]
was used, where Ds is the diagonal part of Hs . Actually, as
shown by Glazek and Perry [13] the generator ηs = [T ,Hs]
can produce divergencies in theories with bound states, as
in the case of the NN interaction in the 3S1-3D1 channel,
limiting how far the transformation can be run. When the
SRG cutoff λ = 1/s

1
4 approaches the momentum scale at

which a bound state emerges, the strength of the SRG-evolved
interactions increases significantly. This occurs because the
transformation tends to move the bound-state eigenvalue to
the low-momentum part of the Hamiltonian’s diagonal, forcing
the interaction to grow in order to maintain the bound state at
the right value. In the Appendix B we show that actually in
the limit λ → 0 the SRG equation becomes stationary when
the SRG potential becomes the reaction matrix, which in the
single-channel case becomes

lim
λ→0

Vλ(p, p) = − tan δ(p)

p
, (36)

and a similar equation is obtained in the coupled-channel case.
Note that this diverges when the phase shift goes through 90◦,
a situation which only occurs for the 3S1 channel for p ∼
100 MeV. On the other hand, there is no divergence problem
when using Wegner’s generator η = [Ds,Hs], because the
bound-state eigenvalue is kept at the natural momentum scale
as the SRG cutoff is lowered, suggesting that actually the
generator initially proposed by Wegner has better infrared
properties. In this sense it would be interesting to check the
present results for the Wegner flow case. The advantages of
other SRG generators have been considered recently [47].

Finally, we can fine tune the SRG cutoff so that we obtain
the best possible fulfillment of the Wigner symmetry, which is
slightly above λ. We call this λWigner. This, of course, would
have far-reaching consequences for the analysis of finite nuclei
on the basis of symmetry.

Our results for the S waves are presented in Fig. 4 where
the similarity cutoff runs from 5 to 2 fm−1. We can see that
both S waves evolve in the same direction, becoming more
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FIG. 1. (Color online) Diagonal matrix elements of the SRG-evolved Argonne AV18 potential [43] V (p, p) (in fm) as a function of the
CM momentum (in fm−1) for the S, P , D, F, and G partial-wave components for different values of the similarity cutoff λ. Left panel: Initial
potential (λ = ∞). Central panel: λ = 2 fm−1. Right panel: λ = 1 fm−1.
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FIG. 2. (Color online) Fully off-diagonal matrix elements of the SRG-evolved Argonne AV18 potential [43] (in fm) as a function of the
CM momentum (in fm−1) for the S, P , D, F , and G partial-wave components for different values of the similarity cutoff λ. Left panel: Initial
potential (λ = ∞). Central panel: λ = 2 fm−1. Right panel: λ = 1 fm−1.
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V. S. TIMÓTEO, S. SZPIGEL, AND E. RUIZ ARRIOLA PHYSICAL REVIEW C 86, 034002 (2012)

0 0.5 1 1.5 2 2.5
p [fm

-1
]

-5

-4

-3

-2

-1

0

1

V
(p

,p
) 

[f
m

]

1
S

0
3
S

1

λ = 2 fm
-1

AV18

(a)

0 0.5 1 1.5 2 2.5
p [fm

-1
]

-5

-4

-3

-2

-1

0

1

V
(p

,p
) 

[f
m

]

1
S

0
3
S

1

λ = 2 fm
-1

NijII

(b)

0 0.5 1 1.5 2 2.5
p [fm

-1
]

-5

-4

-3

-2

-1

0

1

V
(p

,p
) 

[f
m

]

1
S

0
3
S

1

λ = 2 fm
-1

N3LO

(c)

0 0.5 1 1.5 2 2.5
p [fm

-1
]

-5

-4

-3

-2

-1

0

1

V
(p

,0
) 

[f
m

]

1
S

0
3
S

1

λ = 2 fm
-1

AV18

(d)

0 0.5 1 1.5 2 2.5
p [fm

-1
]

-5

-4

-3

-2

-1

0

1

V
(p

,0
) 

[f
m

]

1
S

0
3
S

1

λ = 2 fm
-1

NijII

(e)

0 0.5 1 1.5 2 2.5
p [fm

-1
]

-5

-4

-3

-2

-1

0

1

V
(p

,0
) 

[f
m

]

1
S

0
3
S

1

λ = 2 fm
-1

N3LO

(f)

0 0.5 1 1.5 2 2.5
p [fm

-1
]

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

V
(p

,p
) 

[f
m

]

1
P

1
3
P

C
3
P

T
3
P

LS

λ = 2 fm
-1

AV18

(g)

0 0.5 1 1.5 2 2.5
p [fm

-1
]

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

V
(p

,p
) 

[f
m

]

1
P

1
3
P

C
3
P

T
3
P

LS

λ = 2 fm
-1

NijII

(h)

0 0.5 1 1.5 2 2.5
p [fm

-1
]

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

V
(p

,p
) 

[f
m

]

1
P

1
3
P

C
3
P

T
3
P

LS

λ = 2 fm
-1

N3LO

(i)

0 0.5 1 1.5 2 2.5
p [fm

-1
]

-0.0003

0

0.0003

0.0006

0.0009

V
(p

,0
) 

[f
m

]

1
P

1
3
P

C
3
P

T
3
P

LS

λ = 2 fm
-1

AV18

(j)

0 0.5 1 1.5 2 2.5
p [fm

-1
]

-0.0003

0

0.0003

0.0006

0.0009

V
(p

,0
) 

[f
m

]

1
P

1
3
P

C
3
P

T
3
P

LS

λ = 2 fm
-1

NijII

(k)

0 0.5 1 1.5 2 2.5
p [fm

-1
]

-0.0003

0

0.0003

0.0006

0.0009

V
(p

,0
) 

[f
m

]

λ = 2 fm
-1

N3LO

(l)

FIG. 3. (Color online) Comparison between the diagonal V (p, p) and fully off-diagonal V (p, 0) matrix elements of the SRG-evolved
potentials for the S and P waves as a function of the CM momentum p (in fm−1) for a similarity cutoff λ = 2 fm−1. Left panels: Argonne
AV18 potential [43]. Central panels: Nijmegen II potential [44]. Right panels: Chiral N3LO potential of Entem and Machleidt [45].

attractive. At λWigner = 3 fm−1, the SRG-evolved interaction
in the two S waves are practically identical and for λ = 2 fm−1

the evolved potential in the triplet channel is stronger than
in the singlet case. As expected, the evolution in the triplet
state is faster than in the singlet state. The deuteron pole
is at an imaginary momentum scale pd ∼ i0.23 fm−1 while
the pole corresponding to the 1S0 virtual bound state is at a
much smaller momentum scale pv ∼ i0.04 fm−1. Thus, when
evolving to similarity cutoffs in the range we are considering,
the enhancement in the strength of the interaction that comes
from using the simple generator η = [T ,H (s)] is sensible only
in the 3S1 channel. As we see, at λWigner the agreement between

the 3S1 and 1S0 SRG-evolved interactions is indeed remarkable
for both the diagonal and the fully off-diagonal elements.
It is important to note that the difference between the 1S0

and the 3S1 phase shifts evaluated from the initial unevolved
potentials is reproduced at any rate through the SRG evolution,
since the unitary SRG transformation changes the interactions
(independently in each partial-wave channel) while preserving
the corresponding phase shifts.

For the D waves the results are displayed in Fig. 5, where we
can see that generally for p′, p < 0.7 fm−1 Wigner symmetry
is well fulfilled. Note that the better fulfillment of the Wigner
symmetry for slightly large values of p occurs for a similarity
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FIG. 4. (Color online) Comparison between diagonal, V (p, p), and fully off-diagonal, V (p, 0), matrix elements of the SRG-evolved
potentials for the S waves (in fm) as a function of the CM momentum p (in fm−1), showing that the Wigner similarity cutoff is λWigner ≈ 3 fm−1.
We use the Argonne AV18 potential as the initial condition [43].

cutoff of 2 fm−1. A somewhat similar situation occurs also for
G waves, as shown in Fig. 6, where now a better fulfillment of
the Wigner symmetry exists for a similarity cutoff of 4 fm−1. It
is interesting to note that the value of the similarity cutoff where

we have the better fulfillment of the Wigner symmetry is not
unique, being different in each of the even angular momentum
waves we considered. Of course, while we do not expect a
priori an exact fulfillment of SU(4) spin-isospin symmetry it
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FIG. 5. (Color online) Comparison between diagonal, V (p, p), and fully off-diagonal, V (p, 0), matrix elements of the SRG-evolved
potentials for the D waves (in fm) as a function of the CM momentum p (in fm−1).

is remarkable how well it works by taking into account that
high-quality potentials have not been designed to implement
the symmetry by any means.

With the definitions of the potential we get the simple
expressions

V1LC
= 2π

∫ 1

−1
dzPL(z)[VC − 3VS + τ (WC − 3WS)], (37)

V3LC
= 2π

∫ 1

−1
dzPL(z)[VC + VS + τ (WC + WS)], (38)

where τ = 4I − 3.
The nontriviality of the Serber symmetry is realized by

noting that we just change the angle without changing the
nucleons. To elaborate a bit further let us consider the standard
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FIG. 6. (Color online) Comparison between diagonal, V (p, p), and fully off-diagonal, V (p, 0), matrix elements of the SRG-evolved
potentials for the G waves (in fm) as a function of the CM momentum p (in fm−1).

Fierz identities. For the spin-isospin operators one gets

P1′2′1 = 1
2 [1 + σ ], P1′2′σ = 1

2 [1 − 3σ ],

P1′2′ (σ1 + σ2) = −(σ1 + σ2), P1′2′ (σ1 + σ2) = −(σ1 + σ2),

and similar equations for isospin operators. These identities
imply that the following combinations of scalar functions are,

respectively, even or odd in z:

[VC − 3VS + τ (WC − 3WS)]|−z

= [VC − 3VS + τ (WC − 3WS)]|z,
(39)

[VC + VS + τ (WC + WS)]|−z

= −[VC + VS + τ (WC + WS)]|z.
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Therefore, the orbital parity of the integrand and the Legendre
polynomial in Eqs. (37) and (38) are the same and do not
suggest that any of them vanish. Instead, the symmetries imply

0 = VC + VS + WC + WS,
(40)

VC − 3VS + WC − 3WS = VC + VS − 3WC − 3WS.

We recall that the large-Nc analysis of Ref. [29] yields
VC,WS = O(Nc), whereas WC,VS = O(N−1

c ), suggesting
from QCD that Wigner symmetry holds [second line of
Eq. (40)] in the even-L partial waves, exactly as we find here for
the SRG model. Note also that Serber symmetry under those
conditions implies VC + WS = 0. These conclusions have
been analyzed in great detail along several viewpoints [25–28]
and are confirmed here within the SRG. In any case, our results
suggest that it must be possible to impose these approximate
symmetries to a NN potential from the very beginning.

V. CONCLUSIONS AND OUTLOOK

In the present paper we have analyzed the concept of
long-distance symmetries as applied to the similarity renor-
malization group. We have shown that very similarly to the
case of the Vlowk formulation, the symmetry pattern of Wigner
symmetry in partial waves with even angular momentum as
well as the Serber symmetry in odd partial waves holds for the
SRG cutoff around λ ∼ 3 fm−1. This is somewhat remarkable
since SRG only provides an exponential decoupling between
low- and high-energy modes, bringing the effective interaction
to the diagonal form, whereas Vlowk corresponds to integrate
out high-energy components. It is also noteworthy that the
symmetry arises at scales where in few-body calculations the
induced three-body forces become small [18,19].

In this work we have not evolved the three-body force
through the SRG, so that no statements on the three-body
SU(4)-violating terms can be made, even knowing that in the
two-body case the SU(4)-violating terms get small. From this
point of view the extension of the present results to three- and
four-body forces and the analysis of their symmetry structure
would be of great interest.

The underlying symmetry pattern unveiled by our SRG
analysis appears intriguing and unexpected from the modern
viewpoint of coarse-graining high-quality interactions. From
such a perspective this fits somewhat the vague concept of
an accidental symmetry. Note that here we use the standard
concept of accidental symmetry from quantum mechanics
instead of the field theory one: a symmetry which is realized
although not foreseen.

There is a long tradition on the phenomenological conse-
quences of Wigner symmetry for the properties of nuclei and
nuclear matter (for a review see, e.g., Ref. [48]). A recent work
[49] analyzes the SU(4) pattern of pairing forces within a Vlowk

framework, which quite naturally follow the symmetry pattern.
Our results, in particular the existence of a SRG scale at which
the Wigner symmetry becomes quite accurate, not only provide
a natural explanation for this fact but suggest the pursuit of fur-
ther studies in future work within the current SRG framework.

From a fundamental viewpoint, QCD large-Nc-based argu-
ments foresee fulfilling the symmetry with a relative O(1/N2

c )

accuracy, so one does not expect a perfect fulfillment of the
Wigner symmetry. On the other hand, nowhere in the design
and optimization of the modern high-quality interactions
which have been successfully applied to the structure of finite
nuclei was the Wigner symmetry pattern explicitly imple-
mented. In this regard, the accuracy with which by choosing a
suitable SRG scale the symmetry seems to hold suggests that
this is a property of the data themselves which emerges when
the interaction is resolved with a specific length scale and not
so much of the original (bare) potentials used to fit the NN

scattering database. Finally, one should recognize that while
the use of symmetries for coarse-grained effective interactions
is not mandatory we expect by explicit symmetry consider-
ations additional simplifications of the complicated nuclear
many-body problem. Work along these lines is in progress.
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APPENDIX A: WIGNER SYMMETRY FOR N N

For completeness we recall here some features of the
Wigner SU(4) spin-isospin symmetry. It consists of the
following 15 generators:

T a = 1

2

∑
A

τa
A, (A1)

Si = 1

2

∑
A

σ i
A, (A2)

Gia = 1

2

∑
A

σ i
Aτ a

A, (A3)

where τ a
A and σ i

A are isospin and spin Pauli matrices for nucleon
A, respectively, and T a is the total isospin, Si the total spin,
and Gia the Gamow-Teller transition operator. The quadratic
Casimir operator reads

CSU(4) = T aTa + SiSi + GiaGia, (A4)

and a complete set of commuting operators can be taken to
be CSU(4), T3 and Sz,Gz3. The fundamental representation has
CSU(4) = 4 and corresponds to a single nucleon state with a
quartet of states p ↑, p ↓, n ↑, n ↓, with total spin S = 1/2
and isospin T = 1/2 represented by 4 = (S, T ) = (1/2, 1/2).
For two-nucleon states with good spin S and good isospin T

the Pauli principle requires (−)S+T +L = −1 with L the angular
momentum, and thus

CST
SU(4) = 1

2 (σ + τ + στ ) + 15
2 , (A5)
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where τ = τ1 · τ2 = 2T (T + 1) − 3 and σ = σ1 · σ2 =
2S(S + 1) − 3.

One has two SU(4) supermultiplets, whose Casimir values
are

C00
SU(4) = C11

SU(4) = 9, (A6)

C01
SU(4) = C10

SU(4) = 5, (A7)

corresponding to an antisymmetric sextet 6A = (0, 1) ⊕ (1, 0)
when L = even and a symmetric decuplet 10S = (0, 0) ⊕
(1, 1) when L = odd. According to LSJ quantum numbers
we have the following supermultiplets:

(1S0,
3S1), (1P1,

3P0,1,2), (1D2,
3D1,2,3) . . . . (A8)

When applied to the NN potential, the requirement of Wigner
symmetry for all states implies

VT = WT = VLS = WLS = 0, WS = VS = WC, (A9)

so that the potential may be written as

V = VC + (
2CST

SU(4) − 15
)
WS. (A10)

The particular choice WS = 0 corresponds to a spin-isospin-
independent potential, but in this case no distinction between
the 6A and 10S supermultiplets arises.

APPENDIX B: THE INFRARED CUTOFF LIMIT
OF THE SRG

In this Appendix we show that when the kinetic energy is
taken as the generator of the SRG transformations the SRG
evolved potential becomes the standard reaction matrix, i.e.,

Vs(p, p) → R(p, p; p), (B1)

when there are no bound states. To avoid unnecessary
mathematical complications, we will analyze the problem in a
discretized form such as Gauss integration points used in the
numerical calculation. The SRG equation in the basis where
T is diagonal becomes

dVik

ds
= −(Ei − Ek)2Vik +

∑
k

(Ei + Ek − 2El)VilVlk.

(B2)

The discrete representation has many advantages. One can see
that along evolution in the discrete representation one has an
infinite number of constants of motion, d

ds
Tr(V n

s ) = 0, due to
the commutator structure of the SRG equation.1

The fixed-point solution implies dVik

ds
= 0, which requires

that [[T , V ], V ] = 0 so that V and [T , V ] become diagonal in

1Mathematically, such a property is ill defined in the continuum
limit since even for n = 1 one has Tr(Vs) = ∫ ∞

0 p2Vs(p, p) =∫ ∞
0 r2drV (r, r), which for a local potential V (r, r ′) = V (r)δ(r − r ′)

diverges as the momentum cutoff. Also, the trace of a commutator,
Tr[A, B], only vanishes when both Tr(AB) and Tr(BA) are finite, as
the choice A = p and B = x clearly illustrates, since [p, x] = −ih̄

and hence Tr[p, x] = −ih̄Tr(1) = ∞.

the same basis, not necessarily the one where T is diagonal,
i.e.,

Vαβ = vαδαβ, (B3)

0 =
∑

γ

(Tαγ Vγβ − Vαγ Tγβ) = Tαβ(Vβ − Vα). (B4)

The second equation requires that for α �= β then Tαβ = 0,
which means that T is diagonal also. Therefore Vij = viδij ,
i.e., V is diagonal in the basis where T is also diagonal. If
we write now the Lippmann-Schwinger (LS) equation for the
reaction matrix,

R(p′, p; k) = V (p′, p)

+ 2

π
−
∫ ∞

0
q2dq

V (p′, q)R(q, p; k)

k2 − q2
, (B5)

with this normalization the phase shift in the one-channel case
reads

R(p, p; p) = − tan δ(p)

p
. (B6)

Note that the SRG actually implies that the phase shift is
constant along the evolution, so that one may take any Vs in
Eq. (B5). The discrete version of this equation for the half
off-shell R matrix, Rij = R(pi, pj ; pi), reads

Rij = Vij +
∑
k �=j

2

π
�q q2

k

RikVkl

p2
i − q2

k

, (B7)

where the principal value corresponds to excluding the point
in the sum. Thus, for a diagonal potential we get

Rij = Viδij . (B8)

Turning to the phase shift and going to the continuum limit we
thus obtain the assertion, so that Eq. (36) is obtained. The proof
also holds for the continuum limit, provided a momentum
cutoff in the integrals is supplemented.

The infrared solution suggests looking for perturbations
around it. Actually, we will see now under what conditions
these perturbations are stable. If we write

Vik(s) = Viδij + �Vij , (B9)

we get to first order in the perturbation

�V ′
ik(s) = (Ei − Ej )(Ei + Vi − Ej − Vj )�Vij (s), (B10)

which yields the solution

�Vij (s) = δij�Vii(∞)

+�Vij (∞)e−s(Ei−Ej )(Ei+Vi−Ej −Vj )�Vij (∞).

(B11)

The diagonal part is constant as required by the property
TrV (s) = const. To identify this contribution we use again
the LS equation and find that �Vii = 0 and �Vij (∞) = Rij

for i �= j . Thus, we get

�Vij (s) = (1 − δij )Rij e
−s(Ei−Ej )(Ei+Vi−Ej −Vj ), (B12)

which provided (Ei − Ej )(Ei + Vi − Ej − Vj ) > 0. Depar-
tures from it measure some off-shellness of the potential.
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Going to the continuum limit we get for p′ �= p

�Vs(p
′, p) = R(p′, p)e−s(Ep−Ep′ )[Ep+R(p,p)−Ep′ −R(p′,p′)],

(B13)

where for large p we obtain R(p, p) → −δ(p)/p = V (p, p),
which means that at high momentum the kinetic energy
dominates and the fixed point is stable. If there are no bound
states, we have that δ(p) never becomes π/2 [since Levinson’s
theorem states that δ(0) − δ(∞) = nBπ , with nB the number

of bound states]. However, for a pole at p = p0 we get

R(p, p) = 1

p0(p − p0)δ′(p0)
+ reg., (B14)

where reg. means regular contributions, so that for p > p0 >

p′ and δ′(p0) > 0 or p′ > p0 > p and δ′(p0) < 0 the solution
becomes stable and unstable otherwise. In the 3S1 channel
one has δ′(p0) < 0, which means that the corrections increase
dramatically for p > p0 > p′.
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