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Effects of four-body breakup on 6Li elastic scattering near the Coulomb barrier
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We investigate projectile breakup effects on 6Li + 209Bi elastic scattering near the Coulomb barrier with
the four-body version of the continuum-discretized coupled-channels method (four-body CDCC). The elastic
scattering is well described by the p + n + 4He + 209Bi four-body model. Furthermore, we propose a reasonable
d + 4He + 209Bi three-body model for describing the four-body scattering, clarifying four-body dynamics of
the elastic scattering.
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Introduction. Plenty of nuclei are considered to have
two-cluster or three-cluster configurations as their main
components. Three-cluster dynamics is, however, nontrivial
compared with two-cluster dynamics. Systematic understand-
ing of three-cluster dynamics is hence important. There are
many nuclei that can be described by three-cluster models.
For example, low-lying states of 6He and 6Li are explained
by N + N + 4He three-body models [1–6], where N

stands for a nucleon. The comparison of the two nuclei
is important to see the difference between dineutron and
proton-neutron correlations. Two-neutron halo nuclei such
as 11Li, 14Be, and 22C are reasonably described by a n +
n + X three-cluster model, where X is a core nucleus.
Properties of these three-cluster configurations should be
confirmed by measuring scattering of the nuclei and analyzing
the measured cross sections with accurate reaction theories.
The reactions are essentially four-body scattering composed
of three constituents of the projectile and a target nucleus. An
accurate theoretical description of four-body scattering is thus
an important subject in nuclear physics.

The continuum-discretized coupled-channels method
(CDCC) is a fully quantum mechanical method of describing
not only three-body scattering but also four-body scattering
[7–9]. CDCC has succeeded in reproducing experimental
data on both three- and four-body scattering. The theoretical
foundation of CDCC is shown with the distorted Faddeev equa-
tion [10–12]. CDCC for four-body (three-body) scattering is
often called four-body (three-body) CDCC; see Refs. [13–25]
and references therein for four-body CDCC. So far four-body
CDCC has been applied to only 6He scattering.

For 6He + 209Bi scattering at 19 and 22.5 MeV near the
Coulomb barrier, the measured total reaction cross sections
are largely enhanced in comparison with that for 6Li +
209Bi scattering at 29.9 and 32.8 MeV near the Coulomb
barrier [26,27]. Keeley et al. [28] analyzed the 6He + 209Bi
scattering with three-body CDCC in which the 6He + 209Bi
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system was assumed to be a 2n + 4He + 209Bi three-body
system; i.e., a pair of extra neutrons in 6He was treated as
a single particle, a dineutron (2n). The enhancement of the
total reaction cross section of 6He + 209Bi scattering is found
to be due to the electric dipole (E1) excitation of 6He to its
continuum states [29], i.e., Coulomb breakup of 6He. The
three-body CDCC calculation, however, does not reproduce
the angular distribution of the measured elastic cross section
and overestimates the measured total reaction cross section by
a factor of 2.5. This problem is solved by four-body CDCC [19]
in which the total system is assumed to be a n + n + 4He +
209Bi four-body system.

6Li + 209Bi scattering near the Coulomb barrier was,
meanwhile, analyzed with three-body CDCC by assuming a
d + 4He + 209Bi three-body model [28]. The three-body
CDCC calculation could not reproduce the data without
normalization factors for the potentials between 6Li and 209Bi.
This result indicates that four-body CDCC should be applied
to 6Li + 209Bi scattering.

In this Rapid Communication, we analyze 6Li + 209Bi
elastic scattering at 29.9 and 32.8 MeV with four-body CDCC
by assuming the p + n + 4He + 209Bi four-body model.
The four-body CDCC calculation reproduces the measured
elastic cross sections, whereas the previous three-body CDCC
calculation does not. Four-body dynamics of the elastic
scattering is investigated, and what causes the failure of the
previous three-body CDCC calculation is discussed. Finally,
we propose a reasonable d + 4He + 209Bi three-body model
for describing the four-body scattering.

Theoretical framework. One of the most natural frameworks
to describe 6Li + 209Bi scattering is the p + n + 4He + 209Bi
four-body model. The dynamics of the scattering is governed
by the Schrödinger equation

(H − E)� = 0 (1)

for the total wave function �, where E is a total energy of the
system. The total Hamiltonian H is defined by

H = KR + U + h (2)

with

U = Un(Rn) + Up(Rp) + Uα(Rα) + e2ZLiZBi

R
, (3)
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FIG. 1. (Color online) Angular distribution of elastic cross sec-
tion for n + 209Bi scattering at 5 MeV. The solid line is the result with
the neutron optical potential UOP

n . The experimental data are taken
from Ref. [31].

where h denotes the internal Hamiltonian of 6Li, R is the
center-of-mass coordinate of 6Li relative to 209Bi, KR stands
for the kinetic energy operator associated with R, and Ux

describes the nuclear part of the optical potential between x

and 209Bi as a function of the relative coordinate Rx . As Uα ,
we adopt the optical potential of Barnett and Lilley [30]. The
parameters of Un are fitted to reproduce experimental data [31]
on n + 209Bi elastic scattering at 5 MeV, where only the central
interaction is taken for simplicity. As shown in Fig. 1, the
neutron optical potential UOP

n thus fitted is consistent with the
data. The resultant parameter set is the same as that in the
global optical potential of Koning and Delaroche [32], except
that parameters aV , WV , and WD are changed into 0.55 fm,
0 MeV, and 4.0 MeV, respectively. The proton optical potential
Up is assumed to be the same as Un.

In the d + 4He two-cluster model, the dipole strength of
6Li is zero, since the mass ratio between the two clusters
is equal to the charge ratio between them. In the n + p +
4He three-cluster model, we have confirmed numerically that
the dipole strength is still negligibly small, because the 6Li
ground state is dominated by the d + 4He component. This
property strongly suppresses Coulomb breakup processes in
6Li-209Bi scattering. Hence we can approximate the Coulomb
part of p-209Bi and α-209Bi interactions as e2ZLiZBi/R, as
shown in Eq. (3), where ZA is the atomic number of the
nucleus A.

The internal Hamiltonian h of 6Li is described by the p +
n + 4He orthogonality condition model [33]. The Hamiltonian
of 6Li agrees with that of 6He in Ref. [19], when the Coulomb
interaction between p and 4He is neglected. Namely, the
Bonn-A interaction [34] is taken in the p-n subsystem and
the so-called KKNN interaction [35] is used in the p-α and
n-α subsystems, where the KKNN interaction is determined
from experimental data on low-energy nucleon-α scattering.
In order to reproduce the measured binding energy of 6Li, we

TABLE I. Calculated spin-parity (Iπ ), energy (ε0), and matter
radius (Rm

rms) of the 6Li ground state. The experimental data are taken
from Refs. [36,37].

Iπ ε0 (MeV) Rm
rms (fm)

Calc. 1+ −3.68 2.34
Exp. 1+ −3.6989 2.44 ± 0.07

introduce the effective three-body interaction defined by

V 3body(y1, y2) = V3e
−ν(y2

1 +y2
2 ), (4)

where y1 ( y2) is the relative coordinate between a valence
neutron (proton) and 4He. The optimum values of V3 and ν are
−5.1 MeV and 0.1 fm−2, respectively. The calculated results
for the 6Li ground state are summarized in Table I.

Eigenstates of h consist of a finite number of discrete states
with negative energies and continuum states with positive
energies. In four-body CDCC, the continuum states of the
projectile are discretized into a finite number of pseudostates
by either the pseudostate method [13–21,23–25] or the
momentum-bin method [22]. The Schrödinger equation (1)
is solved in a model space P spanned by the discrete and
discretized-continuum states:

P(H − E)P�CDCC = 0. (5)

In the pseudostate method, the discrete and discretized-
continuum states are obtained by diagonalizing h in a space
spanned by L2-type basis functions. As the basis function,
the Gaussian [14–16,19,23–25] or the transformed harmonic
oscillator function [13,17,18,20,21] is usually taken. In this
paper, we use the Gaussian function. The model space P is
then described by

P =
∑
nIm

|�nIm〉〈�nIm|, (6)

where �nIm is the nth eigenstate of 6Li with an energy εnI , a
total spin I , and its projection on the z axis, m.

The CDCC wave function �JM
CDCC, with total angular

momentum J and its projection on the z axis, M , is expressed
as

�JM =
∑

γ

χJ
γ (PnI , R)/R YJM

γ (7)

with

YJM
γ = [�nI (ξ ) ⊗ iLYL(R̂)]JM (8)

for the orbital angular momentum L with respect to R. Here
ξ is a set of internal coordinates of 6Li and the expansion
coefficient χJ

γ , where γ = (n, I, L), describes a motion of 6Li
in its (n, I ) state with linear momentum PnI relative to the
target. Multiplying the four-body Schrödinger equation (5) by
Y∗JM

γ ′ from the left and integrating it over all variables except
R, one can obtain a set of coupled differential equations for χJ

γ :
[

d2

dR2
− L(L + 1)

R2
− 2μ

h̄2 Uγγ (R) + P 2
nI

]
χJ

γ (PnI , R)

= 2μ

h̄2

∑
γ ′ �=γ

Uγ ′γ (R)χJ
γ ′(Pn′I ′, R) (9)
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with the coupling potentials

Uγ ′γ (R) = 〈
YJM

γ ′
∣∣Un(Rn) + Up(Rp) + Uα(Rα)

∣∣YJM
γ

〉

+ e2ZLiZBi

R
δγ ′γ ,

where μ is the reduced mass between 6Li and 209Bi. The
elastic and discrete breakup S-matrix elements are obtained
by solving Eq. (9) under the standard asymptotic boundary
condition [7,38].

In order to obtain �nIm, we assume Iπ = 1+, 2+, and
3+ states with isospin zero and diagonalize h with 10
Gaussian basis functions for each coordinate in which the
range parameters are taken from 0.1 to 12 fm in a geometric
series. As shown in Table I, the calculated binding energy and
the matter radius of the 6Li ground state are in good agreement
with the experimental data. The �nIm with its eigenenergy
εnI > 20 MeV are excluded from P . The resulting numbers
of discrete states are 64 (including the ground state of 6Li),
56, and 57 for 1+, 2+, and 3+ states, respectively. We have
also confirmed numerically that other spin-parity states such
as Iπ = 0+ and negative-parity states do not affect the present
results. The model space thus obtained gives good convergence
within 1% of the calculated elastic cross sections for the
6Li + 209Bi scattering at 29.9 and 32.8 MeV.

We also perform three-body CDCC calculations by assum-
ing a d + 4He + 209Bi model, following Refs. [28,29]. As
an interaction between d and 4He, we take the potential of
Ref. [39], which was determined from experimental data on
the ground-state energy (−1.47 MeV) and the 3+-resonance
state energy (0.71 MeV) of 6Li and low-energy d-α scattering
phase shifts. The continuum states between d and 4He are
discretized with the pseudostate method [14] and are truncated
at 20 MeV in the excitation energy of 6Li from the d-4He
threshold. The d-209Bi optical potential (UOP

d ) [40] is taken as
Ud , i.e., the distorting potential between d and 209Bi in a d +
4He + 209Bi three-body Hamiltonian, whereas Uα is common
between three- and four-body CDCC calculations.

Results. Figure 2 shows the angular distribution of elastic
cross section for 6Li + 209Bi scattering at 29.9 MeV. The dotted
line shows the result of three-body CDCC calculations with
UOP

d as Ud . This result underestimates the measured cross
section [26,27]. The solid (dashed) line, meanwhile, stands
for the result of four-body CDCC calculations with (without)
projectile breakup effects. In CDCC calculations without 6Li
breakup, the model spaceP is composed only of the 6Li ground
state. The solid line reproduces the experimental cross section,
but the dashed line does not. The projectile breakup effects are
thus significant and the present 6Li scattering is well described
by the p + n + 4He + 209Bi four-body model. This conclusion
is true also for 6Li + 209Bi scattering at 32.8 MeV, as shown
in Fig. 3.

Now we consider d breakup in the 6Li scattering in order
to understand four-body dynamics of the scattering. In the
limit of no d breakup, the interaction between d and 209Bi can
be obtained by folding Un and Up with the deuteron density.
This potential is referred to as the single-folding potential
USF

d . In Figs. 2 and 3, the dot-dashed lines show the results
of three-body CDCC calculations with USF

d as Ud . The results
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FIG. 2. (Color online) Angular distribution of the elastic cross
section for 6Li + 209Bi scattering at 29.9 MeV. The cross section is
normalized by the Rutherford cross section. The dotted (dot-dashed)
line stands for the result of three-body CDCC calculations in which
UOP

d (USF
d ) is taken as Ud . The solid (dashed) line represents the result

of four-body CDCC calculations with (without) breakup effects. The
experimental data are taken from Refs. [26,27].

well simulate those of four-body CDCC calculations, i.e., the
solid lines. This indicates that d breakup is suppressed in
6Li scattering. An intuitive understanding of this property is
as follows. As a characteristic of the present 6Li scattering,
it is quite peripheral in virtue of the Coulomb barrier. The
scattering is dominated by the configuration in which α is
located between d and the target, because Uα is more attractive
than Ud . In this configuration, d is out of the range of Un and
Up, so that d breakup is suppressed. The 6Li elastic scattering
near the Coulomb barrier is thus well described by the d +
α + 209Bi three-body model, if USF

d is taken as Ud .
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FIG. 3. (Color online) Same as in Fig. 2 but for 6Li + 209Bi
scattering at 32.8 MeV.
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FIG. 4. (Color online) Angular distribution of the elastic cross
section for d + 209Bi scattering at 12.8 MeV. The solid (dashed) line
stands for the result of three-body CDCC calculations with (without)
deuteron breakup, whereas the dotted line is the result of the deuteron
optical potential UOP

d . The experimental data are taken from Ref. [40].

Figure 4 shows the angular distribution of elastic cross
section for d + 209Bi scattering at 12.8 MeV. The solid
and dashed lines stand for the results of three-body CDCC
calculations with and without d breakup, respectively, in which
the p + n + 209Bi model is assumed and both Coulomb
and nuclear breakup effects are taken into account. In this
calculation, the discretized-continuum states of d, obtained
by the pseudostate method, are truncated at 30 MeV in the
excitation energy from the n-p threshold. As the relative

angular momentum � between n and p, we take up to
� = 4. The resulting number of discretized states is 13 (14)
for � = 0 and 1 (� = 2, 3, and 4). The model space gives
good convergence of the calculated elastic cross sections
within 1%. The solid line reproduces the data fairly well,
but the dashed line does not. Thus d breakup is significant
for deuteron scattering. The deuteron optical potential UOP

d

(dotted line) yields fairly good agreement with the data, but
the radius of UOP

d is larger than that of USF
d . This is the reason

why three-body CDCC calculations with UOP
d as Ud cannot

reproduce the measured elastic cross section for 6Li + 209Bi
scattering. The difference between USF

d and UOP
d mainly comes

from the fact that UOP
d includes d-breakup effects, whereas USF

d

does not.
Summary. 6Li + 209Bi scattering at 29.9 and 32.8 MeV near

the Coulomb barrier is well described by four-body CDCC
based on the p + n + 4He + 209Bi model. In 6Li scattering, d

breakup is strongly suppressed, suggesting that the d + 4He +
209Bi model becomes good, if the single-folding potential USF

d

with no d breakup is taken as an interaction between d and
the target. For d + 209Bi scattering at 12.8 MeV, meanwhile,
d breakup is significant, so that the deuteron optical potential
UOP

d includes d-breakup effects.
Four-body CDCC is applicable also for n + 6Li scattering,

which is a key reaction in nuclear engineering. In the scattering,
6Li breakup into n + p + α is considered to be not negligible
for emitted neutron spectra [41]. We will discuss this point in
a forthcoming paper.
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