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Introduction. The oscillator basis is widely used in nuclear
structure computations because it allows the practitioner to
exploit and implement all symmetries of the nuclear many-
body problem, and because its localized nature corresponds
well to the structure of the self-bound atomic nucleus. After
all, the nuclear shell model is based on the harmonic oscillator
with a strong spin-orbit splitting [1]. Several computational
implementations of ab initio methods [2,3] and nuclear density
functional theory [4] essentially start from the oscillator basis.
Basic observables sought in such computations include the
binding energies and radii. Ideally, the computed observables
should be independent of the parameters of the employed
oscillator space, i.e., the maximum number of oscillator quanta
N and the frequency � of the oscillator wave functions. This
ideal is often difficult to reach in practice, so various empirical
extrapolation schemes [5–9] have been applied, but all lack a
firm theoretical foundation.

The proper accounting for corrections to nuclear energies
and radii that arise in finite oscillator spaces is an important
problem for several reasons. First, a theoretical foundation of
such corrections would enable the practitioner to extrapolate
reliably from smaller model spaces and thus extend the reach
of some computational methods. This is particularly important
for weakly bound nuclei where the Gaussian falloff of the
oscillator basis can capture a halo state often only in unachiev-
able large model spaces [6]. Second, uncertainty quantification
of results—standard in experimental research—is increasingly
taking place in nuclear structure theory [10]. Here, the quantifi-
cation of theoretical uncertainties due to the nuclear interaction
is possible for interactions from effective field theory (EFT),
but the robust quantification of errors due to finite oscillator
spaces is lacking. Finally, important steps toward an harmonic-
oscillator-based EFT for the nuclear shell model have been
made recently [11–13]. Such a theory should also control and
exploit the limitations of the finite model space.

In this Rapid Communication, we derive corrections of
nuclear energies and radii that are due to finite oscillator
spaces. We build on the insights of Coon et al. [11], who focus
on the infrared and ultraviolet cutoffs induced by a truncated
basis. Our derivations are based on simple arguments and
verified in a one-dimensional model. We apply the results to
16O and demonstrate that the theoretical corrections agree well
with the numerical data. Calculations for the 6He ground-state
energy and neutron radius show that predictions are feasible
even for halo nuclei.

Theoretical derivation. For a particle in a box with periodic
boundary conditions, Lüscher derived the corrections to bound
states due to the finite size of the box [14]. Our derivation is
analogous, except that the size of the box is now given in
terms of the spatial extension of the oscillator basis and we
deal essentially with Dirichlet boundary conditions [15]. Let
us consider a model space of oscillator wave functions with
maximum oscillator energy E = h̄�(N + 3/2). In practice,
one has to choose h̄� and N such that the momentum cutoff
λ of the employed interaction is smaller than the ultraviolet
(UV) momentum,

�UV ≡
√

2(N + 3/2)h̄/b, (1)

and that the radius r of the nucleus is smaller than the radial
extent,

L0 ≡
√

2(N + 3/2)b, (2)

of the employed oscillator space. Here, b ≡ √
h̄/(m�) is the

oscillator length of our basis, and m denotes the nucleon mass.
Equations (1) and (2) are indeed the maximum momentum
and displacement, respectively, of a particle in a harmonic
oscillator at energy E = h̄�(N + 3/2). They differ from
previous scaling relations [16,17] by factors of

√
2.

In practice, satisfying the UV condition λ < �UV and the
infrared (IR) condition r < L0 does not guarantee converged
nuclear structure results in the oscillator basis because the
momentum cutoff λ is usually not sharp, and the nuclear
wave function extends beyond the nuclear radius r . However,
nuclear interactions from chiral EFT and from renormalization
group transformations exhibit a super-Gaussian falloff in
momentum space, whereas the nuclear wave function only falls
off exponentially in coordinate space. Thus, once λ < �UV

holds, the UV convergence in momentum space will be
rapid, and one is dominated by corrections from the slower
falloff in coordinate space. Practitioners of nuclear structure
computations know this very well (see, e.g., Fig. 6 below):
When energies are plotted as a function of h̄�, the minimum
initially shifts toward larger values of h̄� as N is increased.
However, once UV convergence has been reached, further
increasing N shifts the minimum back to lower values of h̄�

to capture the coordinate-space tail of the wave function. In
what follows, we will assume UV convergence and compute
the correction from incomplete IR convergence.

The finite extent of the oscillator basis up to a radius L

in coordinate space essentially requires the wave function to
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vanish at r ≈ L. The maximum radius L0 from Eq. (2) is only
a leading-order (or asymptotically valid) estimate because the
oscillator wave function decays rapidly beyond the classical
turning point. An improved estimate for L using the intercept
of the tangent at r = L0 is [18]

L ≈ L0 + 0.54437 b (L0/b)−1/3, (3)

which we use with the analogous expression for �UV in numer-
ical examples below. For our derivation of IR corrections, we
adapt the discussion in Ref. [19]. Given a boundary condition
at r = L beyond the range of the nuclear potential, we write
the energy compared to that for L = ∞ as

EL = E∞ + �EL, (4)

and we seek an estimate for �EL, which is assumed to be
small.

Let uE(r) be the radial solution with regular boundary
condition at the origin and energy E. We denote the particular
solutions uEL

(r) ≡ uL(r) and uE∞ (r) ≡ u∞(r). Then the linear
energy approximation is (for r � L) [19]

uL(r) ≈ u∞(r) + �EL

duE(r)

dE

∣∣∣∣
E∞

, (5)

assuming a smooth expansion of uE about E = E∞ at fixed
r . Evaluating Eq. (5) at r = L with the boundary condition
uL(L) = 0, we find

�EL ≈ −u∞(L)

(
duE(L)

dE

∣∣∣∣
E∞

)−1

, (6)

which is the estimate we seek. For general E, the asymptotic
form of the radial wave function for r greater than the range
R of the potential is

uE(r)
r�R−→ AE(e−kEr + αEe+kEr ), (7)

with the known case u∞(r)
r�R−→ A∞e−k∞r for E = E∞. Here,

k∞ is determined by the nucleon separation energy:

S = h̄2k2
∞

2m
. (8)

We take the derivative of Eq. (7) with respect to energy, eval-
uate at E = E∞, using αE∞ = 0 and dkE/dE = −m/(h̄2kE),
to find

duE(r)

dE

∣∣∣∣
E∞

= +A∞
dαE

dE

∣∣∣∣
E∞

e+k∞r + O(e−k∞r ). (9)

Substituting Eq. (9) at r = L into Eq. (6), we obtain

�EL ≈ −
[
dαE

dE

∣∣∣∣
E∞

]−1

e−2k∞L + O(e−4k∞L). (10)

The prefactor in the square brackets depends on details of the
interaction (but not on L) and will be fit to numerical data
when Eq. (10) is used together with Eq. (4). Thus, the main
result is

EL = E∞ + a0e
−2k∞L, (11)

and in practical applications one can treat E∞, a0, and k∞
(in cases where the separation energy is not known) as fit

parameters. Note that our Eq. (11) explains the exponential
decay observed empirically in Ref. [11]. In contrast to the
Lüscher result in which the energy is always lowered by
periodic images of the potential [14], the energy from Eq. (11)
is always increased by the shift of a node from r = ∞ to
r = L, consistent with the variational nature of the truncated
basis expansion.

Let us next turn to radii. It is convenient to express the radius
squared as the infinite-model-space result plus a correction
term

〈r2〉L = 〈r2〉∞ + �〈r2〉L, (12)

where

�〈r2〉L =
∫ L

0 |uL(r)|2 r2 dr∫ L

0 |uL(r)|2 dr
−

∫ ∞
0 |u∞(r)|2 r2 dr∫ ∞

0 |u∞(r)|2 dr
. (13)

Because the dependence on L of uL(r) in Eq.(5) is confined to
�EL, when uL is substituted into Eq. (13) the L dependence
of each separate integrand comes entirely from the upper
integration limit. Therefore, we can use the asymptotic
expressions u∞(r) −→ A∞e−k∞r and

duE(r)

dE

∣∣∣∣
E∞

≈ − A∞
�EL

e−2k∞Le+k∞r (14)

to identify the leading-order expression �〈r2〉L ∝
〈r2〉∞(2k∞L)3e−2k∞L. [Note that any L-independent
terms are guaranteed to cancel by the definition
Eq. (13).] The next-to-leading-order expression scales
as (2k∞L) exp (−2k∞L) because the condition uL(L) = 0
ensures there is no quadratic term in 2k∞L. Thus, the L

dependence of the squared radius is (with β ≡ 2k∞L) [18]

〈r2〉L ≈ 〈r2〉∞[1 − (c0β
3 + c1β)e−β ] . (15)

Here, 〈r2〉∞, c0, and c1 are fit parameters while k∞ should be
determined in fitting the energy Eq. (11). The approximation
Eq. (15) is valid in the asymptotic regime β � 1. In practice,
one needs β � 3 because the leading-order correction has its
maximum at β = 3, and the next-to-leading order corrections
is approximately suppressed by one order of magnitude for
β � 3 (with c0 and c1 of order unity).

Equations (11) and (15) are the main results of this Rapid
Communication. A few comments are in order before we
turn to applications of these results. Note that we derived
these results in the laboratory system. For the nuclear A-body
problem, we could also have exploited the separation of the
center-of-mass coordinate in the oscillator basis and followed a
similar derivation for the Ath particle with respect to the center
of mass of the remaining (A − 1) particles. This would rescale
L and the momentum of the Ath particle accordingly, but the
final results are unchanged when re-expressed in laboratory
coordinates. In situations where the relevant threshold involves
two clusters of nucleons (multiple clusters of nucleons), a
similar reasoning applies to the relative coordinate between
the two clusters (the hyperradius). Due to these comments, and
in light of the approximations involved in defining L and the
corrections to the energy and radius, in actual fits to numerical
results one might want to treat k∞ as a fit parameter even
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FIG. 1. (Color online) Finite-basis-size correction of the squared
radius (crosses) compared to Eq. (15) (dashed line) for a toy model.
The squared radius is r2

∞/b2 ≈ 1.736, and k∞b ≈ 0.595. Inset: Finite-
basis-size correction of the energy (data points) compared to Eq. (10)
(dashed line).

when the corresponding separation energy or breakup energy
is known.

Applications. As a first check, we consider a toy
model in one dimension with the Hamiltonian H = p2/2 −
v0 exp (−x2). Here, x is given in units of the oscillator length
b. In one dimension, the constant 3/2 in Eqs. (1) and (2) has
to be replaced by 1/2. We compute the ground-state energy
and the squared radius for v0 = 0.5 in large oscillator spaces
to obtain fully converged results for the ground-state energy
and the radius. In this simple case, the ground-state energy is
given in terms of the separation energy Eq. (8) as E∞ = −S.
Figure 1 shows the correction �〈r2〉 as a function of L. The
dashed line results from a leading-order fit to Eq. (15), and
the agreement between numerical data and the theoretical
prediction extends over ten orders of magnitude. The inset
shows that the L-dependent energy correction also agrees with
the prediction Eq. (11).

Let us turn to the nuclear many-body problem. We employ
the nucleon-nucleon interaction from chiral EFT by Entem
and Machleidt [20] and compute the ground-state energy and
radius of the nucleus 16O with the coupled-cluster method in
its singles and doubles approximation with triples corrections
[16,21]. In our computation of energies and radii we used the
intrinsic Hamiltonian and intrinsic radius squared operator in
model spaces with frequencies 42 � h̄�/MeV � 76 and with
N = 12, 14. To ensure that the computed results are practically
UV converged, we only use those oscillator spaces for which
�UV is sufficiently large. Figure 2 shows the results for the
ground-state energy as a function of L. The circles, up trian-
gles, and down triangles denote points with �UV > 1100 MeV,
�UV > 1200 MeV, and �UV > 1300 MeV, respectively. The
points all fall on a line because UV convergence has practically
been achieved. Thus, we can apply our theory. The lines show
fits to Eq. (11) with fit parameters E∞, a0, and k∞. Note that
the result E∞ ≈ −122.6 MeV of the fit depends very weakly
on �UV, the difference being about 0.2 MeV. In the fits, we
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FIG. 2. (Color online) Open symbols: Ground-state energy of 16O
as a function of L. Lines: Fits to Eq. (11) yield E∞ ≈ −122.6 MeV
and k∞ ≈ 0.95 fm−1. �UV from Eq. (1).

obtain k∞ ≈ 0.95 fm−1, and this agrees well with the decay of
the p1/2 orbital that contributes to the density [22].

Next we consider the radius. We use Eq. (15), including the
next-to-leading order correction, and fit the parameters 〈r2〉∞,
c0, and c1 to data, with k∞ taken from the fit of the ground-state
energy. The result is shown in Fig. 3. The circles, up triangles,
and down triangles denote points with �UV > 1100 MeV,
�UV > 1200 MeV, and �UV > 1300 MeV, respectively. The
lines show the corresponding fits and asymptotes, and the
extrapolated radius is r ≈ 2.34 fm. It is particularly satisfying
that the extrapolation also works well for the few data points
with �UV > 1300 MeV.

We also consider the challenging case of a halo nucleus. The
isotope 6He is only bound by about 0.97 MeV with respect to
4He and thus exhibits a two-neutron halo. Note that 5He is
not a bound nucleus and that the neutron separation energy
of 6He is about 1.86 MeV. As a consequence of the weak
binding, the matter radius of 6He is unusually large (about
2.4 fm compared to 1.5 fm for 4He) [23–25]. We address this
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FIG. 3. (Color online) Open symbols: Squared radius as a
function of L for 16O. Lines: Fits of Eq. (15) with k∞ fixed from
the energy fit. �UV from Eq. (1).
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FIG. 4. (Color online) Circles: NCSM ground-state energies of
the halo nucleus 6He from Ref. [6]. Full line: Fit of Eq. (11) yields
E∞ ≈ −29.87 MeV (dashed line) and h̄k∞ ≈ 93 MeV.

challenge by applying the finite-basis-size corrections to the
energy Eq. (11) and neutron radius Eq. (15).

Our test case uses no-core shell model (NCSM) results [6]
obtained for a chiral EFT nucleon-nucleon interaction that
was softened via a similarity renormalization group (SRG)
transformation [26] with a parameter λ = 2.0 fm−1. Figure 4
shows the fit of the ground-state energy for model spaces
with �UV > 660 MeV and h̄� � 24 MeV (which ensures
a small UV correction). The fit yields E∞ ≈ −29.87 MeV,
and the computed two-neutron separation energy is about
0.95 MeV. Thus, both energies are in good agreement with
experiment (despite the absence of a three-body force). The fit
also yields h̄k∞ ≈ 93 MeV, but the interpretation of k∞ in this
case requires further study.

Now we can extrapolate the neutron radius of 6He. The
results of NCSM calculations are shown in Fig. 5. Without
a knowledge of the finite-basis-size corrections, it would be
impossible to make any reasonable prediction for the radius
because of the apparent lack of convergence. Note, however,
that we are in the UV-converged regime and 2k∞L > 3 for
the NCSM data points in Fig. 4. Thus, we should be able
to apply our correction formula. The solid and dashed lines
in Fig. 5 show the results for the radius based on a fit at
leading order and next-to-leading order, respectively. At next-
to-leading order we find r ≈ 2.40 fm, and this prediction is in
reasonable agreement with deductions from data [24]. Several
additional points at large L not included in the fit are in good
agreement with the extrapolation.

Our theoretical results have been derived under the assump-
tion that UV convergence has been reached. It would also be
useful to know finite-basis-size corrections in the opposite
regime where IR convergence is established, for instance,
through calculations in model spaces with sufficiently small
h̄�. The remaining UV corrections would, of course, depend
on the interaction at hand. We have not yet established a
theoretical derivation but can resort to empirical findings for
SRG-evolved nucleon-nucleon interactions from chiral EFT
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FIG. 5. (Color online) Circles and squares: NCSM neutron radii
of 6He. Lines: Fits of Eq. (15) to circles with k∞ fixed from energy
fit yield a radius of 2.37 fm at LO and 2.40 fm at NLO.

with an SRG parameter λ [6]. We plotted IR converged
ground-state energies (computed at large values of 2k∞L)
for various light nuclei as a function of �UV and found as
in Refs. [11,12] that the empirical formula

E(�UV) = E∞ + A0e
−2( �UV

λ
)2

(16)

works quite well [18]. (In practice, we allow λ to be a fit
parameter to optimize the fit.) This formula is consistent with
an empirically successful ansatz used for individual h̄� values
(e.g., see Ref. [6]). However, Eq. (16) allows results with
different h̄� to be fit all at once.

If we combine the empirical UV formula and the theo-
retically founded IR formula assuming the corrections are
approximately independent, then

E(�UV, L) ≈ E∞ + A0e
−2�2

UV/A2
1 + A2e

−2k∞L. (17)

Note that this empirical formula contains exponentials with
arguments proportional to N (from �2

UV) and
√

N (from L),
and thereby differs from usually employed extrapolations that
are exponential in N . In Eq. (17), E∞, A0, A1, A2, and k∞
are fit parameters that are determined from a simultaneous
optimization to data at all h̄�, including in the intermediate
region where both IR and UV corrections are significant. The
resulting value E∞ ≈ −29.84 MeV from using all Nmax =
6–10 points, which is in good agreement with the IR-only
fit in Fig. 4, is plotted as a dashed red line in Fig. 6. The
points connected by dashed lines are obtained by subtracting
the corrections in Eq. (17) from the NCSM energies. Thus,
a perfect fit would find all points lying on the line for E∞.
(Note: the Nmax values in the figure are for excitations above
the ground state [6], so N = Nmax + 1 for 6He [11,18].) All
corrected points included in the fit are close to the E∞ line
and even the corrected Nmax = 4 energies (which were not
included in the fit) are only slightly overbound.
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FIG. 6. (Color online) Data points connected by full lines: NCSM
ground-state energies of 6He. Red dashed line: Fit of Eq. (17)
to NCSM data with Nmax = 6–10 yields E∞ ≈ −29.84 MeV. Data
points connected with dotted line: Applying the correction of Eq. (17)
to the NCSM data. (N = Nmax + 1).

In summary, we derived analytical results for the finite-
basis-size corrections of nuclear radii and energies that

are valid in oscillator spaces with converged ultraviolet
physics. The computation of the corrections is robust and
appears to be applicable to halo nuclei. In combination
with an empirical formula for the ultraviolet correction
for SRG-transformed interactions, consistent and much-
improved extrapolations of ground-state energies are possible.
The analytical results can be extended to other long-range
observables that are sensitive to the tail of the nuclear
density. A systematic study of the extrapolation procedure
including an error analysis will be presented in a future
work [18].
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