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The phase diagram of a system constituted of neutrons and � hyperons in thermal equilibrium is evaluated
in the mean-field approximation. It is shown that this simple system exhibits a complex phase diagram with
first- and second-order phase transitions. Due to the generic presence of attractive and repulsive couplings, the
existence of phase transitions involving strangeness appears independent of the specific interaction model. In
addition we will show under which conditions a phase transition towards strange matter at high density exists,
which is expected to persist even within a complete treatment including all the different strange and nonstrange
baryon states. The impact of this transition on the composition of matter in the inner core of neutron stars is
discussed.
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I. INTRODUCTION

With the purpose of better understanding the dynamics
of core-collapse supernova and the observed characteristics
of neutron stars, a considerable theoretical effort has been
undertaken in recent years concerning the modelization of
the equation of state of cold dense matter [1–3] with some
extensions to finite temperature; see, e.g., Refs. [4–9].

If it is well admitted that hyperonic and deconfined quark
matter could exist in the inner core of neutron stars, a
complete understanding of the composition and equation of
state of dense matter is far from being achieved. Concerning
hyperons, simple energetic considerations suggest that they
should be present at high density [10]. However, in the standard
picture the opening of hyperon degrees of freedom leads to
a considerable softening of the equation of state [10–17],
which in turns leads to maximum neutron star masses smaller
than the highest values obtained in recent observations [18].
This puzzling situation implies that the hyperon-hyperon and
hyperon-nucleon couplings must be much more repulsive
at high density than presently assumed [19–25], and/or that
something is missing in the present modelization.

Apart from neutron star observations, already for purely nu-
clear matter, stringent constraints on the equation of state from
experimental data as well as from the theoretical side from
ab initio calculations only exist up to roughly saturation den-
sity, mainly for almost symmetric matter at zero temperature.
What makes the description of hyperonic matter even more
difficult is first of all the fact that, contrary to nucleons, hyper-
onic data from hypernuclei (see, e.g., Refs. [26–28]), diffusion
and production experiments (see, e.g., Ref. [29]) and nuclear
collision experiments (see, e.g., Refs. [30,31]) are scarce. This
lack of experimental information induces large uncertainties
within the microscopic approaches [11–13], which suffer
in addition probably from theoretical shortcomings, among
others, due to the unknown hyperonic three-body forces [32].
Phenomenological extrapolations of the low-density behavior
within mean-field models are subject to large uncertainties,

too. In any case, there is much uncertainty on the hyperonic
interactions at high density, where neutron star observations
can give the only hint, though not decisive.

Here, we propose to study the phase diagram of hyperonic
matter. The generic presence of attractive and repulsive
couplings suggests the existence, in a model-independent
manner, of a phase transition involving strangeness. In order to
have an analytically solvable model, we consider the simplified
situation where only neutrons, n, and � hyperons are allowed
in the matter chemical composition. We find, as argued above,
a first-order phase transition involving strangeness. In addition,
we will show under which assumptions on the �� and
n� interactions, respecting the available constraints, a phase
transition towards strange matter, that is, with a discontinuity
in the strangeness content of matter, exists at high density.

We leave the inclusion of protons and higher mass strange
and nonstrange baryons to a future study. Because of this
simplification, we will not be able to exploit the results
for a predictive quantitative application to neutron stars and
dense supernova matter. However, this simplification will
allow us to have an exactly solvable model with perfectly
controlled numerics. We believe that the relevant degrees of
freedom to explore the opening of the strangeness channels are
included already at this level, and the qualitative features of the
strangeness phase transition will not change in the complete
model.

Concerning the phenomenological consequences of our
findings, let us stress that many published works on hyperonic
matter make use of the mean-field approximation (e.g.,
Refs. [10,14,17,19–25]). However, if the opening of the
strangeness degree of freedom at high baryonic density is
associated with a first-order phase transition, the mean-field
equations of state should be modified making use of the Gibbs
construction [33]. The possible presence of coexisting phases
would in addition modify the matter composition with respect
to the uncorrected mean-field predictions [34–36].

Both matter composition and equation of state are important
ingredients, not only in the calculations of neutrons star
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TABLE I. Different parameter sets for the nn, n�, and ��, interactions from Ref. [39] (BGI, BGII, and BGIII) and Ref. [25] (220g2.8).

Parameter set aNN bNN cNN a�� c�� a�N c�N δ γ

(MeV fm3) (MeV fm3) (MeV fm3δ) (MeV fm3) (MeV fm3γ ) (MeV fm3) (MeV fm3γ )

BGI −784.4 214.2 1936.0 −486.2 1553.6 −340.0 1087.5 2 2
BGII −935.4 214.2 1557.2 −552.6 1055.4 −387.0 738.8 5/3 5/3
BGIII −1384.6 214.2 1672.8 −723.2 869.0 −505.2 605.5 4/3 4/3
220g2.8 −1636.2 214.2 1869.26 −400 1500 −270 2300 1.26 2.8

models, but in the hydrodynamical codes describing core col-
lapse dynamics, too. The high-density and high-temperature
behavior not only influences the success of the explosion, but
among other factors also influences the dependence of the final
state (neutron star or black hole) on the progenitor mass (see,
e.g., Refs. [37,38]). This means that the possible presence of
a phase transition toward strange matter has to be studied at
finite temperature, too.

II. THE MODEL

In the following we will illustrate the propositions con-
cerning the phase diagram by choosing a specific interaction
model for the n� system. Of course, the quantitative numerical
results are not model independent, but we will argue why our
findings on the phase diagram are general.

The energetics of the n� mixture is described through the
energy density functional proposed by Balberg and Gal [39],

εpot(ρn, ρ�) = 1
2

[
(aNN + bNN )ρ2

n + cNNρδ+1
n

]
+ 1

2

[
a��ρ2

� + c��ρ
γ+1
�

] + a�nρnρ�

+c�n
ρnρ�

ρn+ρ�

[
ρ

γ
n + ρ

γ

�

]
, (1)

where the interaction couplings, compatible with the Lattimer-
Swesty equation of state in the nonstrange sector, are given in
Table I. Parametrizations BGI, BGII and BGIII are taken from
the work by Balberg and Gal [39] and 220g2.8 corresponds to
one of the parametrizations compatible with the observation
of an almost two-solar-mass neutron star [18] from Ref.
[25]. In the applications shown below we will use mainly
parametrization BGI, but we have performed the calculations
for the other parameter sets, too.

In the nonrelativistic mean-field approximation the kinetic
energy density εkin = εkin,n + εkin,� has the simple ideal Fermi
gas form

εkin,q = 2π

βh3

(
2sq + 1

) (
2m∗

q

β

)3/2∫ ∞

0
dx

x3/2

1 + exp(x − βμ̃q )
,

(2)

where q = n,�, sq is the particle spin, β = T −1 is the inverse
temperature, m∗

q = mq for the chosen interaction parameters,
and the Fermi integral depends on an effective chemical
potential μ̃q = μq − Uq − mqc

2, shifted with respect to the
thermodynamic chemical potential because of the rest mass
and the depth of the self-consistent mean field Uq ≡ ∂εpot/∂ρq .
At zero temperature the Fermi integral can be analytically

solved, giving

εkin,q (T = 0) = h̄2

2m∗
q

3

5
ρq

(
6π2ρq

2sq + 1

)2/3

. (3)

The energy density ε = εkin + εpot at zero temperature ob-
tained with the parameter set BGI for different hyperon
fractions Y� = ρ�/(ρ� + ρn) is represented in Fig. 1. We can
see that pure neutron matter, as well as pure � matter, are
never bound. For pure neutron matter this is well known. For
pure � matter it is less obvious, since it involves the ��

interaction, subject to large uncertainties. A strong attraction
at low densities could alter this result. We think, however,
that this is not the case, since parameter set I by Balberg
and Gal [39], shown in Fig. 1, assumes a much stronger
attraction than indicated by more recent analysis [40]. There
is almost no doubt that the n� interaction should be attractive
at low densities and repulsive at high densities. Due to
the attractive part of the n� coupling, a mixture of the two par-
ticle species admits a bound state at finite density. This rather
general feature of the energy density is found within the other
parametrizations and other models, e.g., the parametrization
of the energy density functional from G-matrix calculations
by Vidana et al. [41]. Within parametrization BGI, the lowest
energy corresponds to a symmetric mixture ρn = ρ� and a
bound state is predicted for 0.19 < Y� < 0.85.

The existence of a minimum in the energy functional
for symmetric matter means that such a state represents the
stable matter phase at zero temperature. On the other side, the
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FIG. 1. (Color online) Energy density as a function of the total
baryon density for a (n,�) mixture at T = 0 with different � fractions
as obtained by the parameter set BGI.
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vanishing density gas phase is always the stable phase in the
limit of infinite temperature. This implies that a dilute-to-dense
phase change implying strangeness has to be expected on very
general grounds. The presence of a minimum is however
not sufficient to discriminate between a smooth crossover
and a phase transition. In the next section we will therefore
demonstrate the existence of a phase transition by explicitly
calculating the n� phase diagram.

III. PHASE DIAGRAM OF THE TWO-COMPONENT
n� SYSTEM

First-order transitions are signaled by an instability or
concavity anomaly in the mean-field thermodynamic potential,
which has to be cured by means of the Gibbs phase equilibrium
construction at the thermodynamic limit. For this reason the
convexity analysis of the thermodynamical potential in the
extensive variable space has been often employed to spot
the presence of phase transitions, e.g., for the neutron-proton
system [42,43]. At zero temperature, one thermodynamic
potential is given by the total energy

εtot (ρn, ρ�) = εpot (ρn, ρ�) + εkin (ρn, ρ�)

+ (ρnmn + ρ�m�) c2, (4)

and the curvature matrix is defined by

(
Cnn Cn�

C�n C��

)
=

⎛
⎝ ∂2etot

∂ρ2
n

∂2etot
∂ρn∂ρ�

∂2etot
∂ρ�∂ρn

∂2etot

∂ρ2
�

⎞
⎠ =

(
∂μn

∂ρn

∂μn

∂ρ�

∂μ�

∂ρn

∂μ�

∂ρ�

)
,

(5)

with Cn� = C�n and real eigenvalues Cmin < Cmax . The
spinodal region is then recognized as the locus of negative
curvature of the energy surface, Cmin < 0. The corresponding
eigenvector defines a direction in the density space given by

ρn

ρ�

= Cn�

Cmin − Cnn

= Cmin − C��

C�n

. (6)

This instability direction physically represents the chemical
composition of density fluctuations which are spontaneously
and exponentially amplified in the unstable region in order
to achieve phase separation, and gives the order parameter
of the associated phase transition. In all the parametrizations
we have analyzed, one of the eigenvalues is always positive,
meaning that the order parameter of the n� transition is
always one-dimensional, similar to the liquid-gas nuclear
phase transition at subsaturation densities.

The zero-temperature instability region of the n� mixture
is shown in Fig. 2 with parameter set BGI. We can see
that a large portion of the phase diagram is concerned by
the instability. We can qualitatively distinguish three regions
characterized by different order parameters. Below nuclear
saturation density, we observe an isoscalar ρn ≈ ρ� instability,
very close to ordinary nuclear liquid-gas, with �’s playing
the role of protons. This could have been expected, due to
the similarity between the energy density for Y� = 0.5 (cf.
Fig. 1) and the well known energy density for low-density np

matter. Neutron matter close to saturation is stabilized by the
inclusion of a nonzero � fraction, which is consistent with the
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FIG. 2. (Color online) Frontiers of the spinodal instability domain
of the (n,�) mixture at T = 0 (thick red solid lines) corresponding
to the parameter set BGI; trajectories of constant μn (blue dotted
lines) and constant μ� (green dashed lines); the arrows indicate the
directions of phase separation; the (black) short-dashed line illustrates
the μS = 0 trajectory associated to the equilibrium of strangeness.

observation that the neutron drip line is shifted toward more
neutron-rich systems in hypernuclei [44].

With increasing neutron density the phase separation
progressively changes toward the strangeness ρS = −ρ�

direction: the two stable phases connected by the instability
have close baryon densities but a very different fraction of
�’s. For high ρ� we observe the same behavior with the
roles of neutrons and � hyperons exchanged. The part of the
phase diagram at high neutron density comprises the region
physically explored by supernova and neutron star matter,
which is characterized by chemical equilibrium for reactions
implying strangeness, μS = μn − μ� = 0. The strangeness
equilibrium trajectory is represented by a dashed line in
Fig. 2. This physically corresponds to the sudden opening of
strangeness, observed in many modelizations of neutron star
matter (see, e.g., Ref. [17,39]).

Assuming the order parameter to be given exactly by ρS ,
which is a very good approximation at high ρn, we can
understand the existence of this high-density strangeness phase
transition in terms of the n� and �� interactions. Under
this assumption, the curvature analysis can be performed one-
dimensionally, as a function of ρ� only. Thus the instability
region is determined mainly by the condition C�� < 0. In
Fig. 3 the � chemical potential, with the constant mass
subtracted, that is, the first derivative of the energy density
with respect to ρ�, is displayed for parametrization BGI.
A minimum in μ� is related to a zero in the curvature in
the strangeness direction, indicating thus the border of an
instability region. This minimum is clearly visible in Fig. 3.
It is more pronounced with increasing neutron density and
shifted to higher values of ρ�. Apart from the trivial kinetic
term ∼ ρ

2/3
� , μ� contains the � single-particle potential,

U�(ρ�, ρn) = ∂εpot/∂ρ�, thus reflecting the n� and ��

interactions. Within the model by Balberg and Gal [39], the

025805-3



F. GULMINELLI, AD. R. RADUTA, AND M. OERTEL PHYSICAL REVIEW C 86, 025805 (2012)

-40

-20

0

20

40

60

80

0 0.05 0.1 0.15 0.2

ρΛ (fm-3)

μ Λ
-m

Λ
c2  (

M
eV

)

FIG. 3. (Color online) Strangeness chemical potential as a func-
tion of strangeness density, ρs = −ρ�, for different neutron densities
at T = 0. The considered parameter set is BGI.

attractive part of the �� interaction and the specific form of
the n� interaction contribute to this minimum.

Let us stress that the central region of the instability domain,
below roughly saturation density, is determined mainly by
the fact that pure neutron (and �) matter is unbound and
there is low-density attraction in the n� channel. The finding
in this region thus seems qualitatively robust. The existence
of a strangeness phase transition at high density, on the
contrary, is not a general model-independent feature, although,
as mentioned above, many models show it. There are others,
for instance the G-matrix models of Refs. [16,41], which do
not show an instability in this region. This can be seen from the
absence of a minimum in μ� as a function of ρ� for constant
ρn. The reason is twofold: first, a �� interaction is completely
missing from these models and, second, the n� interaction
has a slightly different form than that of Balberg and Gal [39].
Owing to the lack of reliable information on the hyperonic
interactions, which would discriminate between different
models, we cannot affirm the existence of the strangeness
phase transition related to this instability, but, turning the
argument around, the presence of this phase transition in a
physical system would allow us to learn much about the shape
of the interaction.

One remark of caution concerning the relation of the
instability domain with a phase transition is in order here. In
principle, the presence of an instability is a pathology of mean-
field approaches. It is an indication that the lowest energy
(or free energy at finite temperature) equilibrium solution is
different from the unstable mean-field one. If the equilibrium
solution corresponds to macroscopic dishomogeneities, it can
and it should be recovered from the mean-field results, making
use of the Gibbs construction. In this case the convexity
in the curvature matrix reflects a physical instability toward
phase separation, and the phase diagram contains a region of
phase coexistence. However, since the mean-field equations
of state are by construction analytic infinitely differentiable
functions, it is possible that the instability is due to a multiple
evaluation of densities in a given point of the phase diagram
defined by the set of associated chemical potentials, too. This
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FIG. 4. (Color online) � chemical potential as a function of the
associated density ρ� at T = 0 for different values of μn = 916, 930,
and 940 MeV and parameter set BGI.

may not be pertinent in our simple model allowing only two
different particle species, but might very well occur in a more
complete model including all hyperons and resonance states
[39]. In this case the unstable solution has to be eliminated
from the equilibrium landscape, without necessarily any phase
transition occurring.

To discriminate between the two scenarios and correct
the mean-field instabilities, one has therefore to study the
phase diagram in the space of chemical potentials. A useful
trick to spot phase transitions with more than one conserved
charge is to perform a Legendre transform to the statistical
ensemble where all extensive variables but one are replaced
by their conjugated intensive Lagrange parameters [45]. In this
ensemble the multidimensional Gibbs equilibrium conditions
reduce to a simple Maxwell construction.

In our simple two-dimensional case we can work equiv-
alently within the ensemble where the neutron density is
controlled, or, alternatively, within the ensemble where the
� density is controlled, corresponding to the two constrained
energies

ēμ�
(ρn) = etot (ρ�, ρn) − μ�ρ�,

(7)
ēμn

(ρ�) = etot (ρ�, ρn) − μnρn.

Let us concentrate on the second representation. The behavior
of the � chemical potential, μ� ≡ ∂ēμn

/∂ρ�, is shown for
some selected values of the neutron chemical potential in
Fig. 4. At variance with the well known nonstrange nuclear
matter np system, equilibrium can only be defined within a
finite interval of density. Indeed the ending points of the curves
correspond to vanishing neutron density, as can be seen from
the iso-μ contours in Fig. 2.

At relatively high neutron chemical potential the curves
present a back-bending at low � densities, similar to the usual
Van der Waals phenomenology for the fluid transition at finite
temperature. In this case the mean-field solution is unique,
but a more stable solution is obtained by phase mixing. At
low μn values and, independent of μn, in the high-density
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FIG. 5. (Color online) Upper part: zoom-in on the low (left) and high (right) density domains of μ�(ρ�)|μn
for μn = 916 MeV (left) and

μn = 940 MeV (right). Lower part: associated constrained energy. In case of multiple evaluation, the unfavored solution(s) are represented
with a dashed line. The red open circles and line mark the convex envelope defined by the Gibbs construction. For the density energy functional
we have used BGI.

region, multiple evaluations are observed, where different
values of μ� are compatible with the same controlled value
of the hyperon density. In this situation, only the solution
leading to the lowest constrained energy has to be retained.
To explore these different possibilities, a zoom-in of Fig. 4 for
μn = 916 MeV is shown in Fig. 5, together with the associated
thermodynamic potential. For better visibility, the rest-mass
contribution m�c2ρ�has been subtracted, which does not alter
the convexity properties of the function. We can see that,
at low density, after elimination of the least stable solution,
the constrained energy can still be minimized by taking a
linear combination of two homogeneous solutions (circles in
Fig. 5) having the same first-order derivative, that is, the same
chemical potential. Since these two points have the same value
for all the intensive variables (μn,μ�, T ), they respect Gibbs
equilibrium rules. One can therefore see that the ensemble of

Maxwell constructions in the (μn, ρ�) ensemble is equivalent
to the construction of the global convex envelope of the energy,
that is, to the Gibbs construction of the complete system.

In the high density case (right part of Fig. 5), the elimination
of the multiple evaluation leaves a monotonous equation
of state, which does not allow any energy gain by linear
interpolations. Going back again to the iso-μ curves of Fig. 2,
we can see that the high-ρ� region corresponding to the
bi-evaluation can also be explored in the complementary
(μ�, ρn) ensemble where it will be associated with low values
of ρn. This means that, from a practical point of view, once the
phase mixing is systematically performed on the low-density
(ρ� and ρn) region, all the unstable mean-field solutions turn
out to be automatically removed.

The final result of the Gibbs construction is given in
Fig. 6 together with the corrected iso-μn paths. We can see
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FIG. 6. (Color online) (n, �) mixture at T = 0: borders of the
phase coexistence region (red thick lines), constant-μn paths after
Maxwell construction (blue thin lines), and μn = μ� trajectory after
Maxwell construction (dark green dashed line). From left to right, the
considered values of μn are 920, 930, 950, 1000, 1100, 1200, 1300,
1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, and 2200 MeV. The
considered parameter set is BGI.

that the whole unstable region of Fig. 2 can be interpreted
as the spinodal region of a first-order phase transition. In
particular, if we follow the physical path μn = μ� associated
with equilibrium of strangeness (dashed line in Fig. 6), the
emergence of strangeness with the opening of the hyperon
channel corresponds to the mixed-phase region of a first-order
phase transition, which is not correctly modeled in the mean-
field approximation.

Up to now we have only presented results at zero temper-
ature. The extension to finite temperature, which is needed
for supernova matter, is relatively simple in the mean-field
approximation. The appropriate thermodynamic potential at
nonzero temperature is given by the Helmholtz free energy

fT (ρn, ρ�) = εtot (ρn, ρ�) − T s (ρn, ρ�) , (8)

where s is the mean-field entropy density. Chemical potentials
can be obtained by differentiating this expression or, in
a simpler numerical way, by inverting the Fermi integral
associated with the densities [46] from the two coupled
equations:

ρq = 2π

h3

(
2sq + 1

) (
2m∗

q

β

)3/2 ∫ ∞

0
dx

x1/2

1 + exp(x − βμ̃q)
,

(9)

with q = n,�. Then the Gibbs construction is performed,
as in the zero-temperature case, from the combined analysis
of μn(ρn) at constant μ�, and μ�(ρ�) at constant μn. The
same qualitative behaviors as in Fig. 4 are observed, with
the difference that at finite temperature chemical potentials
tend to −∞ with vanishing density. As a consequence, the
lower energy border of the coexistence zone is always at
finite nonzero density, and Gibbs constructions are always

)-3 (fm
n

ρ
0 0.1 0.2 0.3 0.4 0.5

)
-3

 (
fm

Λρ

0

0.1

0.2

0.3

0.4

0.5

III

III

T=0

T=5 MeV

T=10 MeV

T=20 MeV

FIG. 7. (Color online) Borders of the phase coexistence region of
the n� mixture for different temperatures, T = 0, 5, 10, and 20 MeV,
and parameter set BGI. The full circles mark the critical points.

equivalent to equal-area constructions in the mono-extensive
ensemble.

The phase diagram as a function of the temperature is
presented in Fig. 7. This phase diagram exhibits different
interesting features. We can see that the three regions that
we have tentatively defined at zero temperature appear as
distinct phase transitions at finite temperature. The first phase
transition (zone II in Fig. 7) separates a low-density gas
phase from a high-density more symmetric liquid phase, very
similar to ordinary liquid-gas. The second one (zone III in
Fig. 7) reflects the instability of dense strange matter toward
the appearance of neutrons and has an almost symmetric
counterpart (zone I in Fig. 7) in the instability of dense
neutron matter toward the formation of � hyperons. Up to
a certain temperature, this latter phase transition is explored
by the μn = μ� trajectory, meaning that it is expected to
occur in neutron stars and supernova matter. At variance with
other known phase transitions in nuclear matter, this transition
exists at any temperature and is not limited in density; it is
always associated (except at T <∼ 5 MeV in the present model)
with a critical point, which moves toward high density as the
temperature increases. This means that criticality should be
observed in hot supernova matter, at a temperature which is
estimated as Tc = 14.8 MeV in the present schematic model.

The consequences of these findings for the composition
of neutron star matter are drawn in Fig. 8. The left panel
shows the � fraction Y� = ρ�/(ρn + ρ�) as a function of
the baryon density under the condition μn = μ� at T = 0.
The crossing of the mixed-phase region with increasing
neutron density implies that, as soon as the lower density
transition border is crossed, the system has to be viewed as
a dishomogeneous mixture of macroscopic regions composed
essentially of neutrons, with other macroscopic regions with
around 25% hyperons. The extension of the �-rich zone
increases with density until the system exits the coexistence
zone, and becomes homogeneous again.
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FIG. 8. (Color online) Left: � fraction as a function of the baryon density within the condition μn = μ� for a n� mixture at T = 0.
The full line corresponds to the stable mean-field results; the dashed line illustrates the Gibbs construction; the horizontal lines indicate the
relative amount of � hyperons at the frontiers of the phase-coexistence domain. Right: � density for the two coexisting phases as a function
of temperature for μS = 0. As before, we have used BGI.

On the right panel of Fig. 8 the � densities for the two
coexisting phases are displayed as a function of temperature,
again under the condition of μn = μ�, physically relevant
for neutron star and supernova matter. The extension of the
coexistence region decreases with increasing temperature. The
latter finally disappears at Tc = 14.8 MeV. This well illustrates
the fact already observed in connection with the phase diagram,
cf. Fig. 7, that the critical point of the strangeness phase
transition moves to higher density, crossing the physical line
μn = μ� at a given temperature, Tc = 14.8 MeV in the present
example.

IV. CONCLUSIONS

In this paper we have calculated the phase diagram of an
interacting system of neutrons and � hyperons in the mean-
field approximation. We have shown that this simple system
presents a complex phase diagram with first- and second-order
phase transitions. Some of these phase transitions are probably
never explored in physical systems. However, a possible phase
transition at supersaturation baryon densities, from nonstrange
to strange matter, is expected to be observed both in the inner
core of neutron stars and in the dense regions of core-collapse
supernovas. For this latter phenomenology, a critical point is
predicted and the associated critical opalescence could have
an impact on supernova dynamics [47]. The existence of this
particular phase transition can be related to the form of the ��

and n� interactions and is, in the present model, essentially
due to the presence of an attractive low-density �� interaction

as well as to the high-density part of the n� interaction. As
such, it is expected to persist in a realistic model of dense
matter including more hyperonic and nonhyperonic baryons.
The immediate consequence of that is that the opening of
hyperon channels at high density should not be viewed as
a continuous (though abrupt) increase of strangeness in the
matter, observed in many models of hyperonic matter—cf.,
e.g., Ref. [17]—but rather as the coexistence of hyperon-poor
and hyperon-rich macroscopic domains.

Different steps have, however, to be achieved before
quantitative predictions on neutron star physics can be drawn
from this simple model. The model should be extended to
include all possible hyperons and resonances, which could
shift the coexistence borders and induce new phenomena in
the direction—not explored in this preliminary study—of the
electric charge density. These improvements will be the object
of a future publication.
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