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The surface tension of quark matter plays a crucial role for the possibility of quark matter nucleation during
the formation of compact stellar objects, because it determines the nucleation rate and the associated critical
size. However, this quantity is not well known and the theoretical estimates fall within a wide range, γ0 ≈
5–300 MeV/fm2. We show here that once the equation of state is available one may use a geometrical approach
to obtain a numerical value for the surface tension that is consistent with the model approximations adopted. We
illustrate this method within the two-flavor linear σ model and the Nambu–Jona-Lasinio model with two and three
flavors. Treating these models in the mean-field approximation, we find γ0 ≈ 7–30 MeV/fm2. Such a relatively
small surface tension would favor the formation of quark stars and may thus have significant astrophysical
implications. We also investigate how the surface tension decreases towards zero as the temperature is raised
from zero to its critical value.
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I. INTRODUCTION

Lattice-gauge calculations yield a nonvanishing value of the
quark condensate 〈ψψ〉 in the QCD vacuum [1], indicating
that chiral symmetry is broken. This general feature of the
vacuum remains present even for massless quarks because
the symmetry is then broken spontaneously. However, chiral
symmetry is expected to become restored at sufficiently high
values of the net-baryon density ρ or/and the temperature T .
The character of this phase change is not yet well understood
but it has significant implications in areas such as cosmology
and astrophysics and it is a focal point for current experimental
and theoretical research in nuclear physics.

Nuclear collision experiments carried out with the Rela-
tivistic Heavy Ion Collider (RHIC) at the Brookhaven National
Laboratory and with the Large Hadron Collider at CERN
explore systems having relatively small net-baryon densities ρ

and the associated chemical potentials μ are negligible. Lattice
calculations can readily be carried out at vanishing μ and
they indicate that a cross-over transformation from the chirally
broken phase to the restored phase occurs as the temperature
is increased from below to above the cross-over temperature
T× ≈ 160 MeV [1–3].

The other extreme region of the QCD phase diagram,
namely low temperatures and high chemical potentials, cannot
be addressed by current lattice-QCD methods, owing to the
fermion sign problem, and studies of this phase region must
therefore rely on less fundamental models. Most investigations
suggest that there is a first-order phase transition which, for
T ≈ 0, sets in at baryon densities several times that of the
nuclear saturation density, ρ0 ≈ 0.153/fm3. The properties of
strongly interacting matter in this phase region are important
for our understanding of compact stars.

If indeed such a first-order phase transition exists at T = 0,
then, as the temperature is raised, one would expect it to remain
present but gradually weaken and eventually terminate at a
critical point (μc, Tc). The existence and location of such a
critical point is a subject of intense theoretical investigation
with a variety of models, including in particular effective-field

models, such as the linear σ model (LSM), and effective
quark models, such as the Nambu–Jona-Lasinio (NJL), at
different levels of sophistication considering up to three quark
flavors and possibly including the Polyakov loop to account for
confinement [4,5]. Experimentally, the corresponding region
of density and excitation may be produced in current nuclear
collisions at the low-energy end of RHIC and in the future with
FAIR at GSI and NICA at JINR, which are being constructed
with such investigations in mind.

In the present work, we concentrate on the high-μ and
low-T part of the phase diagram with the aim of exploring
the expected chiral phase transition which has significant
implications for the possible existence of quark stars [6,7]. It
should be noted that chiral symmetry may be restored already
during the early postbounce accretion stage of a core-collapse
supernova event and the associated neutrino burst might then
provide a spectacular signature for the presence of quark
matter inside compact stars [8]. However, as pointed out
in Refs. [9,10], the possibilities depend on the dynamics
of the phase conversion and especially on the time scales
involved.

When the phase diagram of bulk matter exhibits a first-
order phase transition, the two phases may coexist in mutual
thermodynamic equilibrium and, consequently, when brought
into physical contact a mechanically stable interface will
develop between them. The associated interface tension γT

(which we shall often refer to simply as the surface tension of
quark matter) depends on the temperature T ; it has its largest
magnitude at T = 0 and approaches zero as T is increased
to Tc. This quantity plays a key role in the phase conversion
process and it is related to various characteristic quantities
such as the nucleation rate, the critical bubble radius, and
the favored scale of the blobs generated by the spinodal
instabilities [11,12]. (As we shall see, the surface tension
is essentially proportional to the effective interaction range,
which determines the width of the surface region, and the
spatial size of the most rapidly amplified density irregularity
is also proportional to this quantity.)
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Unfortunately, despite its central importance, the surface
tension of quark matter is rather poorly known. Estimates
in the literature fall within a wide range, typically γ0 ≈
10–50 MeV/fm2 [13,14] and values of γ0 ≈ 30 MeV/fm2

have been considered for studying the effect of quark-
matter nucleation on the evolution of protoneutron stars [15].
However, the authors of Ref. [16], taking into account the
effects from charge screening and structured mixed phases,
estimate γ0 ≈ 50–150 MeV/fm2, without excluding smaller
values, and an ever higher value, γ0 ≈ 300 MeV/fm2, was
found by Alford et al. [17] on the basis of dimensional analysis
of the minimal interface between a color-flavor locked phase
and nuclear matter.

The surface tension for two-flavor quark matter was
evaluated within the framework of the LSM by Palhares
and Fraga [18]. In that work the authors considered the
one-loop effective potential and then fitted its relevant part,
which included both the chirally symmetric and the broken
state, by a quartic polynomial. The surface tension was
evaluated using the thin-wall approximation for bubble nu-
cleation and the estimated values cover the 5–15 MeV/fm2

range, depending on the inclusion of vacuum and/or thermal
corrections. In principle, this range makes nucleation of
quark matter possible during the early postbounce stage of
core-collapse supernovae and it is thus a rather important
result. It is also worth noting that a small surface tension would
facilitate various structures in compact stars, including mixed
phases [19].

The present work is devoted to the evaluation of the surface
tension for quark matter using both the LSM (with two flavors)
and the NJL model (with two and three flavors) following
the procedure employed in Ref. [12]. Here, the LSM is
mainly included to check the consistency of our procedure
by comparing our present results with those obtained by the
thin-wall approximation of Ref. [18] (we find the agreement to
be very good). The NJL model is considered with two and three
flavors because the latter, which contains strangeness, is one
of the most popular effective quark models used in studies
related to compact stars. As explained below, the method
described in Ref. [12] makes it possible to express the surface
tension for any subcritical temperature in terms of the free
energy density for uniform matter in the unstable density range.
Because the models employed readily provide the equation of
state (EoS) for the full density range, they are well suited
for our purpose and we may directly employ the method
without any further approximations. In practice, the procedure
is rather simple to implement and it provides an estimate for
the surface tension that is consistent with the EoS implied
by the model employed, with its specific approximations and
parametrizations.

The paper is organized as follows. In Sec. II we review
the method for extracting the surface tension from the EoS.
In Sec. III we then present the two-flavor versions of the
two models considered and discuss how to extract the surface
tension. Section IV is devoted to the treatment for the more
realistic SU(3) version of the NJL model and our numerical
results are presented in Sec. V, both for cold matter and for
temperatures up to the critical value. The conclusions and final
remarks are presented in Sec. VI.

II. THE GEOMETRIC APPROACH TO THE SURFACE
TENSION EVALUATION

We assume here that the material at hand, strongly inter-
acting matter, may appear in two different phases under the
same thermodynamic conditions of temperature T , chemical
potential μ, and pressure P . These two coexisting phases have
different values of other relevant quantities, such as the energy
density E , the (net baryon) density ρ, and the entropy density
s. Under such circumstances, the two phases will develop a
mechanically stable interface if placed in physical contact and
it is the purpose of the present study to evaluate the associated
interface tension, γT .

The two-phase feature appears for all temperatures
below the critical value, Tc. Thus, for any subcritical
temperature, T < Tc, hadronic matter at the (net-baryon)
density ρ1(T ) has the same chemical potential and pressure
as quark matter at the (larger) density ρ2(T ). As T is
increased from zero to Tc, the coexistence phase points
(ρ1, T ) and (ρ2, T ) trace out the lower and higher branches
of the phase coexistence boundary, respectively, gradually
approaching each other and finally coinciding for T = Tc.
Any (ρ, T ) phase point outside of this boundary corresponds
to thermodynamically stable uniform matter, whereas uniform
matter prepared with a density and temperature corresponding
to a phase point inside the phase coexistence boundary is
thermodynamically unstable and prefers to separate into two
coexisting thermodynamically stable phases separated by
a mechanically stable interface. Because such a two-phase
configuration is in global thermodynamic equilibrium, the
local values of T , μ, and P remain unchanged as one moves
from the interior of one phase through the interface region
and into the interior of the partner phase, as the local density
ρ increases steadily from the lower coexistence value ρ1 to
the corresponding higher coexistence value ρ2.

It is convenient to work in the canonical framework in
which the control parameters are temperature and density. The
basic thermodynamic function is thus fT (ρ), the free energy
density as a function of the (net baryon) density ρ for the
specified temperature T . The chemical potential can then be
recovered as μT (ρ) = ∂ρfT (ρ), and the entropy density as
sT (ρ) = −∂T fT (ρ), so the energy density is ET (ρ) = fT (ρ) −
T ∂T fT (ρ), while the pressure is PT (ρ) = ρ∂ρfT (ρ) − fT (ρ).

For single-phase systems fT (ρ) is convex; that is, its
second derivative ∂2

ρfT (ρ) is positive, while the appearance
of a concavity in fT (ρ) signals the occurrence of phase
coexistence, at that temperature. This is easily understood
because when fT (ρ) has a local concave anomaly then there
exist a pair of densities, ρ1 and ρ2, for which the tangents
to fT (ρ) are common. Therefore, fT (ρ) has the same slope
at those two densities, so the corresponding chemical po-
tentials are equal, μT (ρ1) = ∂ρfT (ρ1) = ∂ρfT (ρ2) = μT (ρ2).
Furthermore, because a linear extrapolation of fT (ρ) leads
from one of the touching points to the other, also the
two pressures are equal, PT (ρ1) = ρ1∂ρfT (ρ1) − fT (ρ1) =
ρ2∂ρfT (ρ2) − fT (ρ2) = PT (ρ2). So uniform matter at the
density ρ1 has the same temperature, chemical potential, and
pressure as uniform matter at the density ρ2. The common
tangent between the two coexistence points corresponds to
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the familiar Maxwell construction and shall here be denoted
as f M

T (ρ). Obviously, fT (ρ) and f M
T (ρ) coincide at the two

coexistence densities and, furthermore, fT (ρ) exceeds f M
T (ρ)

for intermediate densities. Therefore, we have �fT (ρ) ≡
fT (ρ) − f M

T (ρ) � 0.
For a given (subcritical) temperature T , we now consider

a configuration in which the two coexisting bulk phases
are placed in physical contact along a planar interface. The
associated equilibrium profile density is denoted by ρT (z),
where z denotes the location in the direction normal to the
interface. In the diffuse interface region, the corresponding
local free energy density, fT (z), differs from what it would be
for the corresponding Maxwell system; that is, a mathematical
mix of the two coexisting bulk phases with the mixing ratio
adjusted to yield an average density equal to the local value
ρ(z). This local deficit amounts to

δfT (z) = fT (z) − fi − fT (ρ2) − fT (ρ1)

ρ2 − ρ1
[ρT (z) − ρi], (1)

where ρi is either one of the two coexistence densities. The
function δfT (z) is smooth and it tends quickly to zero away
from the interface where ρT (z) rapidly approaches ρi and fT (z)
rapidly approaches fT (ρi). The interface tension γT is the total
deficit in free energy per unit area of planar interface,

γT =
∫ +∞

−∞
δfT (z) dz. (2)

As discussed in Ref. [12], when a gradient term is used to
take account of finite-range effects, the tension associated with
the interface between the two phases can be expressed without
explicit knowledge about the profile functions but exclusively
in terms of the EoS for uniform (albeit unstable) matter,

γT = a

∫ ρ2(T )

ρ1(T )
[2Eg�fT (ρ)]1/2 dρ

ρg

, (3)

where ρg is a characteristic value of the density and Eg is a
characteristic value of the energy density, while the parameter
a is an effective interaction range related to the strength of
the gradient term, C = a2Eg/ρ

2
g . We choose the characteristic

phase point to be in the middle of the coexistence region, ρg =
ρc and Eg = [E0(ρc) + Ec]/2, where E0(ρc) is energy density
at (ρc, T = 0), while Ec is energy density at the critical point
(ρc, Tc). The length a as a somewhat adjustable parameter
governing the width of the interface region and the magnitude
of the tension [12]. For the LSM it is natural to expect that
a ≈ 1/mσ ≈ 0.33 fm which, also, is approximately the value
found in an application of the Thomas-Fermi approximation
to the NJL model [20]. Therefore, we shall adopt the value
a = 0.33 fm throughout the present work. While there is
some arbitrariness in fixing these quantities, it is reassuring
that the resulting surface tension is in excellent agreement
with the value obtained in Ref. [18].

With these parameters fixed, the interface tension can be
calculated once the free energy density fT (ρ) is known for
uniform matter in the unstable phase region, ρ1(T ) � ρ �
ρ2(T ). While this is straightforward in a canonical formulation,
where each (ρ, T ) characterizes only one manifestation of

the system, even inside the unstable phase region, the task
is more complicated in the commonly used grand canonical
formulation because a given (μ, T ) phase point characterizes
three different manifestations of the system, one stable, one
metastable, and one unstable. The metastable solutions are
located near the coexistence densities, while the unstable
solutions are located in the intermediate spinodal region
where uniform matter is mechanically unstable so that even
infinitesimal irregularities may be exponentially amplified.
By contrast, only irregularities of a sufficient amplitude are
amplified in the metastable regions, leading towards either
nucleation (near the lower coexistence density ρ1) or bubble
formation (near the higher coexistence density ρ2).

III. THE EOS FOR THE EFFECTIVE TWO-FLAVOR
QUARK MODELS

In this section, we review the mean-field results for the
thermodynamic potential for the two effective models when
only two quark flavors are included. These results have
been widely discussed in the literature and here we follow
Ref. [21] (see Ref. [22] for results beyond the mean-field
approximation). The two models are similar in the sense
that they do not have confinement and they incorporate
spontaneous chiral symmetry breaking, which happens at the
classical level in the LSM but only via quantum corrections in
the NJL model. The fermionic fields representing the quarks
are the only degrees of freedom in the NJL model at the tree
level, while the LSM also contains scalar (σ ) and pseudoscalar
(π) meson fields.

A. The linear σ model

In standard notation, the Lagrangian density of the LSM
with quarks reads

LLSM = 1
2 (∂μπ)2 + 1

2 (∂μσ )2 − U (σ,π )

+ ψ̄[iγ μ∂μ − g(σ + iγ5τ · π )]ψ, (4)

where ψ is the flavor isodoublet spinor representing the quarks
(u and d), and

U (σ,π ) = λ2

4
(σ 2 + π2 − v2)2 − Hσ (5)

is the classical potential energy density. In the chiral limit
(obtained for H = 0) the chiral symmetry, SU(2)V × SU(2)A,
is spontaneously broken at the classical level, and the pion
is the associated massless Goldstone boson. For H �= 0, the
chiral symmetry is explicitly broken by the last term in
U (σ,π ), which gives the pion a finite mass at vanishing
T and μ. The parameters are usually chosen so that chiral
symmetry is spontaneously broken in the vacuum and the
expectation values of the meson fields are 〈σ 〉 = fπ and
〈π〉 = 0, where fπ = 93 MeV is the pion decay constant.
Following Ref. [21], we fix the parameters as follows:
v2 � (87.73 MeV)2, λ2 � 20, and H � (12.1 GeV)3. Using
the standard relations, H = fπm2

π , v2 = f 2
π − m2

π/λ2, and
m2

σ = 2λ2f 2
π , we obtain the meson masses, mπ = 138 MeV

and mσ = 600 MeV. The coupling constant g is usually fixed
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so that the effective quark mass in vacuum, Mvac = gfπ , is
about one-third of the nucleon mass, which gives g � 3.3. We
note that the same parameter set was also used to evaluate the
surface tension, γT , in Ref. [18]. To the one-loop level, the
grand canonical potential is obtained by integrating the action
over the fermionic fields [21],

�LSM(σ,π ; T ,μq)

= U (σ,π ) − 2Nf Nc

∫
d3 p

(2π )3
{E − T ln[1 − n+]

− T ln[1 − n−]}, (6)

where Nc = 3, Nf = 2, E2 = p2 + M2, and n± = {1 +
exp[(E ∓ μq)/T ]}−1 represent the particle/antiparticle ther-
mal occupancies with μq = μu = μd , where μ = 3μq . For for
given values of T and μ, the equilibrium values of the meson
fields are obtained by minimizing �(σ,π ; T ,μq ) with respect
to those, yielding the most likely values σ and π . The latter one
vanishes in the mean-field approximation, so the associated
constituent quark mass is given as M2 = g2σ 2. The minimum
value of the grand potential represents minus the equilibrium
pressure, �min(T ,μ) = −P , so the net quark density is given
by ρq = (∂P/∂μq)T , where ρq = 3ρ. The entropy density
given by s = (∂P/∂T )μq

, while the energy density, E , can
then be obtained by means of the standard thermodynamic
relation P = T s − E + μρ and the free energy density is
f ≡ E − T s = μρ − P .

In the neighborhood of the phase coexistence line in the
(μ, T ) plane, the grand potential has three extrema repre-
senting stable, metastable, and spinodally unstable matter. As
emphasized above, the extraction of the surface tension by
the geometric approach requires the consideration of all three
extrema.

In contrast to the NJL model, the vacuum term represented
by the first term in the integrand of Eq. (6) is not essential
for the spontaneous breaking of chiral symmetry. In the
LSM this already happens at the classical level and the
symmetry restoration is driven mainly by the terms containing
n±. Therefore, we neglect the vacuum term in the present
LSM application, where the aim is to compare our estimates
with the zero-temperature interface tension obtained in Ref.
[18], γ0 � 12.98 MeV/fm2, where the relevant part of the
same thermodynamical potential was fitted with a quartic
polynomial. In our approach such a fitting procedure is not
necessary because the thermodynamic potential is evaluated
for all values of μ and T . This will lead to somewhat different
numerical values for the surface tension γT . It was shown in
Ref. [18] that the inclusion of vacuum terms at T = 0 increases
the surface tension value from γ0 = 12.98 MeV/fm2 to about
γ0 � 17 MeV/fm2. In practice, further refinements including
vacuum and in-medium two-loop corrections are possible by
following the same technical steps that were employed in the
evaluation of the thermodynamical potential for the Yukawa
theory [23].

It is now straightforward to determine the phase-
coexistence line in the (μ, T ) plane which forms the starting
point for determining all quantities related to γT . It starts at
(μ = 918 MeV, T = 0) and terminates at the critical point
(μc = 621 MeV, Tc = 99 MeV), which agrees with Ref. [21].

We now have all the ingredients needed for determining
the coexistence densities ρ1(T ) and ρ2(T ) as well as the
characteristic values ρg and Eg appearing in Eq. (3).

The difference �f (ρ) can be readily determined nu-
merically by considering the stable (global) minimum, the
metastable (local) minimum, and the unstable (local) maxi-
mum appearing in the thermodynamical potential, as will be
explicitly shown in Sec. V. Although our method for extracting
the surface tension does not require the profiles σ (z) and ρ(z),
these functions do provide interesting additional information
about the interface. To obtain the profile functions within the
LSM, it suffices to consider the grand canonical potential in
the σ direction only, that is, taking π = 0. At T = 0 it can
be expressed in terms of the Fermi momentum pF (given by
p2

F = μ2
q − g2σ 2),

�LSM(σ,π = 0; T = 0, μ)

= U (σ ) − Nf Nc

24π2

{
2μqp

3
F − 3(gσ )2

[
μqpF

− (gσ )2 ln

(
pF + μq

gσ

) ]}
. (7)

We now employ the local density approximation, so the local
Fermi momentum, pF (r), is related to the local density,
ρq(r) ≡ 〈ψ+ψ〉, by ρq = (NcNf /3π2)p3

F (r). Furthermore,
the local scalar density ρs(r) ≡ 〈ψψ〉 is given by

ρs(r)

= 2NcNf

∫
d3p

(2π )3

M(r)√
p2 + M(r)2

= NcNf

2π2
gσ (r)

[
μqpF (r) − g2σ (r)2 ln

(
pF (r) + μq

gσ (r)

) ]
,

(8)

where we have used that the local Fermi energy EF (r) =√
pF (r)2 + M(r)2 equals the (constant) chemical potential

μq = μ/3. We note that

[∂σ�LSM(σ, 0; 0, μ)]σ=σ (r) = U ′(σ (r)) + gρs(r). (9)

Then the stationary Euler-Lagrange equation with π = 0 and
ψψ replaced with ρs(r) provides an equation for the local
value of the order parameter, σ (r),

∇2σ (r) − [U ′(σ (r)) + gρs(r)] = 0. (10)

For semi-infinite geometry, the profile of the order parameter,
σ (z), can then be obtained by solving the corresponding Euler-
Lagrange equation,

∂2
z σ (z) − [∂σ�LSM(σ )]σ=σ (z) = 0, (11)

with the boundary conditions that the order parameter ap-
proach the zero-temperature coexistence values far from the
surface,

σ (z → −∞) → σ1(T = 0) = fπ,
(12)

σ (z → +∞) → σ2(T = 0) = 0.13 fπ .

Once σ (z) is known, so is the mass M(z), and we can then
obtain the local Fermi momentum pF (z) and, consequently,
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FIG. 1. (Color online) The order parameter σ (z) in units of fπ

(dashed curve), the net baryon density ρ(z) in units of ρ0 (solid curve),
and the surface location function g(z) (dotted curve), as functions of
the dimensionless depth (z − 〈z〉)mσ relative to the average surface
location.

the local net baryon density ρ(z). One may then define the
associated interface location function [12,24],

g(z) ≡ ∂zρ(z)

ρ2 − ρ1
, (13)

which allows us to obtain additional information, such as the
mean interface location, z̄ = 〈z〉 ≡ ∫

zg(z)dz, the associated
interface width, b, where b2 = 〈(z − z̄)2〉, as well as a measure
of the profile skewness, which is given by the dimensionless
parameter γ3 ≡ 〈(z − z̄)3〉/b3 [24]. The calculated results for
σ (z), ρ(z), and g(z) are shown in Fig. 1. The origin is
conveniently located at 〈z〉, the width is b = 1.85 a (where
a = 1/mσ ≈ 0.33 fm), and the skewness is γ3 = 0.6. As the
temperature is increased, the profiles widen progressively and
grow more symmetric, as also found in Ref. [12].

B. The Nambu–Jona-Lasino model

We now consider the standard version of the two-flavor
NJL model [25]. Its Lagrangian density is based on a chirally
symmetric four-fermion interaction,

LNJL = ψ̄(iγμ∂μ − m)ψ + G[(ψ̄ψ)2 + (ψ̄iγ5 �τψ)2], (14)

where ψ is to be interpreted as in the LSM. Furthermore,
it is assumed that mu = md so the mass matrix is given by
mc = mdiag(1, 1). In the mean-field approximation, the grand
canonical potential reads [21,22,26]

�NJL(μ, T ) = (M − m)2

4G
− 2Nf Nc

∫
p<


d3 p
(2π )3

×{E − T ln[1 − n+] − T ln[1 − n−]}, (15)

with the same definitions as used in the LSM. For each value of
T and μ the dynamical mass is of the form Mdiag(1, 1) because
of the assumption of isospin symmetry (mu = md = m) and
chemical equilibrium (μu = μd = μ); alternative scenarios
may also be considered [27]. The single dynamical mass M is
then obtained by minimizing � with respect to M , leading to

the well-known gap equation,

M = m + 2GNcNf

∫
p<


d3 p
(2π )3

M

E
[1 − n+ − n−]. (16)

Although the thermodynamic potentials for LSM [Eq. (6)]
and the NJL model [Eq. (15)] have the same structure as far as
the loop contribution is concerned, some important differences
between the two models exist. First, we note that within the
NJL the quark mass acquires its constituent value only when
quantum corrections (loop terms) are computed. Therefore,
contrary to the LSM, the divergent term represented by the
second term on the right-hand side of Eq. (15) plays a central
role regarding the (dynamical) chiral symmetry breaking. An-
other difference between the LSM and the NJL model, in 3 + 1
dimensions, is that the latter is not renormalizable because the
coupling G carries dimensions (energy−2). This means that
potential divergencies cannot be systematically eliminated by
a redefinition of the original parameters. By considering it as
an effective model, one gives up the very high energies and
evaluates all the integrals up to an ultraviolet (noncovariant)
cutoff 
, as the notation in Eqs. (15) and (16) implies. Then 


is treated as a “parameter” which will be fixed, together with G

and m, so as to yield the values of physical observables such as
mπ , fπ that reproduce the phenomenological value of 〈ψψ〉.
For example, in Ref. [21] the authors reproduce fπ = 93 MeV
and mπ = 138 MeV using 
 = 631 MeV and G
2 = 2.19
with m = 5.5 MeV. These parameter values, which we label
“set I,” predict a first-order phase transition starting at T =
0, μ = 1045.5 MeV and ending at the critical point (Tc =
46 MeV, μc = 996 MeV), while the constituent quark mass
in vacuum is Mvac = 337 MeV. In their study of the chiral
phase transition in the presence of spinodal decomposition
the authors of Ref. [26] use 
 = 587.9 MeV and G
2 =
2.44 with m = 5.6 MeV to reproduce fπ = 92.4 MeV and
mπ = 135 MeV, obtaining Mvac = 400 MeV. We also con-
sider these parameter values, which we label “set II,”
to estimate the influence of different parametrizations in
the estimation of γT . With parameter set II the first-order
transition line starts at (T = 0, μ = 1146.3 MeV) and ends at
(Tc = 81 MeV, μc = 990 MeV). In general, a larger value of
G
2 enlarges the coexistence region. As in the LSM case, the
quantities ρ1, ρ2, ρg , Eg , and �f (ρ) entering the expression (3)
for the surface tension can be obtained from the EoS. As
already emphasized, the numerical value for the length scale a

is chosen to be 1/mσ � 0.33 fm (which is about the value
found in a Thomas-Fermi application to the NJL model
[20]). The remaining two numerical inputs, ρg and εg , are
automatically fixed once the EoS has been determined.

IV. THE EOS FOR THE NJL MODEL
WITH THREE QUARK FLAVORS

In stellar modeling, the structure of the star depends on the
assumed EoS built with appropriate models while the true
ground state of matter remains a source of speculation. It
has been argued [28–31] that strange quark matter (SQM)
is the true ground state of all matter and this hypothesis is
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FIG. 2. (Color online) The constituent quark masses as functions
of the baryon chemical potential μ for T = 0 in the three-flavor
NJL model. The top curve shows Ms , while the bottom curve
represents Mu = Md . Phase coexistence occurs at μ = 1083 MeV
and the corresponding mass values are indicated by the dots. These
are are joined by the Maxwell curves (dashed) that trace out the
gradual phase conversion when full equilibrium is maintained; Ms

then decreases from 549 to 464.4 MeV, while Mu = Md decreases
from 367.6 to 52.5 MeV. Between the two dotted curves there are
three solutions for a given μ: stable matter, metastable matter, and
(between the two extrema) spinodally unstable matter.

known as the Bodmer-Witten conjecture. Hence, the interior
of neutron stars should be composed predominantly of u, d, s

quarks (plus leptons if one wants to ensure charge neutrality
which is not the case in the present work). Strangeness is
implemented in the SU(3) version of the NJL model, which is
given by

L = ψ̄(iγμ∂μ − m)ψ + G

8∑
a=0

[(ψ̄λaψ)2 + (ψ̄iγ5λ
aψ)2]

−K{detf [ψ̄(1 + γ5)ψ] + detf [ψ̄(1 − γ5)ψ]}, (17)

where ψ = (u, d, s)T denotes a quark field with three fla-
vors (and three colors) and m = diagf (mu,md,ms) is the
corresponding mass matrix. Here we assume mu = md �= ms ,
indicating that isospin symmetry is observed while the SU(3)
flavor symmetry is explicitly broken. The eight Gell-Mann
matrices are represented by λa (a = 1, . . . , 8) and λ0 =√

2/3 I . More details concerning this version of the NJL model
can be found in Ref. [27]. In the mean-field approximation the

thermodynamical potential is given by

�NJL3 (T ,μq) =
∑

q=u,d,s

[
�Mq

(T ,μq) + 2Gφ2
q

] − 4Kφuφdφs.

(18)

The term �Mq
, which represents the contribution of a gas of

quasiparticles with mass Mq , is given by

�Mq
= −2Nc

∫
p<


d3 p
(2π )3

{Eq − T ln[1 − n+
q ]

− T ln[1 − n−
q ]}, (19)

where E2
q = p2 + M2

q and n±
q = {1 + exp[(Eq ∓ μq)/T ]}−1

represent the particle/antiparticle distribution function. For the
quark condensates, φq = 〈ψ̄qψq〉, one has

φq = −2Nc

∫
p<


d3 p
(2π )3

Mq

Eq

[1 − n+
q − n−

q ]. (20)

Finally, the gap equation is

Mi = mi − 4Gφi + 2Kφjφk,
(21)

(i, j, k) = any permutation of (u, d, s),

which contains a nonflavor mixing term proportional to
G as well as a flavor mixing term proportional to K . In
our numerical analysis we adopt the parameter values of
Ref. [32] which are mu = md = 5.5 MeV, ms = 140.7 MeV,
G
2 = 1.835, K
5 = 12.36, and 
 = 602.3 MeV. Then, at
T = 0 and μf = 0, one reproduces fπ = 92.4 MeV, mπ =
135 MeV, mK = 497.7 MeV, and mη′ = 960.8 MeV. For the
quark condensates one obtains φu = φd = −(241.9 MeV)3

and φs = −(257.7 MeV)3. The constituent quark masses are
then given by Mu = Md = 367.7 MeV and Ms = 549.5 MeV.
The pressure, P , and energy density, E , follow from the usual
expressions,

P = −�NJL3 (T , {μq}) and P = T s − E +
∑

q=u,d,s

μqρq.

(22)

Here, for simplicity, we take the chemical equilibrium
condition, μu = μd = μs = μq = μ/3, which yields Mu =
Md also at finite T and/or μ. Of course, for a realistic
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FIG. 3. (Color online) Pressure, P , as a function of compression ρ/ρ0 for the NJL model as obtained with the two parameter sets. The
two coexistence points (dots) are joined by the Maxwell curve (dashed) along which the global equilibrium evolves as the density is increased
through the phase coexistence region.

025203-6



SURFACE TENSION OF QUARK MATTER IN A . . . PHYSICAL REVIEW C 86, 025203 (2012)

Set I

0 1 2 3 4
1000

1050

1100

1150

1200

1250

Compression / 0

C
he

m
ic

al
P

ot
en

tia
l

(M
eV

)

Set II

0 1 2 3 4
1050

1100

1150

1200

1250

Compression / 0

C
he

m
ic

al
P

ot
en

tia
l

(M
eV

)

ρ ρ ρ ρ

μ μ

FIG. 4. (Color online) Baryon chemical potential, μ, as a function of compression ρ/ρ0 for the NJL model as obtained with the two
parameter sets. The two coexistence points (dots) are joined by the Maxwell curve (dashed) along which the global equilibrium evolves through
the phase coexistence region.

description of neutron-star matter, charge and strangeness
neutrality need to be taken into account, which is technically
straightforward.

The phase diagram for this three-flavor quark model in the
μ-T and ρ-T planes can be found in Ref. [33]; the first-order
transition line starts at (T = 0, μ = 1083 MeV) and ends at the
critical point (Tc = 67.7 MeV, μc = 955.2 MeV). As already
discussed, we need the EoS inside the phase coexistence region
which can be obtained by examining how the effective masses
behave in this domain. This behavior is shown in Fig. 2 for
T = 0; these results go beyond those of Ref. [26] by also
considering the strange quark mass. To understand this figure,
let us recall that, in most situations, one is generally interested
only in those solutions of the gap equation that correspond
to global (stable) minima of the thermodynamical potential.
However, when a first-order phase transition is present, there
are two different such solutions for the same thermodynamic
conditions of temperature, chemical potential, and pressure
(corresponding to the solid dots on Fig. 2). As the net baryon
density (which serves as a convenient order parameter) is
increased from its lower coexistence value ρ1 to its higher
coexistence value ρ2, the thermodynamically favored state
is a Maxwell mixture of the two coexisting phases and the
overall average of the energy per net baryon or the effective
mass, for example, evolve monotonically along the so-called
Maxwell line, as the composition of the mixture changes from
being entirely one phase to being entirely the other. In the

region between the dotted lines the gap equation has three
solutions, leading to the back-bending evolution brought in
that diagram. It is precisely this typical first-order behavior that
will be reflected in the thermodynamical quantities, such as the
pressure and densities, as Figs. 3 and 4 show. This behavior
is responsible for the fact that there is a (positive) deviation
�f (ρ), which then in turn leads to the surface tension.

V. NUMERICAL RESULTS

We now turn to our numerical results for the surface
tension γT . To this end we need to determine the free energy
density fT (ρ), which requires the evaluation of PT (ρ) and
μT (ρ) for uniform matter thermodynamically unstable region
of the phase diagram. For the considered temperature T , the
associated density region is bounded by the two coexistence
densities ρ1 and ρ2, for which the chemical potential μ has
the same value, as does the pressure P . As the density
ρ is increased through the lower mechanically metastable
(nucleation) region, μ and P rise steadily until the lower
spinodal boundary has been reached. Then, as ρ moves
through the mechanically unstable (spinodal) region, both μ

and P decrease until the higher spinodal boundary is reached.
They then increase again as ρ moves through the higher
mechanically metastable (bubble-formation) region, until they
finally regain their original values at ρ = ρ2. It is convenient
to express the (net) baryonic density ρ in units of the nuclear
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FIG. 5. (Color online) (Left) Free energy density at zero temperature f0(ρ) (solid curve) and the associated Maxwell curve f M
0 (ρ) (dashed

curve) as functions of compression ρ/ρ0 for the NJL model with parameter set II. The Maxwell curve is tangent to f0(ρ) at the two coexistence
densities ρ1 = 0 and ρ2 = 3.027 ρ0. (Right) Quantity �f0(ρ) as a function of ρ/ρ0 obtained with the NJL model for parameter set I (solid
curve) and parameter set II (dot-dashed curve).
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TABLE I. Summary of inputs and results. The length parameter was taken as a = 0.33 fm. The zero-temperature bag constant B0 and the
characteristic energy density Eg are given in MeV/fm3, while the effective quark masses in vacuum Mvac

i as well as the critical values μc and
Tc are in MeV. The resulting zero-temperature surface tension γ0 (given in MeV/fm2) may be compared with the value γ0 = 12.98 MeV/fm2

obtained in Ref. [18]) with the LSM in the thin-wall approximation.

Model γ0 B0 Mvac
u,d Mvac

s Tc μc ρg/ρ0 Eg

NJL (I) 7.11 100 337 – 46 996 2.00 342.85
NJL (II) 30.25 141.4 400 – 81 990 2.42 495
LSM 13.18 60 306.9 – 99 621 1.19 219.25
NJL3 20.42 291.7 367.6 549.5 67.7 955.2 1.87 326.8

saturation density, ρ0 = 0.153/fm3. Generally, as is common
practice, we subtract from the pressure any finite value it may
have in the vacuum.

A. Zero temperature

Let us start with T = 0 for which the relevant results can
be readily obtained by taking the T → 0 limit in Eqs. (6)
and (15) (see, e.g., Refs. [18,22,27]). Figure 3 shows the
pressure as a function of the degree of compression ρ/ρ0

obtained with the NJL model for both parameter sets I and
II; the latter has a stronger coupling and a larger coexistence
region. A qualitatively similar behavior is observed in Fig. 4,
which shows μ as a function of ρ/ρ0 for the NJL model
with both parameter sets. Figure 5 shows the behavior of
the free energy f0(ρ) and its corresponding Maxwell line
f M

0 (ρ) for parameter set II. In the right panel of Fig. 5
we display the difference between these two free energies,
�f (ρ) ≡ f0(ρ) − f M

0 (ρ) for both parameter sets; this is the
key quantity for the determination of the surface tension. The
LSM and the three-flavor NJL model yield similar results. At
temperatures below criticality, T < Tc, the thermodynamical
potential has two degenerate minima determining the densities
of the two coexisting phases, ρ1 and ρ2. In all cases studied
here, the lower coexistence density vanishes, ρ1 = 0. As for
the higher coexistence density, the LSM yields ρ2/ρ0 � 1.54,
the two-flavor NJL model yields ρ2/ρ0 � 2.13 with set I and
ρ2/ρ0 � 3.03 with set II, while the three-flavor NJL model
gives ρ2/ρ0 � 2.62. It clear from this figure that set I produces
a much weaker phase transition because �f (ρ) is much
smaller than for set II, as is indeed reflected in the γT values
shown in Table I. In fact, set II produces a greater coexistence
region (ρ1 � 0, ρ2 � 3.03ρ0, Tc = 81 MeV) when compared
to set I (ρ1 � 0, ρ2 � 2.13ρ0, Tc = 46 MeV), which is in
accordance with the well-known fact that set II should cause
the size of the first-order transition line to be longer than the
one produced by set I, which has a weaker coupling. Further
refinements, such as finite-Nc corrections [34], contributions
from thermal fluctuations, and the inclusion of a repulsive
vector interaction [35], also tend to shrink the first-order
transition line [22] so that, within a fixed parameter set, one
should expect these effects to reduce γT .

Table I summarizes all our results for γ0 and also lists
the characteristic values Eg and ρg as well as the location of
the critical point (Tc, μc). The table also provides information
related to thermodynamic potential at T = 0 and μ = 0 by
showing the values of the constituent quark mass in vacuum

(Mvac), which is related to the distance from the global
minimum to the origin, as well as the bag constant which
gives the energy difference between the local maximum and
the global minimum of the potential in vacuum; these values
were taken from Refs. [21,27].

We finally note that Palhares and Fraga [18], using the
approximation γT ≈ ∫ |∂zσ (z)|2dz obtained the estimate γ0 ≈
12.98 MeV/fm2, which is very close to our LSM value
of 13.18 MeV/fm2 and also rather similar to the value
12.19 MeV/fm2 resulting from evaluating that integral using
our LSM profile function σ (z).

B. Finite temperature

One can easily consider finite temperatures within the em-
ployed models. The interface tension is expected to decrease
with increasing temperature because both the coexistence
densities ρi and the associated free energy densities fT (ρi)
move closer together at higher T ; they ultimately coincide
at Tc, where, therefore, the tension vanishes. This general
behavior is confirmed by our calculations, as shown in Fig. 6.
The LSM, the NJL with parameter set I, and the three-flavor
NJL display similar behaviors. The temperature dependence of
the surface tension may be relevant for the thermal formation
of quark droplets in cold hadronic matter found in “hot”
protoneutron stars whose temperatures, T∗, are of the order
10–20 MeV [9,36,37]. For T∗ the relevant value of γT∗ may be
estimated by using Table I together with Fig. 5. For example,
the three-flavor NJL model yields γT∗ ≈ 14–18 MeV/fm2.
The temperature dependence of the surface tension is also
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FIG. 6. Surface tension γT (relative to its zero-temperature value
γ0) as a function of temperature T (measured relative its critical value
Tc), as obtained with the NJL model for parameter set II.
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important in the context of heavy-ion collisions, because
it determines the favored size of the clumping caused by
the action of spinodal instabilities as the expanding matter
traverses the unstable phase-coexistence region.

VI. CONCLUSIONS

In this work we have shown that the interface tension
related to a first-order phase transition may be evaluated
once the uniform-matter EoS is available for the unstable
regions of the phase diagram. It is a convenient feature of
the method employed that knowledge of the interface profile
functions is is not required, because their determination can
be quite complicated, as is the case for NJL model [20]
(although it is easy for the LSM). In addition to the EoS,
the geometrical approach also requires a proper setting of three
input parameters, namely the characteristic densities ρg and Eg

together with the length scale a. While this does encumber the
numerical results with some degree of uncertainty, our zero-
temperature LSM result, γ0 = 13.18 MeV/fm2, agrees within
a few percent with the approximate value obtained in Ref. [18],
thus suggesting that those parameters were chosen reasonably.

The surface tension determined in the present fashion is
entirely consistent with the employed model, including the
approximations and parametrizations adopted. For the effec-
tive quark models employed here, this amounts to considering
all the solutions to the gap equation (stable, metastable, and
unstable) and determine the relevant effective quark masses.
In most nonperturbative approximations (large Nc, mean field,
etc.) the various quantities of interest, such as the free energy
density, become functions of this effective mass and will
therefore also reflect the metastable and unstable character
of the configuration considered. As a cross-check on our
procedure, we have evaluated γ0 for the LSM obtaining a
result that differs by only about 2% from estimates based on

the thin-wall approximation [18]. We have investigated the
two-flavor NJL model as well as its more realistic three-flavor
version.

Our main conclusion is that all these effective models
generate relatively low values for the the surface tension. This
would favor the formation of quark matter and may thus have
important astrophysical consequences regarding the existence
of pure quark stars. Of particular interest is the three-flavor NJL
result, γ0 = 20.34 MeV/fm2, because this model is widely
used in studies related to neutron stars. Here, for simplicity,
we have considered pure quark matter where all flavors share
the same chemical potential, but it is just a technical matter
to generalize our procedure so as to include leptons (e, μ)
to enforce β equilibrium (μd = μs = μu + μe , μe = μμ),
although the additional chemical potential introduces an
increased degree of complexity into the features of the phase
transition.

In principle, more refined treatments, such as the Polyakov-
NJL model, can also be considered within the same framework.
However, because the effects of the Polyakov loop become
more important above 100 MeV [38] we believe that our
results, especially the three-flavor ones, can be considered as
reasonably accurate, although numerical variations may arise
owing to the parametrizations and approximations adopted.
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