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Chemical and mechanical instability in warm and dense nuclear matter
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We investigate the possible thermodynamic instability in a warm and dense nuclear medium (T � 50 MeV
and ρ0 � ρB � 3 ρ0) where a phase transition from nucleonic matter to resonance-dominated � matter can take
place. The analysis is performed by requiring the global conservation of baryon and electric charge numbers in
the framework of a relativistic equation of state. Similarly to the liquid-gas phase transition, we show that the
nucleon-� matter phase transition is characterized by both mechanical instability (fluctuations on the baryon
density) and by chemical-diffusive instability (fluctuations on the charge concentration) in asymmetric nuclear
matter. We then perform an investigation and a comparative study on the different nature of such instabilities and
phase transitions.
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I. INTRODUCTION

One of the most interesting aspects of the experiments on
heavy-ion collisions is a detailed study of the thermodynamical
properties of strongly interacting nuclear matter away from
the nuclear ground state. In this direction, many efforts have
been focused on searching for possible phase transitions in
such collisions. At low temperatures (T � 10 MeV) and
subnuclear densities, a liquid-gas type of phase transition
was first predicted theoretically [1–3] and later observed
experimentally in a nuclear multifragmentation phenomenon
at intermediate-energy nuclear reactions [4,5].

Because nuclei are made of neutrons and protons, the
nuclear liquid-gas phase transition is in a binary system where
one has to deal with two independent proton and neutron
chemical potentials for baryon number and electric charge
conservation. Taking into account this important property, a
very detailed study of Müller and Serot [6] focused on the
main thermodynamic properties of asymmetric nuclear matter
in the framework of a relativistic mean-field model.

A relevant aspect of a system with two conserved charges
(baryon and isospin numbers) is that the phase transition is
of second order from the viewpoint of Ehrenfests definition.
At variance with the so-called Maxwell construction for one
conserved charge, the pressure is not constant in the mixed
phase and, therefore, the incompressibility does not vanish
[6,7]. Such feature plays a crucial role in the structure and
in the possible hadron-quark phase transition in compact
star objects [8,9]. Moreover, for a binary system with two
phases, the binodal coexistence surface is two dimensional
and the instabilities in the mixed liquid-gas phase arise from
fluctuations in the proton concentration (chemical instability)
and in the baryon density (mechanical instability) [6,10–12].

Although the equation of state (EOS) at densities below
the saturation nuclear matter is relatively well known due
to the large amount of experimental nuclear data available,
at larger densities there are many uncertainties; the strong
repulsion at short distances of nuclear force makes, in fact,
the compression of nuclear matter quite difficult. However, in
relativistic heavy-ion collisions the baryon density can reach
values of a few times the saturation nuclear density ρ0 and/or

high temperatures. The future CBM (compressed baryonic
matter) experiment of the FAIR project at GSI Darmstadt will
make it possible to create compressed baryonic matter with a
high net baryon density [13]. In this direction very interesting
results have been obtained at low energy at the CERN Super
Proton Collider (SPS) and at low-energy scan at the BNL
Relativistic Heavy Ion Collider (RHIC) [14–16].

In regime of finite values of density and temperature,
a state of high-density resonance matter may be formed
and the �(1232)-isobar degrees of freedom are expected to
play a central role in relativistic heavy-ion collisions and
in the physics of compact stars [17–21]. Transport model
calculations and experimental results indicate that an excited
state of baryonic matter is dominated by the � resonance at
the energy from the BNL Alternating Gradient Synchrotron
(AGS) to RHIC [22–25]. Moreover, in symmetric nuclear
matter and in the framework of a nonlinear Walecka model,
it has been predicted that a phase transition from nucleonic
matter to �-excited nuclear matter can take place and the
occurrence of this transition sensibly depends on the �-meson
coupling constants [26,27]. Due to the presence of only one
conserved “charge” (baryon number) considered in these
previous investigations, the region of the phase transition
develops when the incompressibility becomes negative and,
therefore, only mechanical instabilities are present.

The information coming from experiments with heavy ions
in intermediate- and high-energy collisions is that the EOS
depends on the energy beam but also sensibly on the electric
charge fraction Z/A of the colliding nuclei, especially at
not too high temperatures [28,29]. Moreover, the study of
nuclear matter with arbitrary electric charge fraction results is
important in radioactive beam experiments and in the physics
of compact stars.

In this article, we study the hadronic EOS at finite
temperature and density by means of a relativistic mean-field
model with the inclusion �-isobar and pion degrees of freedom
by requiring the Gibbs conditions on the global conservation
of baryon number and net electric charge. In this context, let us
observe that, for the range of temperatures and baryon densities
considered in this investigation (T � 50 and ρB � 3 ρ0), the
contribution of strange hadron particles can be neglected in
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a good approximation due to their very low concentration. In
fact, unlike compact stars in a β-stability regime, since weak
decays cannot take place during the short lifetime of a high-
density system, the only possibility of producing strangeness
is through associated production but, in the scenario we are
discussing, this process has been shown to be very inefficient
[30,31] and, therefore, the study of the possible phase transition
can be limited to two conserved charges.

The main goal of this paper is to show that, for an
asymmetric warm and dense nuclear medium, the possible
�-matter phase transition is characterized by mechanical and
chemical-diffusive instabilities. Similarly to the liquid-gas
phase transition, chemical instabilities play a crucial role in
the characterization of the phase transition and can imply a
very different electric charge fraction Z/A in the coexisting
phases during the phase transition.

The paper is organized as follows. In Sec. II, we present
the relativistic hadronic equation of state. In Sec. III, we
review the most important thermodynamic proprieties of the
phase transitions in a binary system, highlighting the relevant
features of mechanical and diffusive instabilities. The main
results are presented in Sec. IV, which is divided into two
subsections: in A, we review the most important results
obtained in the liquid-gas phase transition and, in B, we study
the nucleon-� matter phase transition. Finally, in Sec. V, we
summarize our conclusions.

II. HADRONIC EQUATION OF STATE

The relativistic mean-field model (RMF) is widely success-
ful used for describing the properties of finite nuclei as well as
hot and dense nuclear matter [32–36].

In the RMF model the Lagrangian density for nucleons can
be written as

LN = ψN [i γμ ∂μ − (MN − gσN σ ) − gωN γμ ωμ

− gρN γμ �t · �ρ μ] ψN + 1
2

(
∂μσ∂μσ − m2

σ σ 2
) − U (σ )

+ 1
2 m2

ω ωμωμ + 1
4 c

(
g2

ωN ωμωμ
)2 + 1

2 m2
ρ �ρμ · �ρ μ

− 1
4FμνF

μν − 1
4

�Gμν
�Gμν, (1)

where MN = 939 MeV is the nucleon vacuum mass and �t is the
isospin operator which acts on the nucleon. The field strength
tensors for the vector mesons are given by the usual expressions
Fμν ≡ ∂μων − ∂νωμ, �Gμν ≡ ∂μ �ρν − ∂ν �ρμ, and U (σ ) is the
nonlinear potential of σ meson

U (σ ) = 1
3a(gσNσ )3 + 1

4b(gσNσ )4, (2)

usually introduced to achieve a reasonable compression
modulus for equilibrium normal nuclear matter [33]. In the
following, the meson-nucleon coupling constants and the other
parameters (a, b, c) of the EOS will be fixed to the parameters
set marked as TM1 of Ref. [35].

In a regime of finite values of temperature and density, a
state of high-density resonance matter may be formed and
the �(1232)-isobar degrees of freedom are expected to play
a central role [17,18,22,24]. In particular, the formation of

resonances matter contributes essentially to baryon stopping,
hadronic flow effects, and enhanced strangeness [37].

It is well known that, thus far, there is no relativistic
quantum theory for the � as a spin-3/2 field without any
inconsistency when imposing other fields such as the ones
with electromagnetic interaction [38]. Moreover, following the
Rarita-Schwinger formalism, the spin-3/2 particle, described
by means of a vector-spinor state, has an off-shell spin-1/2
sector. To incorporate � isobars in the framework of effective
hadron field theories, a formalism was developed to treat
� analogously to the nucleon, taking only the on-shell �s
into account and the mass of the �s are substituted by
the effective one in the RMF approximation [39,40]. The
Lagrangian density concerning the � isobars can be then
expressed as [27,40,41]

L� = ψ� ν [iγμ∂μ − (M� − gσ�σ ) − gω�γμωμ]ψ ν
�, (3)

where ψν
� is the Rarita-Schwinger spinor for the � isobars

(�++, �+, �0, �−). Due to the uncertainty on the meson-�
coupling constants, we limit ourselves to consider only the
coupling with the σ and ω meson fields, more of which are
explored in the literature (see Sec. IV for details) [27,41,42].

In the RMF approach baryons are considered as Dirac
quasiparticles moving in classical meson fields and the field
operators are replaced by their expectation values. As a conse-
quence, the field equations in a mean-field approximation are

(iγμ∂μ − M∗
N − gωNγ 0ω − gρNγ 0t3ρ)ψN = 0, (4)

(iγμ∂μ − M∗
� − gω�γ 0ω)ψ ν

� = 0, (5)

m2
σ σ + ag3

σNσ 2 + bg4
σNσ 3 =

∑
i

gσ iρ
S
i , (6)

m2
ωω + cg4

ωNω3 =
∑

i

gωiρ
B
i , (7)

m2
ρρ =

∑
i

gρi t3iρ
B
i , (8)

where σ = 〈σ 〉, ω = 〈ω0〉, and ρ = 〈ρ0
3 〉 are the nonvanishing

expectation values of meson fields, the index i runs over the
considered baryon particles, and the effective mass of the ith
baryon is defined as

M∗
i = Mi − gσiσ. (9)

The ρB
i and ρS

i are the baryon density and the baryon scalar
density, respectively. They are given by

ρB
i = γi

∫
d3k

(2π )3
[ni(k) − ni(k)], (10)

ρS
i = γi

∫
d3k

(2π )3

M∗
i

E∗
i

[ni(k) + ni(k)], (11)

where γi is the degeneracy spin factor (γN = 2 and γ� = 4)
and ni(k) and ni(k) are the fermion particle and antiparticle
distribution functions, given by

ni(k) = 1

exp[E∗
i (k) − μ∗

i ]/T + 1
, (12)

ni(k) = 1

exp[E∗
i (k) + μ∗

i ]/T + 1
. (13)
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The baryon effective energy is defined as Ei
∗(k) =√

k2 + Mi
∗2 and the effective chemical potentials μ∗

i are given
in terms of the meson fields as follows:

μ∗
i = μi − gωiω − gρi t3iρ, (14)

where μi are the thermodynamical chemical potentials, μi =
∂ε/∂ρi .

Because we are going to describe a finite temperature and
density asymmetric nuclear matter, we have to require the
conservation of two “charges”: baryon number (B) and electric
charge (C) (as already remarked, we neglect the contribution of
strange hadrons, because a tiny amount of strangeness can be
produced in the range of temperature and density explored in
this study). As a consequence, the system is described by two
independent chemical potentials: μB and μC , the baryon and
the electric charge chemical potential, respectively. Therefore,
the chemical potential of particle of index i can be written as

μi = bi μB + ci μC, (15)

where bi and ci are, respectively, the baryon and the electric
charge quantum numbers of the ith hadron.

The thermodynamical quantities can be obtained from
the baryon grand potential B in the standard way. More
explicitly, the baryon pressure PB = −B/V and the energy
density can be written as

PB = 1

3

∑
i

γi

∫
d3k

(2π )3

k2

E∗
i (k)

[ni(k) + ni(k)] − 1

2
m2

σ σ 2

− U (σ ) + 1

2
m2

ω ω2 + 1

4
c (gωN ω)4 + 1

2
m2

ρ ρ2, (16)

εB =
∑

i

γi

∫
d3k

(2π )3
E∗

i (k) [ni(k) + ni(k)] + 1

2
m2

σ σ 2

+ U (σ ) + 1

2
m2

ω ω2 + 3

4
c (gωN ω)4 + 1

2
m2

ρ ρ2. (17)

Let us observe that the contribution of the lightest non-
strange mesons (pions) may not be negligible in regime of
temperature and density achieved during the possible �-matter
phase transition. Following Ref. [43], from a phenomeno-
logical point of view, we can take into account the pion
degrees of freedom by adding their one-body contribution to
the thermodynamical potential, that is, the contribution of an
ideal Bose gas with an effective pion chemical potential μ∗

π ,
depending self-consistently from the meson fields. The value
of μ∗

π is obtained from the “bare” one μπ , given from Eq. (15),
and subsequently expressed in terms of the corresponding
effective baryon chemical potentials, respecting the strong
interaction. More explicitly, from Eq. (15), μπ+ = μC ≡
μp − μn and the corresponding effective chemical potential
can be written as

μ∗
π+ ≡ μ∗

p − μ∗
n = μp − μn − gρN ρ, (18)

where the last equivalence follows from Eq. (14). As a
consequence, μ∗

π− = −μ∗
π+ and μ∗

π0 ≡ μπ0 = 0.
This assumption can be seen somehow in analogy with the

hadron resonance gas within the excluded-volume approxima-
tion. There the hadronic system is still regarded as an ideal
gas but in the volume reduced by the volume occupied by

constituents (usually assumed as a phenomenological model
parameter), here we have a (quasifree) pion gas but with an
effective chemical potential that contains the self-consistent
interaction of the meson fields.

Of course, this naive phenomenological approach cannot
incorporate the very complex πN� interaction at finite
temperature and baryon density and a more realistic chiral
symmetric model should be implemented. On the other hand,
as we will see in Sec. IV B, such an effective nuclear EOS
has the noticeable advantage of simplifying the not trivial
numerical analysis involved in seeking of thermodynamic
instabilities and in the construction of the mixed phase. Due
to this fact, it would be prudent to see the results of this
preliminary study in a perspective of academic interest.

Finally, the total pressure and energy density are given by
the baryon (B) and pion (M) contribution: ε = εB + εM and
P = PB + PM .

III. PHASE TRANSITIONS AND STABILITY CONDITIONS

As already stated, we are dealing with the study of a
multicomponent system at finite temperature and density with
two conserved charges: baryon number and electric charge.
For such a system, the Helmholtz free energy density F can
be written as

F (T , ρB, ρC) = −P (T ,μB,μC) + μBρB + μCρC, (19)

with

μB =
(

∂F

∂ρB

)
T ,ρC

, μC =
(

∂F

∂ρC

)
T ,ρB

. (20)

In a system with N different particles, the particle chemical
potentials are expressed as the linear combination of the
two independent chemical potentials μB and μC and, as
a consequence,

∑N
i=1 μiρi = μBρB + μCρC . Therefore, the

number of particles may change during a process and, at
variance of density and temperature, different particle degrees
of freedom may be relevant in the description of the system
(for example, at low temperature and density, we have protons
and neutrons only, while at higher temperature and density
other kind of particles, such as � isobars, can appear). What it
is actually relevant for the thermodynamical description under
consideration are only the two conserved charges and not the
number of different particles constituent the system.

In general, a system can exist in a number of different
phases, each of which exhibit quite different macroscopic
behavior. The single phase that is realized for a given set of
independent variables is the one with the lowest free energy.
In a system with two conserved charges, it is possible to
have Nmax = 4 phase coexistence regions in thermodynamical
equilibrium [44,45], even if we have found no evidence
for the existence of more than two phases in the regime
investigated in this paper. By assuming the presence of two
phases (denoted as I and II, respectively), the system is stable
against the separation in two phases if the free energy of a
single phase is lower than the free energy in all two phases
configuration. The phase coexistence is given by the Gibbs
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conditions

μI
B = μII

B, μI
C = μII

C, (21)

P I(T ,μB,μC) = P II(T ,μB,μC). (22)

Therefore, at a given baryon density ρB and at a given
net electric charge density ρC = y ρB (with y = Z/A), the
chemical potentials μB are μC are univocally determined by
the following equations:

ρB = (1 − χ ) ρI
B(T ,μB,μC) + χ ρII

B (T ,μB,μC), (23)

ρC = (1 − χ ) ρI
C(T ,μB,μC) + χ ρII

C(T ,μB,μC), (24)

where ρ
I(II)
B and ρ

I(II)
C are, respectively, the baryon and electric

charge densities in the low density (I) and in the higher density
(II) phase and χ is the volume fraction of the phase II in the
mixed phase (0 � χ � 1).

An important feature of this conditions is that, unlike the
case of a single conserved charge, the pressure in the mixed
phase is not constant and, although the total ρB and ρC are
fixed, baryon and charge densities can differ in the two phases,
according to Eqs. (23) and (24).

For such a system in thermal equilibrium, the possible phase
transition can be characterized by mechanical (fluctuations in
the baryon density) and chemical instabilities (fluctuations in
the electric charge density). As usual, the condition of the
mechanical stability implies

ρB

(
∂P

∂ρB

)
T , ρC

> 0. (25)

By introducing the notation μi,j = (∂μi/∂ρj )T ,P (with i, j =
B,C), the chemical stability can be expressed with the
following conditions [45]:

μB,B > 0, μC,C > 0,

∣∣∣∣ μB,B μB,C

μC,B μC,C

∣∣∣∣ > 0. (26)

In addition to the above conditions, for a process at constant
P and T , it is always satisfied that

ρB μB,B + ρC μC,B = 0, (27)

ρB μB,C + ρC μC,C = 0. (28)

Whenever the above stability conditions are not respected,
the system becomes unstable and the phase transition take
place. The coexistence line of a system with one conserved
charge becomes in this case a two-dimensional surface in
(T , P, y) space, enclosing the region where mechanical and
diffusive instabilities occur.

IV. RESULTS AND DISCUSSION

As mentioned in the Introduction, our main goal is to
study the instability regions related to the formation of the �

isobars at finite temperature and baryon density. Because such
instabilities may have several analogies with the liquid-gas
phase transition, it is instructive, first, to briefly review the main
properties of this nuclear phase transition in the framework
of our EOS and to test the numerical procedure that will be
applied at higher temperatures and densities.

A. Liquid-gas phase transition

In a regime of low temperature and baryon density, relevant
in the liquid-gas phase transition, only proton and neutron
degrees of freedom take place. In this simple case, for example,
Eq. (28) can be written as

y

(
∂μp

∂y

)
T ,P

+ (1 − y)

(
∂μn

∂y

)
T ,P

= 0, (29)

where y = ρp/ρB . Because we are working with a proton
fraction 0 < y � 0.5, the chemical stability conditions (26)
are, therefore, satisfied if(

∂μp

∂y

)
T ,P

> 0 or

(
∂μn

∂y

)
T ,P

< 0 (30)

[due the validity of Eq. (29), the first above condition implies
the second one and vice versa].

As already observed, in presence of two conserved charges
the liquid-gas phase transition can be characterized by mechan-
ical and chemical instabilities [6]. In order to better put this
feature in focus, we report in Fig. 1 the pressure as a function
of baryon density for various values of the electric charge
fraction y at fixed temperature T = 10 MeV. The continuous
lines correspond to the solution obtained with the Gibbs
construction, whereas the dashed lines are without correction.
For a proton fraction y > 0.2 a mechanical instability is
present, whereas for y < 0.2 the system becomes unstable
only under chemical-diffusive instability.

The presence of chemical unstable regions are much
more evident in Fig. 2, where we show the proton and
neutron chemical potentials for various isobars at constant
temperature as a function of the proton asymmetry. Below
P = 0.25 MeV/fm3, the system becomes unstable because of
the presence of regions of negative (positive) slope for μp (μn).

In order to study the phase coexistence of the system, in
Fig. 3, we show the binodal section as a function of the proton
asymmetry y at T = 10 MeV. Following the same notation of
Ref. [6], the binodal surface is divided into two branches by a
critical point (CP) and a point of equal equilibrium (EQ) at y =
0.5, where protons and neutrons have the same concentration.
The left branch of the diagram represents the initial phase
configuration of the system at lower density (gas phase, I) and

T�10 MeV

0.50.4
0.3

0.2

y�0.1

0.2 0.4 0.6 0.8 1.0
ΡB�Ρ0

�0.2

0.0

0.2

0.4

0.6

0.8

1.0
P�MeV�fm3�

FIG. 1. (Color online) Pressure as a function of baryon density
for various values of the proton fraction. The continuous (dashed)
lines correspond to the solution obtained with (without) the Gibbs
construction.
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T�10 MeV

a
b

c
d

e

a

b

c
d

e

Μn

Μp

0.1 0.2 0.3 0.4 0.5
y

870

880

890

900

910

920

930

940

Μ �MeV�

FIG. 2. (Color online) Proton and neutron chemical potential
as a function of the proton fraction y for various isobars (P =
0.25, 0.20, 0.15, 0.10, 0.075 MeV/fm3) (lines a to e) at T = 10 MeV.

the second branch, at higher density, corresponds to the final
phase configuration (liquid phase, II).

The binodal surface encloses the area where the system
undergoes to the phase transition. The mixed-phase region
extends up to small values of the proton asymmetry, whereas
the mechanical instability region ends around y � 0.2, in
agreement with the results of Ref. [6].

During the isothermal compression, the system evolves
through configuration at constant y and meets the first branch
in a point A. At this point the system becomes unstable and an
infinitesimal phase in B appears at the same temperature and
pressure of A. In this context, let us remember that, although
the proton asymmetry is globally conserved, this is not true

T�10 MeV

I

II

(a)

A

B

CD

CP

MA

EQ

0.0 0.1 0.2 0.3 0.4 0.5
y

0.05

0.10

0.15

0.20

0.25
P�MeV�fm3�

T�10 MeV

I

II

A' B'

C' D'

CP

MA

EQ

0.0 0.1 0.2 0.3 0.4 0.5
y

0.05

0.10

0.15

0.20

0.25
P�MeV�fm3�

(b)

FIG. 3. (Color online) Binodal section at T = 10 MeV, with in
evidence the critical point (CP), the point of maximum asymmetry
(MA), and the point of equal equilibrium (EQ). In the upper and lower
panels are reported the evolution of the mixed phase for two different
system configurations (see the text for details).

T�10 MeV
0.2 0.25 0.3 0.35

y�0.40

0.17

0.14
0.12

0.1

0.0 0.2 0.4 0.6 0.8
ΡB�Ρ00.0

0.2

0.4

0.6

0.8

1.0

Χ

FIG. 4. (Color online) Evolution of the volume fraction χ of the
second phase as a function of the baryon density for a system with
different values of y at T = 10 MeV.

for the single phase. In particular, for an asymmetric nuclear
system it is energetically favorable to separate it into a liquid
phase (less asymmetric) and a gas phase (more asymmetric)
rather than into two phases with equal proton fraction.

If point A has a value of yA greater than the corresponding
values yCP of the CP (as in the upper panel of Fig. 3), the system
ends the phase transition in the liquid phase (in the point C). On
the other hand, as already observed in Ref. [6], if the system has
been prepared in a very asymmetric configuration with yA

′ <

yCP (lower panel of Fig. 3), it undergoes to a retrograde phase
transition. A second liquid phase in B

′
is formed but, after

reaching a point of maximum volume fraction χmax < 1, the
system returns to its initial gas phase at point C

′
. Note that this

kind of phase transition is possible only for a multicomponent
system and, in this case, is purely diffusive.

In order to better characterize the evolution of the two
phases, in Fig. 4, the volume fraction χ of the second
phase during the phase transition is shown. By increasing the
asymmetry parameter of the system under consideration (at
lower values of y), the maximum density achieved during the
mixed phase decreases, until the system undergoes a retrograde
phase transition (for y < 0.15).

B. �-matter phase transition

By increasing the temperature and the baryon density
during the high-energy heavy-ion collisions (T ≈ 50 MeV
and ρ0 � ρB � 3 ρ0), a multiparticle system with �-isobar
and pion degrees of freedom may take place.

To better understand the relevance of � isobars and the
dependence of the EOS on the meson-� coupling constants
(xσ� = gσ�/gσN , xω� = gω�/gωN ), in Fig. 5, we report the
energy per baryon as a function of the baryon density at zero
temperature and y = 0.5 for different values of xσ� and xω� =
1. Let note that by increasing the value of xσ�, a second
minimum on the energy per baryon appears.

Following Ref. [41], in setting xσ� and xω�, we have to
require that (i) the second minimum of the energy per baryon
lies above the saturation energy of normal nuclear matter, i.e.,
in the mixed �-nucleon matter only a metastable state can
occur; (ii) there are no � isobars present at the saturation
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T�0 MeV, y�0.5

a

b

c

d

e

f

g

1 2 3 4 5
ΡB�Ρ00

50

100

�
Ε
ΡB
�MN��MeV�

FIG. 5. The energy per baryon versus baryon density at zero
temperature and y = 0.5 with (a) no �; (b) xσ� = 1.10; (c) xσ� =
1.15; (d) xσ� = 1.20; (e) xσ� = 1.27; (f) xσ� = 1.30; (g) xσ� =
1.33.

density; and (iii) the scalar field is more (equal) attractive and
the vector potential is less (equal) repulsive for �s than for
nucleons, in accordance with QCD finite-density calculations
[42]. In this context, it is proper to remember that QCD sum-
rule predictions for the scalar self-energy are sensitive to the
unknown density dependence of four-quark condensates and,
due to this, there is no certainly reliable information about the
coupling constant of the � isobars with scalar mesons.

Of course, the choice of couplings that satisfy the above
conditions is not unique but exists a finite range of possible
values (represented as a triangle region in the plane xσ�-xω�)
which depends on the particular EOS under consideration [41].
Without loss of generality, in the following we can limit our
investigation to move only in a side of such a triangle region
by fixing xω� = 1 and varying xσ� from unity to a maximum
value compatible with the aforementioned conditions. As can
be observed in Fig. 5, for the TM1 parameter set, such a
maximum value corresponds to xmax

σ� = 1.33, while the value
xII

σ� = 1.27 corresponds to the appearance of the second
minimum on the energy per baryon with the formation of a
metastable state. Analog behaviors can be obtained with other
EOS parameters set (see, for example, Ref. [21] for more
details).

In Fig. 6, we show in symmetric nuclear matter the relative
nucleon (solid lines) and the �-isobar (dashed lines) density
fraction (Yi = ρi/ρB) versus the baryon density at T = 0
and T = 50 MeV, for different values of xσ�. We observe
that �-matter becomes dominant with respect to the nucleon
concentration at high baryon densities and such effect is
significantly anticipated by increasing the temperature.1

In analogy with the liquid-gas case, we are going to
investigate the existence of a possible phase transition in
the nuclear medium by studying the presence of instabilities
(mechanical and/or chemical) in the system.

1Let us remark that the range of baryon density reported in Figs. 5
and 6 has been chosen in order to better show the effects of different
xσ� couplings on the formation of � isobars at high baryon density.
As we will see, the presence of thermodynamic instabilities will be
relevant at lower values of baryon density (ρB � 3 ρ0).

N
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T�50 MeV

abc
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b

c
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ΡB�Ρ00.0
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0.8
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Yi

FIG. 6. (Color online) The relative nucleons (solid lines) and
� (dashed lines) densities as a function of the baryon density for
different values of temperature with (a) xσ� = 1.2, (b) xσ� = 1.27,
(c) xσ� = 1.33.

As already observed, during a phase transition with two
conserved charges, the electric charge fraction y = ρC/ρB is
not locally conserved in the single phase but only globally
conserved. Therefore, during the compression of the system,
the appearance of particles with negative electric charge (such
as �−) could, in principle, shift the diffusive instability region
to negative values of y, even if the system is prepared with a
positive y. Such a feature has no counterpart in the liquid-gas
phase transition and, as we will see, it turns out to be very
relevant in order to properly determine the instability region
through the binodal phase diagram.

Taking into account that Eq. (29) becomes, in this case,(
∂μB

∂y

)
T ,P

+ y

(
∂μC

∂y

)
T ,P

= 0, (31)

the chemical stability condition is satisfied if

(
∂μC

∂y

)
T ,P

> 0 or

{(
∂μB

∂y

)
T ,P

< 0, if y > 0,(
∂μB

∂y

)
T ,P

> 0, if y < 0.
(32)

It is relevant to observe that for the value xσ� = 1, we
do not find any mechanical or diffusive instability. Contrari-
wise, by increasing the xσ� coupling ratio, mechanical and
chemical instabilities take place. In particular, in the range
1 < xσ� � 1.1, instabilities are restricted to very low values
of temperature and electric charge fraction, but for xσ� > 1.1,
such instabilities start to be much more relevant and extend to
higher values of T and y.

To better clarify this aspect, we report in Fig. 7 the pressure
as a function of the baryon density at T = 30 MeV (upper
panel) and T = 50 MeV (lower panel) for different values of
y and xσ� = 1.3. In this context, it is interesting to observe
that at T = 50 MeV and below y = 0.3, the system becomes
mechanically stable, but, in a similar manner to the liquid-gas
case, is chemically unstable. This important feature can be
better observed in Fig. 8, where we report the baryon and
electric charge chemical potential isobars as a function of y,
at fixed temperature T = 50 MeV and xσ� = 1.3.

From the analysis of the above chemical potential isobars,
we are able to construct the binodal surface relative to the
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FIG. 7. (Color online) Pressure as a function of baryon density
for T = 30 MeV (upper panel) and T = 50 MeV (lower panel) with
xσ� = 1.3. Labels a to f correspond to y = 0.5, 0.4, 0.3, 0.2, 0.1, 0,
respectively.

nucleon-� matter phase transition. In Fig. 9, we show the
binodal section at T = 50 MeV and xσ� = 1.3.

The right branch (at lower density) corresponds to the initial
phase (I), where the dominant component of the system is given
by nucleons. The left branch (II) is related to the final phase
at higher densities, where the system is composed primarily
by �-isobar degrees of freedom (�-dominant phase). In the
presence of � isobars, the phase coexistence region results
differ substantially from what was obtained in the liquid-gas
case, in particular, it extends up to regions of negative electric
charge fraction and the mixed-phase region ends in a point
of maximum asymmetry with y = −1 (corresponding to a
system with almost all �− particles, with the contribution
from antiparticles and pions being almost negligible in this
regime).

Repeating the reasoning made for the liquid-gas phase
transition, we analyze the phase evolution of the system during
the isothermal compression from an arbitrary initial point A,
indicated in Fig. 9. In this point, the system becomes unstable
and starts to energetically favor the separation into two phases;
therefore, an infinitesimal �-dominant phase appears in B,
at the same temperature and pressure. Let us observe that,
although in B the electric charge fraction is substantially
negative, the relative �− abundance must be weighed on
the low volume fraction occupied by phase II near point B
(χ ≈ 0). During the phase transition (0 < χ < 1), each phase
evolves towards a configuration with increasing y, in contrast
to the liquid-gas case, where each phase evolves through a

a
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FIG. 8. (Color online) Baryon (upper panel) and electric charge
(lower panel) chemical potential isobars as a function of y at T =
50 MeV and xσ� = 1.3. The curves labeled a through g have pressure
P = 9, 7, 6, 5, 4, 3, 2 MeV/fm3, respectively.

configuration with a decreasing value of y (with the exception
of the gas phase after the maximum asymmetry point).

In order to better understand the evolution of the two phases
in the mixed phase, we report in Fig. 10 the volume fraction
χ of the �-matter phase as a function of the baryon density.
Unlike in the liquid-gas case, by decreasing the electric charge
fraction y of the system under consideration, the mixed phase
involves a greater region of baryon density and extends below
the nuclear saturation density.

In the previous example we considered a fixed value of
temperature. The maximum temperature at which the system
becomes mechanically stable depends on the particular value
of the electric charge fraction. For example, at y = 0.3,
it is about Tmax = 49.5 MeV and, at y = 0.5, it is about
Tmax = 50.6 MeV. Furthermore, when y = 0.5, the end of

T�50 MeV; xΣ��1.3
EQ

AB

C D

III

�1.0 �0.5 0.0 0.5
y

2

4

6

8

P�MeV�fm3�

FIG. 9. (Color online) Binodal section at T = 50 MeV and xσ� =
1.3.
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FIG. 10. (Color online) Volume fraction of the �-matter phase as
a function of the baryon density for a system with different values of y.

the mechanical instability region, obviously, corresponds
to the end of the mixed-phase region. This is no longer true
in the presence of two conserved charges. Due to the presence
of a diffusive instability region, the mixed phase can extend
to slightly higher temperatures with respect to the maximum
temperature achieved in the symmetric case. Although this
feature involves small differences in temperature, is interesting
from a conceptual point of view to investigate this aspect
in more detail. Toward this purpose, in Fig. 11, we show
the pressure as a function of the baryon density and the
Gibbs construction (continuous lines) for various values of the
electric charge fraction, xσ� = 1.3 and T = 51 MeV (dashed
lines are without Gibbs construction). In this case, the system
is always mechanically stable, while it is unstable for the
presence of the chemical-diffusive instability up to y = 0.35.

At lower temperatures, the mixed-phase region becomes
more relevant at higher values of y. This feature can be
seen in Fig. 12, where the binodal section (upper panel) and
the isothermal pressure as a function of the baryon density
(lower panel) is reported at T = 40 MeV and xσ� = 1.3. The
Gibbs construction corresponds to the curve from A to C;
the isothermal curves in B and D (with yB 
= yD) are also
reported. In this case, we assume that the system is initially

T�51 MeV; xΣ��1.3
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FIG. 11. (Color online) Pressure as a function of baryon density
at different values of y, from y = 0.5 (label a) to y = 0 (label f). The
continuous (dashed) lines correspond to the solution obtained with
(without) the Gibbs construction.
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FIG. 12. (Color online) Binodal section at T = 40 MeV and
xσ� = 1.3, with the point of equal equilibrium in evidence. (Lower
panel) The corresponding isothermal curves, with the Gibbs construc-
tion (curve from the point A to C) at y = 0.3 and the isotherms of
points B and D shown.

prepared in the low-density (nucleonic) phase with y = 0.3,
corresponding to point A. During the compression each phase
evolves following the corresponding curve up to points C
and D, where the system leaves the instability region in the
�-matter phase.

In Fig. 13, we show the Gibbs construction (continuous
lines) to the EOS at y = 0.3, xσ� = 1.3, and for different
temperatures. By decreasing the temperature, the instability
region extends over a wide range of baryon density. In

y�0.3; xΣ��1.3
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FIG. 13. (Color online) Isotherms at constant y = 0.3 and xσ� =
1.3 for various values of temperatures. The solid (dashed) lines
represent the EOS obtained with (without) Gibbs construction.
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FIG. 14. (Color online) (Upper panel) Pressure as a function of
the baryon density for different values of y from y = 0.5 (label a) to
y = 0 (label f), with the instability regions (Gibbs construction in the
continuous lines) in evidence. (Lower panel) The binodal diagram,
with the point of equal equilibrium and the two critical points in
evidence. In both instability sectors a region of retrograde phase
transition is present.

particular, below T = 40 MeV, the phase transition starts
slightly below the nuclear saturation density.

As already observed, the mixed-phase structure results
strongly affected not only by the temperature but also by the
particular choice of the xσ� coupling. In fact, by decreasing the
σ -� coupling constant, the mixed-phase region shifts to lower
temperatures. To better clarify this aspect, we study the phase
transition for xσ� = 1.22 and T = 20 MeV (at T = 50 MeV,
the system results to be mechanically and chemically stable).

In Fig. 14, upper panel, we report the pressure as a function
of the baryon density for different values of y. The continuous
lines correspond to the Gibbs construction in the region of
instability of the EOS. For this choice of parameters, the
binodal section (lower panel) differs substantially with respect
to the previous cases and two separate regions of instability are
present. The first one extends at lower pressure and it is present
only for small value of y, where both mechanical and diffusive
instabilities are present. Let us observe that in this lower region,
for y > yCP, the system goes to a retrograde phase transition
and, likewise, to the liquid-gas phase transition. The upper
region of instability extends at greater pressures and higher
values of y, where mechanical and diffusive instabilities are
both present. Also in this second region, on the left of the
CP, a retrograde phase transition can occur. However, in this
particular case the system is already in a �-dominant phase
and, at the end of the mixed phase, in which � isobars are
partially converted into nucleons, it quickly returns to the
�-matter phase.
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FIG. 15. (Color online) Phase diagram of the liquid-gas and the
nucleon-� matter phase transition for y = 0.3 (dashed curves) and
y = 0.5 (continuous curves). The lines labeled I and II delimitate
the first and second critical densities of the coexistence regions,
respectively.

Finally, in Fig. 15, we report the phase diagram with
in evidence the coexistence regions of the liquid-gas and
the nucleon-� matter phase transition for y = 0.3 and 0.5
(xσ� = 1.3). The two coexistence regions are well separated
and the features of the two phase transitions differ significantly.
In fact, for the liquid-gas transition, asymmetric nuclear
matter implies a reduction of the second critical density
and of the critical temperature Tc. Contrariwise, for the
�-dominant phase transition, we have a slight increase of
the critical temperature and a significant reduction of the
first critical density. In particular, at moderate temperatures
(T ≈ 30–40 MeV), the system begins the mixed phase at a
baryon density of the order of ρ0. This behavior could be
phenomenologically relevant in order to identify such a phase
transition in heavy-ion collision experiments.

V. CONCLUSIONS

The main goal of this work is to show the possible existence
of chemical and mechanical instability at finite temperature
and dense nuclear matter. We have studied the relativistic
nuclear EOS with the inclusion of � isobars and by requiring
global conservation of baryon and electric charge numbers.
Similarly to the liquid-gas phase transition in a warm and low
density nuclear matter, a nucleon-� matter phase transition
also can occur at higher temperatures and densities (T �
50 MeV, ρ ≈ 1–3ρ0). We have shown that for asymmetric
nuclear matter both mechanical and chemical instabilities take
place. The latter plays a crucial role in the characterization of
the phase transition and can also imply very low values of the
electric charge fraction y during the mixed-phase region.

The nucleon-� matter phase transition depends signifi-
cantly on the value of the σ -� coupling constant and we have
seen that the presence of instabilities may become relevant
from a phenomenological point of view only for a limited
range of the possible xσ� couplings.

Whether metastable �-excited nuclear matter exists is still
a controversial issue because little is actually known about

024917-9



A. LAVAGNO AND D. PIGATO PHYSICAL REVIEW C 86, 024917 (2012)

the �-coupling constants with the scalar and vector mesons,
even if QCD finite-density sum rule results predict a larger
net attraction for a � isobar than for a nucleon in the nuclear
medium [42]. Although we have seen that instabilities are
already present for xσ� > 1, they become phenomenologically
more relevant at greater values of xσ�, involving larger region
of mixed phase and greater values of the electric charge
fraction.

The analysis of the instability regions with different �-
coupling constants turns out to be not trivial from the numerical
point of view, especially at lower values of xσ�, where a
complex structure of the mixed phase can be formed. For
example, we have shown that, in the case of xσ� = 1.22,
two separate regions of instability are present. Moreover,
the case xσ� = 1.3 has been studied for different values of
temperature and we have seen that in asymmetric nuclear
matter the mixed-phase transition involves a large range of
baryon densities.

Similarly to the liquid-gas phase transition, the nucleonic
and the �-matter phase have a different electric charge fraction
in the mixed phase. The electric charge fraction in the nucle-
onic phase reflects a system with higher values of y than the �-
matter phase. In the liquid-gas phase transition, the process of
producing a larger neutron excess in the gas phase is referred to
as isospin fractionation [5,11,12]. A similar effects can occur in
the nucleon-� matter phase transition essentially due to a �−
excess in the �-matter phase with lower values of y. As already
observed, due to the uncertainty on the meson-� coupling
constants, we have not considered in this investigation the
coupling of the � with the isovector ρ-meson field, because
this is much less explored in the literature. We have verified
that the presence of such a coupling could further increase the
isospin asymmetry in the mixed phase and lower the critical
temperature of the nucleon-� matter phase transition.

In this context, it is proper to observe that Coulomb
interaction and finite-size effects, not considered in this study,
can significantly alter the structure of the phase transition.
Moreover, as already observed, we outline that our effective
EOS cannot incorporate the complex πN� dynamics and
it would be very interesting to investigate the presence of
chemical and mechanical instabilities in the framework of a
more realistic chiral hadronic EOS. Taking also into account
the large uncertainty on the possible values of �-meson
field couplings, it would be prudent to note the pedagogical
character of this preliminary study.

Many effects discussed in this paper may be more evident at
low values of y, obtainable, in principle, with radioactive ion
beam facilities. On the other hand, it is rather unlikely, at least
in the near future, that neutron-rich nuclei can be accelerated
to energies larger than a few GeV per nucleon. However,
some precursor signals of the considered instabilities could be
observed, even in collisions of stable nuclei at intermediate
energies. For example, in Ref. [28], the simulation of the
reaction 238U + 238U (average y = 0.39), at 1A GeV and
semicentral impact parameter b = 7 fm, shows that rather
exotic nuclear matter can be formed in a transient time of
the order of 10 fm/c, with a baryon density up to 3 ρ0,
T � 50–60 MeV, and y ≈ 0.35–0.40. Such conditions would
agree fully with results for the nucleon-� mixed-phase region
(see Fig. 15).

A possible signature of the nucleon-� matter phase tran-
sition could be found via observables particularly sensitive to
the expected different isospin content of the two phases. For
example, at the AGS energies, the � resonance was predicted
to be the dominant source for pions of small transverse mo-
menta [17]. In this case, an increase of the negative pions π− of
small trasverse momenta at a greater asymmetry of the beam
could be a good indicator of a � isospin fractionation effect.
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