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We discuss opportunities that may arise from subjecting high-multiplicity events in relativistic heavy ion
collisions to an analysis similar to the one used in cosmology for the study of fluctuations of the cosmic microwave
background (CMB). To this end, we discuss examples of how pertinent features of heavy ion collisions including
global characteristics, signatures of collective flow, and event-wise fluctuations are visually represented in a
Mollweide projection commonly used in CMB analysis, and how they are statistically analyzed in an expansion
over spherical harmonic functions. If applied to the characterization of purely azimuthal dependent phenomena
such as collective flow, the expansion coefficients of spherical harmonics are seen to contain redundancies
compared to the set of harmonic flow coefficients commonly used in heavy ion collisions. Our exploratory
study indicates, however, that these redundancies may offer novel opportunities for a detailed characterization
of those event-wise fluctuations that remain after subtraction of the dominant collective flow signatures. By
construction, the proposed approach allows also for the characterization of more complex collective phenomena
like higher-order flow and other sources of fluctuations, and it may be extended to the characterization of
phenomena of noncollective origin such as jets.
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I. INTRODUCTION

The bulk of low-momentum particles produced in heavy
ion collisions at the Relativistic Heavy Ion Collider (RHIC)
and at the Large Hadronic Collider (LHC) appears to emerge
from a common flow field that is largely driven by the
density gradients produced in the earliest stage of the collision
[1–4]. This fluid dynamic paradigm of heavy ion collisions
is supported by a large set of data from the LHC [5–7]
and RHIC [8–13] which includes the dependence of particle
production on the azimuthal angle relative to the reaction plane
and its dependence on transverse momentum,pseudorapidity
η, particle species and centrality (impact parameter) of the
collision. Complementary support comes from recent indi-
cations that also event-by-event fluctuations of the energy
density distribution produced in the earliest stage of a heavy
ion collision, are propagated fluid dynamically. In particular,
the measurement of non-vanishing odd harmonic coefficients,
vn, in the azimuthal dependence of particle distributions is an
unambiguous signal for the presence of sizable fluctuations in
the initial stage of a heavy ion collision [14–20].

These findings point to a remarkable set of commonalities
between the physics of the “Big Bang” determining the
evolution of the Universe, and the physics of the “Little Bangs”
formed in heavy ion collisions, that creates hot and dense
matter under conditions akin to those prevailing in the early
universe around the first microsecond, where the transition
from the quark gluon plasma (QGP) to a confined hadron gas
(HG) occurred.

In both cases, the physical system is viewed at an initial time
as exhibiting a phase space distribution with a high degree of
symmetry, overlaid with distributions of localized fluctuations.
In both cases, these initial fluctuations are propagated fluid
dynamically and are experimentally accessible, in the first case
as fluctuations of the (photon) cosmic microwave background
(CMB) [21–27] and, in the second case, as fluctuations and
characteristic variations in the density of particles produced
in very energetic heavy ion collisions [28,29]. Also, in
both cases, the decoupling of the different particle species
from the common fluid dynamical system provides important
possibilities for experimental verification of the collective
dynamics. In the case of Big Bang physics, it sets the time scale
for the decoupling of photons and determines the primordial
abundances of light nuclei. In the case of heavy ion physics,
it sets, i.e., the hierarchy of temperatures for chemical and
kinematic freeze-out, and determines the relative abundances
of hadronic resonances. Furthermore, the study of fluctuations
is motivated mainly by the idea that details of the fluid
dynamical evolution of a system make it possible to constrain
its material properties. In the case of Big Bang physics, this
has allowed to constrain the composition of the Universe in
terms of visible matter, dark matter, and dark energy [23]. In
the case of heavy ion collisions, this has allowed to establish
that the produced matter exhibits the properties of an almost
perfect fluid with a shear viscosity to entropy density ratio that
is close to minimal [1–4,30,31].

The question arises whether these qualitative analogies
between the physics of the early Universe and the physics
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of heavy ion collisions can provide conceptual or technical
advances in either field. Can heavy ion physics learn from the
techniques developed to analyze Big Bang physics, or vice
versa, can it contribute to advances in modern cosmology?
Synergies between both fields may arise on different levels.
For instance, cosmology has studied in significant detail the
question of how fluid dynamic perturbations are propagated in
an expanding system, and there is at least some understanding
of how nonlinearities and turbulent phenomena relevant for
structure formation build up, and which experimental measures
may give access to them. In the context of heavy ion collisions,
first analyses of the propagation of fluid dynamic perturbations
have been undertaken with analytical and numerical tech-
niques [32–37], but these are arguably at the very beginning,
and further explorations in close analogy to developments in
cosmology may be beneficial.

Similarities between the Big Bang and the Little Bangs
may also lead to synergies on the level of the techniques for
the analysis of data on fluctuations. The main purpose of the
present paper is to initiate such an effort. To this end, we shall
use here a standard tool [38] for analyzing the CMB anisotropy,
and apply it to the study of sets of simulated particle densities
from ultrarelativistic heavy ion collisions.

We note that studies of the physical system produced
in the Big Bang and the systems produced in heavy ion
collisions share not only remarkable commonalities but have
also significant differences. For an analysis of fluctuations
and their separation from other sources of signals, some of
the obvious differences (such as the vastly different scales
involved in both problems, the different fundamental forces
that govern the dynamics, and the difference in formulating
the dynamics in general relativity or special relativity) may be
less important. Potentially relevant, however, is the difference
between a study of one ‘big’ event (even if consisting of a
large but finite sample of statistically independent patches)
and the study ofa—in principle arbitrarily abundant—sample
of mesoscopic events.

The paper is organized as follows. In Sec. II we introduce
the spherical harmonic approach that underlies CMB data
analysis. In Secs. III and IV, we present and discuss an
application of this approach to simulated heavy ion data,
and in Sec. V we apply the method to the particular case of
elliptic flow, a standard measurement in heavy ion collisions. In
Sec. VI we summarize our findings and we present a
brief outlook. Finally, in the Appendix we have presented
mathematical details of the method and generalization of the
model with constant flow amplitude to more complex one,
when the amplitude of the flow depends on pseudorapidity.

II. FORMULATION OF THE PROBLEM

In cosmology, the CMB anisotropy is analyzed by means of
two-dimensional maps that essentially cover the full sky (like
those from the COBE, WMAP, and PLANCK experiments
[21–23]), or only patches of the sky (Boomerang, MAXIMA,
CBI, ACT, etc. [24–27]). Analysis of such maps reveal the
small temperature fluctuations and anisotropies that the early
Universe has left on top of an otherwise smooth and constant
background. By expressing the measured signal in terms of

an expansion in spherical harmonics, useful quantities such as
the power spectrum, alignment between different multipoles,
statistical anisotropy, and Gaussianity of the CMB can be
constructed and compared with theory even from a single
map (realization) of the CMB sky [21]. In the analysis of
CMB data, the methods focus on the separation of the different
components of the observed signal from that of the primordial
CMB. The byproduct of this separation yields additional maps
for different kinds of foreground effects (e.g., synchrotron,
free-free and dust emission) and the point-sources catalog [39].

The analysis of heavy ion data from nuclear collisions at
the LHC and the RHIC faces similar challenges. On one hand,
several independent statistical methods are in use [40,41] to
analyze two- and multiparticle correlations in terms of flow
coefficient vn, taken to be sensitive to the fluid dynamical
properties of the high density partonic system in its early
stages of expansion. On the other hand, the same particle
correlations are known to be sensitive to other important
dynamical features of heavy ion collisions, such as jets or
resonance decays. Typical tasks in heavy ion collisions are
then to either clean the flow signal as far as possible from
confounding dynamical features, or to analyze a different class
of interesting physical phenomena (such as the ‘point-sources’
produced by jets) without biasing its analysis by underlying
collective effects. The question arises, what one could learn
for this class of problems if the investigation of morphological
features commonly done in the CMB data analysis was applied
directly to heavy ion collisions?

Each heavy ion collision results in a distribution f (η, φ) of
particles as a function of azimuthal angle φ and pseudorapidity
η. Pseudorapidity is related to the polar angle θ of the
produced particle with respect to the beam direction via η =
− ln(tan( θ

2 )), and φ characterizes the angle in the transverse
plane orthogonal to the beam. We simulate such distributions
with HIJING [42] (Heavy-Ion Jet INteraction Generator),
which is an event generator that reproduces a number of
main features of heavy ion physics in the energy range of
RHIC and LHC. It is built on PYTHIA [43] routines for hard
interactions and JETSET [44] routines for string fragmentation.
The initial geometry and matter distribution is determined
via a Glauber model [45,46]. Various phenomenologically
relevant nuclear effects are also implemented, including, e.g.,
the nuclear modification of parton distribution functions, or
parametrization of the expected parton energy loss. However,
HIJING does not directly model a collective dynamics
resulting in flow. As this is relevant for our study, we
include flow effects a posteriori by modulating the azimuthal
distribution of particles from HIJING.

Particle production in heavy ion collisions is known to
display a regular η dependence that peaks around η = 0
and exhibits a forward-backwards symmetry in the case of
collisions between identical nuclei. Figure 1 shows results
for a semiperipheral Pb-Pb collision at the LHC with a
total of 12316 particles produced over more than 16 units
of pseudorapidity. The pseudorapidity distribution of this
randomly chosen simulated single event shows visible but
relatively small fluctuations around a smooth event-averaged
distribution. In preparation of the following analysis, we
have replotted this distribution as a function of the polar
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FIG. 1. (a) Pseudorapidity density of charged particles simulated
by HIJING for a single semicentral collision between two Pb nuclei at
current LHC energies (

√
snn = 2.76 TeV). (b) The same distribution

as a function of the polar angle θ relative to the beam direction.

angle θ . We see that the θ distribution is approximately flat
over an extended range π

4 < θ < 3π
4 which corresponds to a

sizable window around midrapidity (−0.88 < η < 0.88). A
presentation in the variable θ thus highlights the region of
approximately one unit around midrapidity for which most
differential data are available.

As remarked already, HIJING does not generate realistic
flow signals. For our study, we superimpose such flow signals
a posteriori on HIJING events by redistributing the generated
particles such that event-averaged ensembles of collisions
show a second order harmonic oscillation of the azimuthal
angle φ with some prescribed magnitude v2. This procedure
results in events that carry azimuthal oscillations supplemented
by event-by-event fluctuations. Figure 2 shows a typical
event realization for an average flow amplitude v2 = 0.10.
We caution the reader that experimental data on flow reveal
characteristic dependencies of v2 on transverse momentum,
rapidity and particle identity that are not included in this ad
hoc simulation. The simplified procedure adopted here will not

FIG. 2. Density of charged particles as a function of the azimuthal
angle φ in the plane transverse to the beam direction, simulated by
HIJING and modified by an elliptic flow with v2 = 0.10.

account for all phenomenologically relevant properties of par-
ticle flow, but it will be sufficient for the purpose of our study.

III. SPHERICAL HARMONIC DECOMPOSITION AND
ANALYSIS OF THE SYMMETRIES OF THE MODEL

The harmonic analysis of particle production in heavy
ion collisions focus typically on the Fourier decomposition
of the φ dependence (see Fig. 2) over a narrow region in
pseudorapidity around η = 0. Here, we contrast this procedure
with the one employed in the CMB data analysis that starts
from an expansion of the entire two-dimensional map f (θ, φ)
in terms of spherical harmonics Yl,m(θ, φ),

f (θ, φ) =
lmax∑
l=1

l∑
m=−l

al,mYl,m(θ, φ),

Yl,m(θ, φ) =
√

(2l + 1)

4π

(l − m)!

(l + m)!
P m

l (x)eimφ

= Nl,mP m
l (x)eimφ, (1)

where al,m = |al,m| exp(−im�l,m) are the coefficients of
decomposition with amplitudes |al,m| and phases �l,m for
each component l, m, P m

l (cos θ ) are the associated Legendre
polynomials, and

CS(l) = 1

2l + 1

l∑
m=−l

|al,m|2 (2)

is the total power spectrum.
As it is seen from Eq. (1), the constant term with l = 0

which corresponds to the average density of the particles
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on the sphere is not included in our analysis. Thus, f (θ, φ)
represents the fluctuations of the number density of particles
with respect to the mean value and it can take positive or
negative values. The parameter lmax in Eq. (1) characterizes
the angular resolution of the map. In principle, infinitely
precise pointing resolution requires (lmax → ∞) which is
computationally prohibitive. In the CMB analysis, one chooses
the parameter lmax according to the angular resolution of the
experimental data which is dictated by the segmentation of the
detector. For instance, lmax = 100 corresponds to an angular
resolution � = π/lmax � 1.8◦. In heavy ion physics, other
physics considerations such as the typical angular separation
of nearest charged tracks in the �η and �φ may motivate the
choice of lmax. In the following, we use a resolution lmax = 100
that is sufficiently high to reveal fluctuations on small scale. We
work for illustrative purposes with the standard GLESP [38]
pixelization where lmax = 100 corresponds to a number of
pixels in the θ direction Nθ = 2lmax + 1 and in the azimuthal
direction Nφ = 2Nθ .

A. Mollweide projection of heavy ion events

To familiarize ourselves with the main features of a
CMB-like harmonic analysis of heavy ion collisions, we
start from a ‘baseline’ distribution f (θ, φ) of a heavy ion
collision in which features of global collective dynamics are
absent. To this end, we consider as baseline a HIJING event
without superimposed flow signal (v2 = 0). Figure 3 shows
the corresponding fluctuations of the distribution f (θ, φ) in

FIG. 3. (Color online) (a) Mollweide projection of a single
HIJING event without flow. The azimuthal angle φ runs along the
‘equator’, the polar angle θ runs from pole to pole. The color coding
tracks deviations relative to the average level of counts. (b) The m = 0
mode has been removed from the map. The angular resolution of the
maps corresponds to lmax = 100 [see Eq. (1)]. The multiplicity of the
event is 17000.

the so-called Mollweide projection that is heavily used in
CMB analysis. In this representation the polar angle θ runs
vertically from the ‘north pole’ to the ‘south pole’ and the
azimuthal angle φ runs along the ‘equator’ from the center
to left. Let us pause to discuss in more detail the information
shown in this map.

We have seen already in the context of Fig. 1 that particle
distributions are approximately flat in a wide window of the
polar angle π

4 < θ < 3π
4 . Accordingly, the particle density and

fluctuations in θ remain approximately unchanged in a broad
band around the equator of the Mollweide projection [see
panel (a) of Fig. 3]. Larger particle densities are found at the
poles reflecting the large number of particles emitted at small
angles with respect to the beam direction [see panel (b) of
Fig. 1]. This enhanced particle yield at the poles is a kinemati-
cally trivial but potentially confounding factor for studies that
aim at establishing event-by-event global or local signals on
top of an event-average background that varies significantly
in η or θ . Thus, irrespective of the choice of coordinates,
the question arises to what extend potentially interesting
information about fluctuations and azimuthal asymmetries can
be disentangled from the strongly varying background in η or
θ . The approximately uniform distribution of fluctuation in
panel (b) of Fig. 3 demonstrates that removing from the
expansion of f (θ, φ) the m = 0 mode of the harmonic
decomposition goes a long way towards achieving this aim.
We note that the m = 0 spherical harmonic components do
not depend on φ but only on θ . Therefore, removing this
component will remove the dominant dependence on the
average pseudorapidity particle distribution without modifying
any flow signal. In general, a dependence of particle distribu-
tions on pseudorapidity will remain after subtraction of the
dominant m = 0 component, of course. In the Appendix, we
explain how an arbitrary η dependence can be dealt with in the
present formalism. For the sake of a particularly transparent
presentation, we focus in the main text on the simpler case
in which the η dependence can be treated satisfactorily by
subtracting the m = 0 mode.

To further quantify this separation of background from
fluctuations, we discuss now in more detail the spherical
harmonic analysis of f (θ, φ). Using Eq. (1) and, for instance,
the GLESP transform method, we can decompose this
distribution into its multipole components (see the Appendix
for details). The result of this operation is the set of amplitude
coefficients al,m. With a suitably high choice of lmax all
morphological features of the initial angular distribution
of counts are preserved. For the decomposition we have
used lmax = 100 in accordance with the original binning of
the fluctuations shown in Fig. 3. The corresponding power
spectrum C(l) is shown in panel (a) of Fig. 4.

In the case of a perfect reflection symmetry of particle
production around mid-rapidity, θ − π

2 ↔ −(θ − π
2 ), the odd

components CS(l) of the total power spectrum vanish. Event-
by-event fluctuations, however, will break this reflection
symmetry. As a consequence of such fluctuations, panel (a)
of Fig. 4 shows very small but nonvanishing values CS(l) ∈
[10−5; 10−4] for essentially all odd integers l. In contrast, the
even modes of CS(l) are for small even integers l up to a
factor 1000 larger since they are dominated by the strong
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FIG. 4. (Color online) (a) Power spectra for the map from Fig. 3.
The black line is the total power spectrum CS(l), the blue (gray)
dots are for the m = 0 mode only and the red (gray) line is for the
|m| � 1 modes. (b) The normalized distribution function H (s) versus
amplitude of fluctuations s for the total signal (the black line) and for
the signal with |m| � 1 (the red line).

dependence of particle production on pseudorapidity. Remov-
ing the dominant m = 0 mode from this power spectrum,
we see that all even and odd modes in CS(l) have now
approximately equal signal strength, and that the odd modes
do not change in strength. This quantifies the extent to which
removing the m = 0 mode removes the trivial background
dependence without affecting information on fluctuations.
We conclude that this procedure allows one to represent a
‘baseline’ event, in which fluctuations are superimposed on
top of a varying background, in a way in which the varying
background is efficiently removed and fluctuations dominate
the visual representation (see Fig. 3) and the statistical
information (see Fig. 4). We shall discuss in the following
section how this changes if the event contains, for example, a
collective flow component.

We finally mention yet another way of checking that
removal of the m = 0 mode isolates information about the
nature of fluctuations in the event. To this end, we recall that
a∗

l,m = (−1)mal,−m, and we write the power spectrum of Eq. (2)

in the form

CS(l) = C(l) + D(l) = |al,m=0|2
2l + 1

+ 2

2l + 1

l∑
m=1

|al,m|2. (3)

The first part of Eq. (3), C(l), corresponds to the most
symmetric m = 0 azimuthal modes, while the second part,
D(l), shows the power spectrum of fluctuation above the
|m| = 0 threshold. It would be worth to note, that both these
components have significantly different statistical properties,
which can be characterized in terms of the probability
distribution functions. Panel (b) of Fig. 4 shows the difference
in the statistical properties of the signal when all m modes
are included (black) and the case |m| � 1 (red). Normalized
to the total number of pixels(Ntot � 8l2

max), the probability
distribution function, H (s), is defined as the number of pixels
with corresponding amplitude of fluctuation within an interval
[s − δs, s + δs]. Here, δs = (smax − smin)/Nbin, smax and smin

are the absolute maxima and minima of the signal in the map
with m � 1 (red), and Nbin = 200 is a number of intervals
(bins). As it is seen from Fig. 4 the probability distribution
function for signal with removed the m = 0 mode, is quite
close to a Gaussian distribution, while the one including all m

modes (black) is far from a symmetric Gaussian distribution
with respect to s = 0.

To the extent to which the m = 0-mode dominates the
distribution, any distortion of the morphology of the map
will provide relatively small corrections to the total power
spectrum CS , but it may result in strong modifications of the
power spectrum D(l) [see Eq. (3)], and of the corresponding
multipole coefficients al,m. Note that any features of the al,m

and of the corresponding power spectrum can be detected
only if they exceed the level of statistical event-by-event fluc-
tuations. This is why the above-mentioned ‘Gaussianization’
trend of the probability distribution function for the sub-
dominant component power spectrum, D(l), reflects the level
of detectability of particular features with small amplitudes
above the statistical level.

IV. SINGLE EVENT vn FLOW

Due to Lorentz contraction the colliding ultra-relativistic
nuclei appear pancake-like just before a heavy ion collision in
the laboratory frame of reference. For noncentral collisions, the
overlap between the two nuclei has an approximately almond-
shaped cross section. This initial and anisotropic collision
geometry results in large pressure gradient differences along
the principal axes of the distribution and gives rise to a fluid
dynamical flow characterized by fundamental properties of
the fluid like the reinteraction time and residual interaction
between the constituents. This flow, in turn, leads to an
anisotropic distribution of particle momenta and numbers in
the transverse plane which may be quantified as a function of
the azimuthal angle, φ [40,41].

Recent experimental results from both RHIC and the LHC
suggest that the particle flow is established at the quark-gluon
level over a characteristic time scale of about 1–2 fm/c and
that the flow is quite sensitive to detailed features of the
system, such as the viscosity [30,31]. Recently, the presence of
higher order flow moments was understood as resulting from
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fluctuations around the almond shape in the initial collision
geometry [14–20].

In the present study, the angular distribution of particles
produced in each heavy ion collision will be viewed as a
‘stochastic’ map

S(θ, φ) = f (θ, φ)

[
1 + 2

∑
n

vn cos[n(φ − 	n)]

]
. (4)

This expression maps the random distribution of particles
without flow, f (θ, φ) ≡ d2N/dφdη|vn=0 onto a distribution
S(θ, φ) = d2N/dφdη that shows azimuthal dependencies
with harmonic flow amplitudes vn in azimuthal orientations
	n. The model distributions considered in the following were
obtained in line with this expression by modulating, a poste-
riori, an azimuthal uniform distribution f (θ, φ) simulated in
HIJING or a simple random generator with prescribed flow
amplitudes vn with angular orientations 	n.1 The case n = 2
corresponds to so called elliptic flow, to which we restrict
ourselves in the present study. For simplicity, the model used
in this section assigns the same flow value to all regions of
η and transverse momentum pt , and to all particle species
(e.g., mesons and baryons). This could be extended easily to
account for dependencies in these parameters, or to treat the
flow coefficients as random functions with statistical properties
that differ from those of f (θ, φ). The arguments in the present
study will not require such a more detailed modeling.

A typical experimental task is to extract from a given
particle distribution d2N/dφdη the flow coefficients vn,
defined as Ref. [47]

{vn} = 〈〈ein(φ−	n)〉〉 . (5)

Here 〈〈· · · 〉〉 denotes the average over all particles for each
heavy ion collision and over the entire statistical ensemble
of events. The following discussion will not involve this later
step. Rather, we shall discuss how different flow coefficients vn

and event planes 	n can be identified in a CMB-like harmonic
analysis of single heavy ion events. To this end, we decompose
Eq. (4) in spherical harmonics

bl,m � al,m +
∑

n

vn(cl,m+ne
−in	n + cl,m−ne

in	n ) . (6)

Here, bl,m are the coefficients of the spherical harmonic
decomposition for S(θ, φ), and cl,m∓n = al,mg(l, m,∓n),
where g(l, m,∓n) = 2πNl,m∓nNl,m

∫ 1
−1 dxP m∓n

l (x)P m
l (x).

This type of equation is also encountered in the CMB data
analysis [48] for cases where the statistical isotropy of the
signal is broken by regular modulations. We now discuss this
equation in more detail.

1In general, the event plane angles 	n are correlated to the
azimuthal orientation 	R of the reaction plane, that is defined as
the plane spanned by the impact parameter vector and the beam
direction. However, while 	R and the 	n’s are correlated, they are in
general not identical and different harmonic modes can be correlated
differently. Therefore, there will be in general an event plane angle
	n associated with each harmonic n, that may be determined in a
more comprehensive analysis in terms of higher order harmonics,
and different 	n’s will not coincide in general.

A. vn modulation with n = even

The iterative solution of Eq. (6) has an especially simple
form for even-n, n = 2k, k = 1, 2, . . . . In this case, the
dominant component of the al,m coefficients is associated
with m = 0 modes, and l = even. As we have pointed out in
Sec. III, the strongest component of the f (θ, φ) signal is the
m = 0 component (blue dots in Fig. 4). This implies that, in
Eq. (6), the last term in the brackets al,m−n is maximal, if m.

For m = 0, Eq. (6) reads

bl,0 = al,0 +
∑

n

vn(cl,ne
−in	n + cl,−ne

in	n )

= al,0 + 2
∑

n

vn|cl,n| cos(n(φl,n − 	n)) , (7)

where we have used the relation al,−m = (−1)ma∗
l,m. For the

scenario studied here, we can neglect in Eq. (7) the second
term (∝ vn|cl,n|) relative to the first one, due to the inequality
|al,0| � |cl,n| which follows from the dominance of the m = 0
modes. We consequently obtain the following approximate
solution: bl,0 � al,0.

The coefficients bl,m vanish for l < |m|. As a consequence,
in Eq. (6), for instance, the coefficient bl,m with m = 2 and
l = 2 is connected to the v2 component only, and does not
receive contribution from higher flow momentum with n > 2.
For l = 4 there exists only two terms in b4,m which are in
resonance with the b4,0 mode: b4,2 through the v2 term in
Eq. (6), and b4,4 through v4. We illustrate these relations further
in Fig. 5. We note that the elliptic flow will also provide a
b4,3 ↔ b4,1 coupling, but this effect is significantly smaller (∼
v2), in comparison with the discussed b4,2 and b4,4 components.
These features of Eq. (6) motivate to use

bn,n = an,n + vnbn,0g(n)ein	n, (8)

as a basis for separating the contributions from different
vn, where g(n) = 2πNn,0Nn,n

∫ 1
−1 dxP 0

n (x)P n
n (x) (see the

Appendix).
For a sufficiently large flow signal, such that |an,n| �

vn|bn,0|g(n), the iterative solutions of Eq. (8) for the amplitude

FIG. 5. (Color online) Schematic representation of the contribu-
tion of v2 (elliptic) and v4 flow to the various m components of
the bl=4,m coefficient. The v2 modulation will change the amplitude
and the phase of the b4,2 coefficient without contributing to the other
components. The v4 modulation will only change the b4,4 component.
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of the flow vn and the event plane 	n for a single event are
then given by

vn � |bn,n|
g(n)|bn,0| , n	n = φn,n. (9)

B. vn modulation with n = odd

The method presented above clearly illustrates how spher-
ical harmonics with l = even give access to amplitudes of the
vn-flow coefficients with n = 2, 4, 6, . . . . We now focus on the
odd harmonics vn, n = 1, 3, 5, . . . that are known to provide
information about the fluid dynamic response to fluctuations
present in the initial stage of heavy ion collisions. To this end,
we study the bl,m basis of Eq. (6) for the case l = even and
n = odd. We start from the most powerful l = 2 and l = 4
components of bl,m under consideration (see Fig. 4). For the
quadrupole component, l = 2, in the presence of even and
odd flow harmonics, the “resonant” component b2,m for v1

is b2,1:

b2,1 = � v1c2,1e
i	1 (10)

where the phase of the event plane 	1 corresponds to v1 flow. In
Eq. (10) the major contribution to b2,1 is given by the first term,
proportional to the most powerful component a2,0 � b2,0,
and

b2,1 � v1b2,0g1e
i	1 , v1 = |b2,1|

g1|b2,0| , 	1 = φ2,1 , (11)

where φ2,1 is the phase of the b2,1 component, and g1 =
4π

∫ 1
0 dxP 0

2 (x)P 1
2 (x). It is obvious that for any odd n the

corresponding solution for the amplitude and the phase is given
by

vn = |bn+1,n|
g(n + 1)|bn+1,0| , n	n = φn+1,n , (12)

where g(n + 1) = 4π
∫ 1

0 dxP 0
n+1(x)P n

n+1(x). Similar to the
n = even case, the phase of the event plane for n = odd can
be reconstructed also from the φn,n phase as n	n = φn,n.

Note that all methods of reconstructing the orientation
of the reaction plane(s) in heavy ion collisions distinguish
between the ‘true’ reaction plane 	n and the orientation
of the event plane reconstructed from experimental data
	

exp
n . Uncertainties in extracting the true parameter from a

statistically finite amount of data are characterized by quoting
the finite resolution. That means that, in respect to the statistical
ensemble of realizations, vn and 	n should be treated as
random variables with probability density functions Pvn

and
P	n

. Performing the same estimation as in Eqs. (9) and (12) for
each event we can determine the number of realizations with
vn and 	n within a given interval of uncertainty, and in fact, we
can obtain the probability distribution functions Pvn

and P	n

for a given ensemble of realizations. Then, one can define the
first moments of the corresponding variables 〈vn〉 and 〈	n〉,
for a statistically finite amount of data. We will illustrate this
approach in the next section.

FIG. 6. (Color online) The power spectrum for an event with
elliptic flow v2 = 0.07. The total power CS(l) is shown in black, the
blue (gray) stars correspond to CS(l) − D(l) = C(l), and the D(l)
power spectrum is shown in red (gray) [see Eq.(3)].

V. ELLIPTIC FLOW: THE CASE n = 2

Here, we further illustrate how the symmetries of the
spherical harmonic representation of the particle distribution
can be used to extract the elliptic flow signal following
Eq. (9). As discussed in Sec. III and shown in Fig. 2, this
signal is a modulation of the random background particle
distribution by a factor ∝vn cos(2φ − 	). In Fig. 6 we show
the corresponding power spectrum using a flow of v2 = 0.07.
The power in the components D(l), l = 2, 4, 6, 8 is seen
to be significantly higher than the asymptotically flat and
small D(l) � const values, obtained from a random realization
without flow (see Fig. 4). It is in this way that the CMB-like
harmonic analysis identifies—on the basis of a single event and
without recourse to an event sample—the presence of a signal
on top of random localized fluctuations. The enhancement of
the even low-l multipoles originates from flow contributions
to b2,2, b4,2, b6,2. Expressing these multipoles via Eq. (6), we
find

D(l) = 1

2l + 1

∑
m=1

|al,m + v2bl,0g(n)δm,ne
in	n |2

� v2
2C(l)g2(n) + D(l) , (13)

where (2l + 1)D(l) = ∑
m=1 |al,m|2.

We discuss now in further detail the relation between the
flow signal and the multipole components determined in a
CMB-like harmonic analysis. In a Mollweide projection, one
can visualize easily how the |b2,2| component changes with a
flow signal varying between v2 = 0 to v2 = 0.5, see Fig. 7.
In Fig. 8, we demonstrate this dependence beyond the level
of single events by averaging over samples of 105 events with
a specific flow amplitude v2. We see that there is a linear
relation between v2 and the ratio of the dominant quadrupole
components |b2,2| and |b2,0|. The small error bars shown in
Fig. 8 correspond to a 1σ standard deviation. They illustrate
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FIG. 7. (Color online) Maps of the |b22| amplitude for input flow
values of v2 = 0 (a), 0.01 (b), 0.05 (c), 0.075 (d), 0.1 (e), 0.2 (f),
0.3 (g), and 0.5 (h), respectively. For simplicity 	2

R = 0 in all maps.
A different reaction plane angle would manifest itself as a phase shift
in the ‘East-West’ direction.

the degree to which in the present model study fluctuations
at the single event are small compared to the event-averaged
mean. An analogous conclusion can be drawn from Fig. 9
about the correlation between the true event plane (	R),
which is known for each simulated event, and the phase φ2,2

determined in the analysis [see Eq. (9)]. The insert shows
the distribution of the difference 	R − 0.5φ2,2 which is a
measure of the event plane resolution obtained in this method.

FIG. 8. (Color online) Estimator D = |b2,2|/g(2)|b2,0| for the
elliptic flow amplitude obtained for single events plotted versus the
v2 value used in the simulations. The error bars correspond to 68%
confidence level.

FIG. 9. (Color online) The reaction plane angle 	R (rad) for each
of 202 HIJING events with flow = 0.07 versus the phase φ2,2 (rad)
obtained from the analysis described in Eq. (9). The insert shows the
distribution of the difference 	R − 0.5φ2,2 (rad).

The distribution is consistent with a Gaussian with mean
value μ ≈ 0 and standard deviation σ = 0.0254 rad. The tight
correlation between both orientations is due to the fact that
particles at all rapidities show on average the same azimuthal
correlations and this contributes to constraining statistical
fluctuations in φ2,2.

We finally indicate how a CMB-like harmonic analysis can
be used to assign to an event a probability that the measured
harmonic components result as fluctuations from a random
background, rather than in response to a collective flow signal.
To assess this question, we have generated the distribution
of |a2,2| values obtained by decomposing 105 events without
flow into spherical harmonics. The probability P of assigning
a given event as a random background for, say v2 = 0.01, can
be defined as the number of realizations without flow above
the limit of |b2,2| corresponding to v2 = 0.01. We have found
9230 out of 105 random realizations, and the probability of
correctly concluding an elliptic flow value of v2 = 0.01 to an
event with this |b2,2| analysis is therefore 1 − P � 90%. For a
five times larger signal v2 = 0.05, the corresponding level of
detectability is better than 99 999%. We parallel this analysis
for the harmonic component |b2,1| and have confirmed the fact
that the limits for v2 = 0.01 and v2 = 0.05 both lie around the
average of the background distribution.

The exploratory analysis presented here involves informa-
tion about the simulated events that is not directly accessible
experimentally. For instance, experimental data do not allow to
check directly the correlation between |b2,2| and the ‘true flow
signal v2’, or between φ2,2 and the ‘true’ reaction plane 	R ,
as done in Figs. 8 and 9. In this sense, our discussion serves
mainly the purpose to illustrate that a CMB-like harmonic
analysis can be applied to individual heavy ion events and
that it has the sensitivity of associating flow values and event
planes to single events in a meaningful way. We further
note that while Figs. 8 and 9 are not directly measurable,
closely related quantities are. For instance, one could plot
the ratio of the quadrupole components |b2,2| and |b2,0| as
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a function of event centrality to characterize the nature of
event-by-event fluctuations in an experimentally measured
event sample. We also note that we have tested the sensitivity
of the method to a coarser binning of the primary particle
multiplicity information, as it could result from a finite binning
of the detectors. We find no significant difference in the results
when using 100 bins in η and 40 bins in φ. Also, methods have
been developed for the CMB analysis to handle partial detector
acceptance and efficiency etc. A more detailed discussion of
these aspects will be left to further work.

VI. SUMMARY AND CONCLUSIONS

The present work is a bold exploratory step aimed at
testing the use of CMB-like analysis tools for the study of
high-multiplicity heavy ion collisions. It parallels other recent
efforts, see, e.g. Refs. [28,29]. We started from representing
simplified simulations of heavy-ion collisions in a Mollweide
projection commonly used in the CMB analysis. We then
asked how pertinent features of heavy ion collisions, including
collective flow and small-scale fluctuations manifest them-
selves visually in such a representation, and how they are
characterized by standard CMB tools.

A CMB-like analysis of fluctuations is based on an
expansion in terms of spherical harmonics and thus returns the
two-parameter set of coefficients bl,m. For the characterization
of collective flow phenomena, that show up as purely azimuthal
dependencies, the azimuthal harmonics with flow amplitudes
vn provide a complete set of functions. Therefore, the larger
set of coefficients bl,m must arguably contain redundancies for
the characterization of collective flow in heavy ion collisions.
However, event-wise fluctuations in heavy ion collisions are
not confined to the azimuthal φ direction and may be expected
to show locally no preferred orientation in the η-φ plane.
Our study indicates that the larger set bl,m, while showing
redundancies for the characterization of φ-dependent phe-
nomena, may offer novel opportunities towards characterizing
small-scale fluctuations in heavy ion collisions and separating
them from flow effects. For instance, we observed that due to
the η → −η reflection symmetry of event-averaged identical
nucleus-nucleus collisions, expansion coefficients with even
integers l are inevitably dominated by event-wise fluctuations.
The set of these coefficients may then be used as a baseline
on top of which collective or global event properties can be
established. We have discussed all possible generalizations of
the method in the Appendix, focusing on θ dependency of the
amplitude of the flow. This baseline allowed, for instance,
to check in Fig. 4 to what extent removal of the m = 0
mode subtracts efficiently the effects of a rapidity-dependent
multiplicity distribution from a fluctuation analysis. And we
have seen in the discussion of Fig. 6 how the larger set of
coefficients bl,m can help visually and statistically to identify
flow on top of a fluctuating background.

For the detection of flow-like azimuthal modulations, the
method used here is limited by the level of statistical noise
vn � N− 1

2 , where N is the multiplicity. Thus, for vn ∼ 10−2

the corresponding multiplicity required is in order of 104

particles, which is close to the parameters at the LHC. This

is parametrically the same dependence as e.g. in a flow
analysis in terms of second order cumulants. Higher order
cumulant expansions can improve this statistical limit. In this
sense, the CMB-like analysis of heavy ion collisions shown
here provides an alternative for characterizing collective flow
but does not offer obvious parametric advantages. However,
it offers arguably a very well-suited setting for analyzing
those event-wise fluctuations that remain once the dominant
azimuthal modulations have been removed. In analogy to the
questions asked in cosmology, one can then characterize what
sets the scale of these remaining fluctuations. For instance,
which physics underlies the fluctuations seen in a Mollweide
projection of heavy ion collisions after removal of flow
harmonics, such as in Fig. 3. How are these fluctuations
sensitive to resonance decays, jet-like particle correlations
or jets? On which scales could critical phenomena leave
characteristic signatures? Which similarities or characteristic
differences could be expected for the corresponding maps
based on fluctuations in the distribution of electric charge, or
strangeness content? We intend to follow up these and further
questions in the analysis of real data, as well as in further
model studies. Some of these questions are well known in
CMB science, when we can use, for instance, optimal filter
approach to amplify the point-like sources, incorporated into
diffuse background. This method in combination with wavelet
transform of the signal can potentially detect localized features
with very small amplitude of heavy ion collisions, which can
be associated with low amplitude jets. This work is in progress
and will be published in a separate paper.
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APPENDIX: STOCHASTIC EQUATION AND
GENERAL DESCRIPTION OF MODULATION

In this Appendix we discuss how the method of Sec. IV can
be generalized to an analysis that accounts for an arbitrary de-
pendence of vn = vn(θ ) on pseudorapidity η = − ln(tan( θ

2 )).
This can be done by multiplying the stochastic equation by
functions W (θ ) with different shapes. The stochastic equation
for modulations of the random signal is given by

S(θ, φ) = f (θ, φ)

[
1 + 2

∑
n

vn cos(n(φ − 	n))

]

= f (θ, φ) +
∑

n

vn[ein	ns+(θ, φ) + e−in	ns−(θ, φ)],

(A1)
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where

s+(θ, φ) = f (θ, φ)e−inφ, s−(θ, φ) = f (θ, φ)einφ. (A2)

The distribution S(θ, φ) can have a significant θ dependence.
We weigh the left and right hand side of Eq. (A1) by the
window function W (θ ),

F̂ S(θ, φ)W (θ ) = F̂ S(θ, φ)W (θ ) + vnF̂W (θ )[ein	ns+(θ, φ)

+ e−in	ns−(θ, φ)] , (A3)

where F̂ is the linear operator of the spherical harmonic
decomposition

F̂ ... =
∫ 2π

0
dφ

∫ π

0
dθ sin θY ∗

l,m(θ, φ) . . . . (A4)

In radioastronomy, this is referred to as the apodization
approach and it serves to amplify some particular range of
the (θ, φ) map, in order to reduce some very bright sources of
contamination of the signal under investigation. Here, we use
it to select bins in θ for a characterization of the dependence of
the signal on pseudorapidity. The coefficients of the spherical
harmonic decomposition then read

bl,m = cl,m + vn

∫ 2π

0

∫ π

0
dθ sin θY ∗

l,m(θ, φ)[ein	ns+(θ, φ)

+ e−in	ns−(θ, φ)], bl,m = F̂W (θ )S(θ, φ),

cl,m = F̂W (θ )f (θ, φ). (A5)

Using the spherical harmonic decomposition f (θ, φ) =∑
l′,m′ al′,m′Yl′,m′ (θ, φ), from Eq. (A5) we have

cl,m = F̂W (θ )f (θ, φ) =
∑
l′,m′

al′,m′G
l′,m′
l,m (n = 0),

(A6)
s+
l,m =

∑
l′,m′

al′,m′G
l′,m′
l,m (n) , s−

l,m =
∑
l′,m′

al′,m′G
l′,m′
l,m (−n),

where

G
l′,m′
l,m (n) =

∫ 2π

0
dφ

∫ π

0
dθ sin θY ∗

l,m(θ, φ)

×Yl′,m′ (θ, φ)W (θ )einφ . (A7)

The coefficients of the spherical harmonic decomposition
satisfy then

bl,m = cl,m + vn[ein	ns+
l,m + e−in	ns−

l,m] . (A8)

It is technically advantageous to introduce the variable x =
cos θ . With the help of

Yl,m =
√

(2l + 1)

4π

(l − m)!

(l + m)!
P m

l (x)eimφ = Nl,mP m
l (x)eimφ ,

(A9)

one can then express the coefficients in Eq. (A8) as

s+
l,m =

∑
l′,m′

al′,m′G
l′,m′
l,m (n)

� δm,n

∑
l′

al′,0G
l′,0
l,n (n) + O(aı,0),

G
l′,0
l,n (n) = 2πNl,0Nl′,n

∫ 1

−1
dxW (x)P 0

l′ (x)P n
l (x). (A10)

The case of a θ -independent distribution that we discussed
predominantly in the main text, is recovered for W (x) = 1. In
this case, one can use the integrals

∫ 1

−1
dxP 0

l (x)P 2
l (x) = −2l(l − 1)

2l + 1
,

(A11)∫ 1

−1
dx[P m

l (x)]2 = 2

2l + 1

(l + m)!

(l − m)!

to write

G
2,0
2,2(n = 2) = − 1√

6
, G

2,0
2,0 = 1 . (A12)

According to Eq. (6), this gives

v2 �
√

6
|b2,2|
|b2,0| . (A13)

In order to analyze the θ dependency of the amplitude of
the flow vn(θ ), keeping in Eq. (A1) the azimuthal modulations
proportional to cos(n(φ − 	n)). Then, we can decompose the
amplitude of the flow through Legendre polynomials:

vn(θ ) = vn

∑
q

Cn
qPq(cos θ ), (A14)

where vn = const, and Cn
q are the coefficients of decompo-

sition. Obviously, the decomposition of vn(θ ) in the form
of Eq. (A14) is not unique. One can use, for instance the
associated Legendre polynomials P n

l (θ ), instead of Legendre
polynomials. The particular choice of the orthogonal functions
should reflect the properties of the effects of modulations under
investigation.

In the most general case, azimuthal modulations are no
longer separable from polar ones. In heavy ion physics, this
is the case, e.g., for jet-like particle correlations. Instead of
Eq. (A1), the starting point for analyzing such modulations
would be then the stochastic equation

S(θ, φ) = f (θ, φ)[1 + 2V (θ, φ)] , (A15)

where

V (θ, φ) =
∑

l

l∑
m=−l

Vl,mYl,m(θ, φ) . (A16)

The coefficients Sl,m of the spherical harmonic de-
composition can be expressed as Sl,m = al,m + Dl,m,
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where

Dl,m = 2
∞∑

l′=1

l′∑
m′=−l′

∞∑
l′′=0

l′′∑
m′′=−l′′

(−1)mal′m′Vl′′m′′

×
√

(2l′′ + 1)(2l′ + 1)(2l + 1)

4π

(
l′′ l′ l

0 0 0

)

×
(

l′′ l′ l

m′′ m′ −m

)
, (A17)

and alm = F̂ f (θ, φ). This equation is well known in CMB
physics (see for instance [49]). The major difference between

modulation of the signal in form of Eq. (A16) and vn = const
is related to redistribution of the power from even multipoles
to odd ones, if V2n+1,m has nonzero components. In the case
when only V2n,m coefficients are nonvanishing, this quadrupole
modulation will redistribute the power from the nth mode to
n − 1,n + 1 modes, where l = 2n and change the orientation
of the quadrupole from very planar(v2 = const) to nonplanar,
depending on amplitude of 2, 1 component. We shall explore
in future work to what extent Eqs. (A16) and (A17) allow
to investigate more complex modulations of the particle
distribution in high-multiplicity heavy ion collisions.
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