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We investigate the two-particle interferometry for the particle-emitting sources that undergo the first-order
phase transition from the quark-gluon plasma with a finite baryon chemical potential to hadron resonance gas.
The effects of source expansion, lifetime, and particle absorption on the transverse interferometry radii Rout

and Rside are examined. We find that the emission durations of the particles become large when the system is
initially located at the boundary between the mixed phase and the quark-gluon plasma. In this case, the difference
between the radii Rout and Rside increases with the transverse momentum of the particle pair significantly. The
ratio of

√
R2

out − R2
side to the transverse velocity of the pair is an observable for the enhancement of the emission

duration.
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I. INTRODUCTION

One of the important issues of high-energy heavy ion
collisions is to find and quantify the quantum chromodynamics
(QCD) phase transition between the quark-gluon plasma
(QGP) at higher-energy density and the hadron gas at lower-
energy density. The initial systems produced in the heavy
ion collisions at the higher energies of the Super Proton
Synchrotron (SPS) and Relativistic Heavy Ion Collider (RHIC)
and the energy of the Large Hadron Collider (LHC) have
high-temperature and near-zero baryon chemical potential.
Lattice QCD calculations have shown that the transition at
the vanishing baryon chemical potential is a crossover [1].
However, it is predicted that this crossover will become a
first-order phase transition at intermediate temperatures and
high baryon chemical potentials [2–7]. Recently, the search for
the evidences of the first-order phase transition and location
of its critical end point have attracted special attention, for
instance, the RHIC and SPS low-energy programs [8–12]
and the project of the future Facility for Antiproton and Ion
Research (FAIR) at GSI [13–16].

Two-particle Hanbury-Brown-Twiss (HBT) interferometry
is a useful tool for detecting the space-time structure of
particle-emitting sources in high-energy heavy ion collisions
[17–20]. For the first-order phase transition there is a mixed
phase of the QGP and hadron gas. In the absence of pressure
gradient, a slow-burning fireball is expected when the initial
system is at rest in the mixed phase, and this may lead to a
considerable time-delay of the system evolution [21–26]. It is,
therefore, of interest to probe the time-delay for the first-order
phase transition by HBT interferometry.

In Ref. [27], an HBT analysis technique with quantum
transport of the interfering pair (QTIP) is developed. It takes
into account the effects of resonance decay and multiple
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scattering of pions in the sources. In Ref. [28], this HBT
technique is used to investigate the source radius and lifetime
for the spherical systems evolving hydrodynamically with the
first-order phase transition. In this study we use the relativistic
hydrodynamics in (2 + 1) dimension to describe the particle-
emitting sources that undergo the first-order phase transition.
We investigate the HBT radii Rout, Rside, and Rlong [29,30]
for the hydrodynamic sources using the HBT interferometry
with the QTIP technique. The results indicate that the ratio of
�Ros =

√
R2

out − R2
side to the transverse velocity of the particle

pair vKT is sensitive to the emission duration of the source. It is
large when the system is initially located at the boundary of the
mixed phase and the QGP (soft point). As compared to pion
HBT interferometry, kaon HBT interferometry may present
more clearly the source space-time geometry at the emission,
because kaons (for instance K+) can escape easily from the
system after their production. By comparing the results of
the two-pion and two-kaon HBT analyses, we find that the
particle absorptions and the large expansion velocities of the
sources after hadronization may change the pion HBT radii
as functions of the transverse momentum of the particle pair.
However, the large values of the ratio �Ros/vKT for the soft
point of the first-order phase transition can be observed in both
of two-pion and two-kaon HBT measurements.

The paper is organized as follows. In Sec. II we present
briefly the description for the relativistic hydrodynamics in
cylindrical coordinate frame. We describe the model of the
equation of state (EOS) of first-order phase transition used
in our calculations. The adiabatic cooling paths and the
space-time evolution of the systems are also discussed in this
section. In Sec. III we perform the two-pion and two-kaon
HBT analyses, with the QTIP technique, for the hydrodynamic
particle-emitting sources for the initial conditions of the QGP
and the soft point of the first-order phase transition. The effects
of source expansion, lifetime, and particle absorptions on
transverse HBT radii are investigated. On the basis of the
investigations, we introduce an observable to probe the long
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lifetime of the source for the initial conditions of the soft point.
Finally, the summary and conclusions are presented in Sec. IV.

II. HYDRODYNAMICAL EVOLUTION WITH
FIRST-ORDER PHASE TRANSITION

A. Relativistic hydrodynamic equations in cylindrical frame

The dynamics of ideal fluid in high-energy heavy ion
collisions is defined by the local conservations of energy-
momentum and net charges [31,32]. The continuity equations
of the conservations of energy-momentum, net baryon number,
and entropy are

∂μT μν(x) = 0, (1)

∂μj
μ

b (x) = 0, (2)

∂μjμ
s (x) = 0, (3)

where x is the space-time coordinate of a thermalized fluid
element in the source center-of-mass frame, T μν(x) is the
energy momentum tensor of the element, j

μ

b (x) = nb(x)uμ

and j
μ
s (x) = s(x)uμ are the four-current-density of baryon and

entropy (nb and s are the baryon density and entropy density),
and uμ = γ (1, v) is the four-velocity of the fluid element. The
energy momentum tensor T μν(x) is given by [31,32]

T μν(x) = [ε(x) + p(x)]uμ(x)uν(x) − p(x)gμν, (4)

where p and ε are the pressure and energy density of the fluid
element, and gμν is the metric tensor.

In the cylindrical coordinate (t, ρ, φ, z) frame, gμν =
diag(1,−1,−ρ−2,−1). The conservation Eqs. (1)–(3) can be
expressed as

∂tE + ∂ρ[(E + p)vρ] + ∂z[(E + p)vz] = −vρ

ρ
(E + p),

(5)

∂tM
ρ + ∂ρ(Mρvρ + p) + ∂z(M

ρvz) = −vρ

ρ
Mρ, (6)

∂tM
z + ∂ρ(Mzvρ) + ∂z(M

zvz + p) = −vρ

ρ
Mz, (7)

∂tNb + ∂ρ(Nbv
ρ) + ∂z(Nbv

z) = −vρ

ρ
Nb, (8)

∂tNs + ∂ρ(Nsv
ρ) + ∂z(Nsv

z) = −vρ

ρ
Ns, (9)

where E ≡ T 00, Mρ ≡ T 0ρ = T ρ0, Mz ≡ T 0z = T z0, Nb ≡
j 0
b = nbγ , and Ns ≡ j 0

s = sγ .

B. Equation of state

In the equations of motion (5)–(9), there are ε, p, vρ , vz, nb,
and s six unknown functions. In order to obtain the solution of
the equations of motion, we need an equation of state (EOS),
p(ε, nb, s), which gives a relation for p, ε, nb, and s. In our
model the QGP phase is described by a perfect gas of gluons, u,
d, s quarks, and antiquarks, with the constant vacuum energy B

associated with QCD confinement [33]. The pressure, energy
density, and the conserved charge density in the QGP phase

are given by

pQ =
∑

i

pi(T ,μi) − B, (10)

εQ =
∑

i

εi(T ,μi) + B, (11)

n
Q
A =

∑
i

Ai ni(T ,μi), (12)

where pi(T ,μi), εi(T ,μi), and ni(T ,μi) are the pressure,
energy density, and number density of particle species i in the
perfect gas with temperature T and chemical potential {μi},
Ai is the conserved charge number of the particle species i. In
our calculations we use the quark masses mu = md = 5 MeV,
ms = 150 MeV, and the bag constant B = (235 MeV)4 [33].

For the hadronic phase we adopt the excluded volume
model [33–35] and consider the particles π , K , N , 
, �,
�, and their antiparticles in the model. The pressure, energy
density, and the conserved charge density in the hadronic phase
are given by [33–35]

pH =
∑

i

pi(T , μ̃i), (13)

εH =
∑

i εi(T , μ̃i)

1 + V0
∑

i ni(T , μ̃i)
, (14)

nH
A =

∑
i Ai ni(T , μ̃i)

1 + V0
∑

i ni(T , μ̃i)
, (15)

where

μ̃i = μi − V0 pH , (16)

V0 = (1/2)(4π/3)(2a)3 is the excluded volume which is
assumed to be the same for all hadrons with a = 0.5 fm [33].

For the first-order phase transition, there are Gibbs relation-
ships in the mixed phase of the QGP and hadron gas. We have
T Q = T H , μN,� = 3μu, μ
,� = 2μu + μs , μπ+,π0,π− = 0,
μK+,K0 = μu − μs ,..., and

pM = pQ(T ,μu, μs) = pH (T ,μu, μs), (17)

εM = α εQ(T ,μu, μs) + (1 − α) εH (T ,μu, μs), (18)

nM
A = α n

Q
A (T ,μu, μs) + (1 − α) nH

A (T ,μu, μs), (19)

where μu and μs are the chemical potentials of u and s quarks,
and α = VQ/V is the fraction of the volume occupied by
the plasma phase. The boundaries of the coexistence region
are found by putting α = 0 (the hadron phase boundary) and
α = 1 (the plasma boundary).

Using the thermodynamical relations of mixed gas one
can get the entropy densities s and other thermodynamical
quantities, in the QGP, hadronic, and mixed phases from
Eqs. (10)–(15) and (17)–(19), and get numerically the EOS
with the first-order phase transition.

C. Adiabatic paths

For perfect fluid, the entropy and baryon number of the
system are conserved during evolution. So the ratio of the
densities nb and s, nb/s, is a constant. In the calculations we
take nb/s = 0.06, which corresponds to the incident energy
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FIG. 1. (Color online) The adiabatic paths for the system evolving
with the EOS of the first-order phase transition. The dotted line is the
transition curve between the QGP and hadron gas. The mixed phase
is on the transition curve from the end point of the QGP branch (point
1) to the beginning of the hadronic branch (point 2).

about 30 AGeV [36]. The solid lines in Fig. 1 show the
adiabatic cooling paths for the system evolving with the EOS of
the first-order phase transition. The dotted line is the transition
curve between the QGP and hadron gas. The mixed phase is
on the transition curve from the end point of the QGP branch
(point 1) to the beginning of the hadronic branch (point 2).
The nontrivial zigzag shape of the trajectory indicates that the
system has a reheating in the mixed phase [35,37]. The reason
is that at a certain point (T ,μ) on the phase-transition curve, the
number of degrees of freedom, and hence the specific entropy,
is larger in the QGP phase than in the hadronic phase. The
temperature must increase during hadronization to conserve
both the total entropy and baryon number simultaneously
[37].

In Fig. 2 we show the thermodynamical quantity, p/ε, as
a function of ε for the system. The ratio p/ε reaches the
minimum at the boundary between the QGP and mixed phase,
ε = εMQ = 1.83 GeV/fm3. It is so called the soft point of the
first-order phase transition. At the boundary between the mixed
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FIG. 2. (Color online) The ratio of the system pressure to energy
density, p/ε. It has the minimum at the soft point 1 and reaches its
maximum at the hadronization point 2. The ratio retains the values
smaller than 0.075 in the ε regain 0.6–2.1 GeV/fm3

phase and hadronic gas, the ratio reaches its maximum. It is
named hadronization point. One can see that the ratio retains
the values smaller than 0.075 in the ε regain 0.6–2.1 GeV/fm3.

D. System evolution

Using the Sod’s operator splitting and RHLLE method
[31,38–40], we can obtain the system evolution by solving the
hydrodynamical Eqs. (5)–(9) with the EOS of the first-order
phase transition. Because the heavy ion collisions are full
stopped at the energy considered, we assume the system is
initially at rest within a cylinder in the beam direction (z
direction) with the transverse and longitudinal radii ρ0 and
z0. In Fig. 3, we show the two-dimension energy density,
ε(x, z) = ∫

ε(x, y, z)dy, for the systems at the time t =0, 6,
and 12 fm/c. The left and right panels are for the systems that
are initially located in the QGP phase (T QGP

0 = 180 MeV,
ε

QGP
0 = 4.12 GeV/fm3, μ

QGP
B0 = 990 MeV) and at the soft

point (T SP
0 = 142 MeV, εSP

0 = εMQ = 1.83 GeV/fm3, μSP
B0 =

780 MeV). It can be seen that the energy density for the system
with the initial conditions of the soft point (ICSP) decreases
more slowly with time than that for the system with the initial
conditions of the QGP (ICQGP). Because there are not the
initial velocity and pressure gradient in the mixed phase, the
expansion of the system is slow. Figures 4(a) and 4(b) show
the average transverse velocity, 〈vρ(ρ)〉z = ∫

vρ(ρ, z)dz, for
the systems with ICQGP and ICSP, respectively. For ICQGP,
the velocity increases rapidly from zero at the beginning (t �
3 fm/c) and still increases with time during 3 < t < 6 fm/c.
Because there is larger gradient of pressure on the edge of the
system, the velocity increases more rapidly around ρ ∼ ρ0. At
t = 9 fm/c, the decrease of the velocity near the center of the
system is due to the blast-wave expansion, which leads to a
void in the center region. For ICSP, the velocity retains zero in
the center region of the system even at a larger time because

FIG. 3. The two-dimension energy density, ε(x, z), for the sys-
tems at the time t = 0, 6, and 12 fm/c. The left panels are for the
system initially in the QGP. The right panels are for the system
initially at the soft point.
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FIG. 4. (Color online) The average transverse velocity for the
systems initially in the QGP (a) and at the soft point (b).

there is not pressure gradient in this case. In our calculations,
the initial sizes for the system with ICQGP are taken to be
ρ0 = z0 = 4.0 fm. The initial sizes for the system with ICSP
are taken to be ρ0 = z0 = 4.0 × (εQGP

0 /εMQ)1/3 = 5.2 fm.

III. HBT INTERFEROMETRY WITH QUANTUM
TRANSPORT OF THE INTERFERING PAIR

A. Formulas of correlation function

The two-particle HBT correlation function C(k1, k2) is
defined as the ratio of the two-particle momentum distribution
P (k1, k2) to the product of the single-particle momentum
distribution P (k1)P (k2),

C(k1, k2) = P (k1, k2)

P (k1)P (k2)
. (20)

Using the quantum probability amplitudes in a path-integral
formalism [27], P (ki) [ki = (Ei, ki), i = 1, 2] and P (k1, k2)
can be expressed as [27,41–44]

P (ki) =
∫

d4x ρ(x)e−2 Im φ̄s (xκ→ki )|A(xκ)|2, (21)

P (k1, k2) =
∫

d4x1d
4x2 e−2Imφ̄s (x1κ1→k1)e−2Imφ̄s (x2κ2→k2)

× ρ(x1)ρ(x2)|�(x1x2; k1k2)|2, (22)

where ρ(x) is the four-dimension density of the particle-
emitting source, A(xκ) is the amplitude for producing a
particle at x with momentum κ , e−2Imφ̄s (xκ→k) is the absorption
factor due to the multiple scattering when the particle prop-
agating in the source, and �(x1x2; k1k2) is the wave function
for the two identical bosons,

�(x1x2; k1k2) = 1√
2

[Ā(x1κ1, k1)Ā(x2κ2, k2)eik1·x1+ik2·k2 ]

+ [Ā(x1κ
′
2, k2)Ā(x2κ

′
1, k1)eik1·x1+ik2·k2 ], (23)

Ā(xκ, k) = A(xκ)eiδmf(xκ→k), (24)

where δmf(xκ → k) is a phase arising from the source
collective expansion, which can be described by a long-range
density-dependent mean-field [27,44].

In our HBT calculations, the identical kaons (for instance
K+) are assumed to freeze-out directly at the hadronization.
So, the absorption factor e−2Imφ̄s is 1 and δmf = 0. The final
identical pions (for instance π+) include the primary pions
emitted at the hadronization and the secondary pions from
the “excited-state” particle decays during the system evolving
in hadronic phase until to the thermal freeze-out. The four-
dimension density of the pion source can be expressed as
[27,45,46]

ρ(x) = nπ (x)δ(t − τh) +
∑
j 	=π

Dj→πnj (x), (25)

where ni(x) and τh are the particle number density and the
hadronization time in local frame, Dj→π is the product of
the decay rate in time and the fraction of the decay. For ex-
ample, D�→π = �� × 1

3 and Dπ0π0→π+π− = vrnπσ (π0π0 →
π+π−) × 1, where vr is the relative velocity of the two
colliding pions and the cross section σ (π0π0 → π+π−) is
equal to the absorption cross section of π+π− → π0π0

[27].
When a pion is propagating in the source it will subject

to multiple scattering with the medium particles in the source.
The absorption factor due to the multiple scattering in Eqs. (21)
and (22) can be written as [27,41–44]

e−2 Im φ̄s (x) = exp

{
−

∫ xf

x

[∑
i

′
σabs(πi) ni(x

′)

]
d�(x ′)

}
,

(26)

where
∑′

i means the summation for all medium particles
except for the test pion along the propagating path d�(x ′),
σabs(πi) is the absorption cross section of the pion with the
particle species i in the medium, and xf is the freeze-out
coordinate. In calculations we only consider the dominant
absorption processes for the identical pions, for example, the
reactions of π+π− → π0π0 and π+N → � for π+, as in Ref.
[27]. The pion freeze-out temperature is taken to be 110 MeV,
which corresponds to the energy density εf = 45 MeV/c

[47].
In the HBT analysis, we use the Bertsch-Pratt components

of the relative momentum q = |k1 − k2| of the identical
particle pair [29,30], qside, qout, and qlong as variables. The
correlation function CK (qside, qout, qlong) are constructed from
P (k1, k2) and P (k1)P (k2) by summing over k1 and k2 for
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FIG. 5. (Color online) The two-pion and two-kaon HBT results
for the hydrodynamic sources for ICQGP and ICSP.

the (qside, qout, qlong) bins in a certain KT = 1
2 |k1 − k2|T

region. The HBT radii Rside(KT ), Rout(KT ), and Rlong(KT )
are obtained by fitting the correlation functions with the
parametrized formula

CK (qside, qout, qlong) = 1 + λ exp
[−q2

sideR
2
side(KT )

− q2
outR

2
out(KT ) − q2

longR
2
long(KT )

]
,

(27)

in the longitudinal comoving system (LCMS). Here, λ is called
the chaotic parameter.

B. Results for hydrodynamic sources

In Fig. 5 we show the two-pion and two-kaon HBT results
for the hydrodynamic sources for ICQGP and ICSP. It can
be seen that there is much difference for the two-pion HBT
radius Rout as functions of KT for the two kinds of sources.
One decreases with KT , and another almost increases with
KT . When the system is initially located at the soft point
(ICSP case), the results of Rout are much larger than those
of Rside at larger KT , and the ratio Rout/Rside increases with
KT significantly. As compared to the pion HBT radii the kaon
HBT radii exhibit more moderate changes with KT .

Figures 6(a) and 6(b) show the transverse velocities of
the pion- and kaon-emitting sources as functions of the
pair transverse momenta KT . Figures 6(c) and 6(d) show
the standard deviations of time, σt =

√
〈 (t − 〈t〉)2 〉, of the

particle-emitting sources. One can see that the transverse
velocities of the pion and kaon sources are smaller for the sys-
tem initially at the soft point (ICSP) than those for the system
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FIG. 6. (Color online) Left panels: the transverse velocities of
the particle-emitting sources as functions of KT . Right panels: the
standard deviations of time of the particles-emitting sources.

initially in the QGP (ICQGP). The standard deviations of time
enhance very much for the sources for ICSP.

In HBT interferometry, the source HBT radii are related to
the enhancements of the correlation functions at small relative
momenta. For an evolving source, the source expansion leads
to a correlation between the particle-emitting coordinate and
momentum. It may decrease the transverse emission region for
the particle pairs with small relative momenta and large KT .
This effect is more important in the direction of the transverse
momentum of the pair (out direction), which is boosted by
the source expansion. Additionally, the source opacity, due
to the absorptions for the particles propagating through the
center of source (in which the temperatures are higher than
the hadronization temperature) and by the multiple scattering
among the particles in the source, may lead to a shell emission.
This will increase the effect of the decrease of emission region
for expanding sources. In Fig. 7, we show the distributions
of the source coordinates projected on the transverse out-side
plane, for the particles with the smaller pair momenta KT <

300 MeV/c (left panels) and the larger pair momentum KT >

300 MeV/c (right panels). The upper four panels are for the
system initially in the QGP (ICQGP). The lower four panels
are for the system initially at the soft point (ICSP). For KT >

300 MeV/c, the distributions of the source coordinates are
more concentrated in ro > 0 regions. For KT < 300 MeV/c,
the annular distributions for kaon indicate that the sources are
almost transparent for the kaons emitted later. We will see
it is that the source expansion, lifetime (∼σt ), and particle
absorptions lead to the differences of the transverse HBT radii
Rout for the two kinds of sources for ICQGP and ICSP.

C. The effects of source expansion and lifetime
on transverse HBT radii

In HBT interferometry, the difference of the transverse
HBT radii in out and side directions includes the important
information on the source expansion and lifetime. R2

out − R2
side
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FIG. 7. The distributions of the source coordinates projected on
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smaller and larger particle pair momenta KT < 300 MeV/c and KT >

300 MeV/c. The upper four panels are for ICQGP. The lower four
panels are for ICSP.

is given by [18,48,49]

R2
out − R2

side = 〈 (r̃o − vKT t̃)
2〉 − 〈

r̃2
s

〉
, (28)

where 〈 · · ·〉 denotes the average for the space-time coordinates
of the source, r̃o and r̃s are the biases of the source spatial
coordinates related to their average values in the out and side
directions, t̃ is the bias of the source time coordinate related
to its average, and vKT is the transverse velocity of the particle
pair.

In order to examine the effects of source expansion and
lifetime on the transverse HBT radii Rout and Rside, we
investigate next the two-pion interferometry for the simple
sources with a constant temperature 100 MeV and the Gaussian
space-time distributions as

dN

d3rdt
∝ exp

(
−x2 + y2

2R2
T

− z2

2R2
L

− t2

2τ 2

)
,

(29)
R1 �

√
x2 + y2 + z2 � R2.

We take RT = RL = 5 fm, R2 = 10 fm, and assume that the
sources have the radial velocity

vr = v0
r

R2
. (30)

Here, τ , R1, and v0 are three free parameters. We taken τ = 6
and 12 fm/c for the sources with shorter and longer lifetimes.
For a shell source R1 is taken to be 5 fm. For static and
expanding sources, v0 is taken to be 0 and 0.8, respectively.
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FIG. 8. (Color online) The transverse HBT radii and �Ros =√
R2

out − R2
side for the static Gaussian source (circle), expanding

Gaussian source (triangle down), and expanding shell source (triangle
up). The dashed lines are the results of σtvKT .

Because there are not correlations between spatial coordinates
and time for these sources, Eq. (28) reduces to

R2
out − R2

side = 〈
r̃2
o

〉 − 〈
r̃2
s

〉 + σ 2
t v2

KT
, (31)

where σ 2
t = 〈 (t − 〈t〉)2〉 = (π − 2)τ 2/π ≈ 0.363τ 2. Because

of source expansion and opacity the difference of the variances
in out and side directions, 〈 r̃2

o 〉 − 〈 r̃2
s 〉, is not zero even for the

source with transverse symmetry. It is negative and decreases
with KT . On the other hand, the right third term in Eq. (31),
σ 2

t v2
KT

, is positive. It increases with KT and becomes important
when the source lifetime τ increases.

In Fig. 8, we show the transverse HBT radii Rout and
Rside and �Ros =

√
R2

out − R2
side for the sources with τ =

6 and 12 fm. The symbols ◦, ∇, and � are for the static
Gaussian source (v0 = 0, R1 = 0 fm), expanding Gaussian
source (v0 = 0.8, R1 = 0 fm), and expanding shell source
(v0 = 0.8, R1 = 5 fm). The dashed lines in the bottom panels
are the results of σtvKT (vKT = KT /EK , EK = (E1 + E2)/2).
In Fig. 9, we show the distributions of the source coordinates
projected on ro − rs plane. Figure 9 panels (a), (b), and (c) are
for the static Gaussian source, expanding Gaussian source, and
expanding shell source for the smaller pion pair momentum
KT < 300 MeV/c. Figure 9 panels (a′), (b′), and (c′) are for
the static Gaussian source, expanding Gaussian source, and
expanding shell source for KT > 300 MeV/c. For the static
sources, the results of Rside are almost a constant and Rout

increases with KT . Because there is not the effect of source
expansion, 〈 r̃2

o 〉 = 〈 r̃2
s 〉, and the results of �Ros are consistent

with those of σtvKT . For the expanding and shell-emitting
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FIG. 9. The distributions of the source coordinates projected
on ro − rs plane. The panels (a), (b), and (c) are for the static
Gaussian, expanding Gaussian, and expanding shell sources for
KT < 300 MeV/c. The panels (a′), (b′), and (c′) are for the static
Gaussian, expanding Gaussian, and expanding shell sources for
KT > 300 MeV/c.

sources, the source expansion and shell emission change the
distributions of the source coordinates. It leads to the decreases
of Rside with KT . Although Rout increases with KT in the
small KT region for the sources with larger lifetime τ , this
increase will be counteracted at large KT by the effects of
the source expansion and shell emission. In these cases, the
results of �Ros are smaller than the values of σtvKT at larger
KT . From Fig. 9 one can see directly that the coordinate
distributions of the static sources for the smaller and larger pion
pair momenta are almost the same. However, the coordinate
distributions of the expanding sources for KT > 300 MeV/c

are more concentrated in ro > 0 regions as compared to the
corresponding distributions for KT < 300 MeV/c.

For hydrodynamic sources, there are also correlations
between source spatial coordinates and time. We will discuss
the effect of the correlation between ro and t on �Ros in next
subsection.

D. Characteristic quantity for long source lifetime for ICSP

Because of the correlation between source spatial coordi-
nate ro and time for hydrodynamic sources, Eq. (28) becomes

R2
out − R2

side = 〈
r̃2
o

〉 − 〈
r̃2
s

〉 + σ 2
t v2

KT
− 2

〈
r̃ot̃

〉
vKT . (32)

For positive or negative 〈 r̃o t̃ 〉, the right last term in Eq. (32)
will decrease or increase �Ros with KT increase.

In Fig. 10 we show the distributions of the space-time
coordinates of source points projected on ro − t plane for
ICQGP [Figs. 10(a) and 10(c)] and ICSP [Figs. 10(b) and
10(d)]. The dashed lines are for the average values of ro and t ,
which divide the plane into four regions. In regions I and IV,

(a)

π

|
|
|
|
|
|
|

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I II

III IV

(b)

π

|
|
|
|
|
|
|

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I II

III IV

(c)

K

t
(
f
m
/c
)

|
|
|
|
|
|
|

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I II

III IV

(d)

K

ro (fm)

|
|
|
|
|
|
|

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I II

III IV

FIG. 10. The distributions of the space-time coordinates of source
points projected on ro − t plane for ICQGP [(a) and (c)] and ICSP
[(b) and (d)]. The dashed lines are for the average values of ro

and t .

〈 r̃o t̃ 〉 < 0. In regions II and III, 〈 r̃o t̃ 〉 > 0. For pion, because
of particle absorption the distributions in region III are less
than those in region I. So the values of r̃ot̃ averaging over all
ro < 〈 ro 〉 regions (I and III) are negative. In ro > 〈 ro 〉 regions,
the distribution for the pion source for ICQGP [Fig. 10(a)]
is much different from that for ICSP [Fig. 10(b)] because
of the larger transverse expansion of source for ICQGP. In
region II of the Fig. 10(a), the wider distribution for the pion
source for ICQGP leads to a greater contribution to 〈 r̃o t̃ 〉. So
the value of r̃ot̃ averaging over all ro > 〈 ro 〉 regions (II and
IV) is positive for ICQGP. For ICSP, the distribution for pion
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FIG. 11. (Color online) The results of �Ros (◦) and σ̄t vKT (∗) for
the hydrodynamic sources for ICQGP and ICSP.
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FIG. 12. (Color online) The results of σ̃ for the hydrodynamic
sources for ICQGP and ICSP.

source in region II is less than that in region IV. The value
of r̃ot̃ averaging over all ro > 〈 ro 〉 regions is also negative
for ICSP. The calculations indicate that for pion 〈 r̃o t̃ 〉 = 0.16
and −8.30 fm2/c for ICQGP and ICSP, which are consistent
with the above discussions. For kaon, because of the high
transparency and low transverse expansion of sources, the
distributions are approximately symmetric about 〈 t 〉. The
values of 〈 r̃o t̃ 〉 are small for the kaon sources.

In Fig. 11, we show the results of �Ros (symbols ◦) and the
products σ̄t vKT (symbols ∗) of the average emission durations
σ̄t of the particles and the pair transverse velocities vKT for the
hydrodynamic sources for ICQGP and ICSP. It can be seen
that except for the pion results in Fig. 11(a), the results of the
�Ros and σ̄t vKT are almost consistent.

Inspired by the consistencies of the results of �Ros and
σ̄t vKT for ICSP, we introduce the quantity

σ̃ = �Ros

vKT

=
√

R2
out − R2

side

KT /EK

, (33)

to describe the character of the long lifetime of the sources for
ICSP. It is an experimental observable.

In Fig. 12 we show the results of σ̃ for pion and kaon for
the hydrodynamic sources for ICQGP and ICSP. The larger
values of σ̃ for the soft point of the first-order phase transition
are observed in both of the pion and kaon interferometry
measurements. The σ̃ values for the pion source for ICQGP
are much smaller than the average value σ̄t = 8.4 fm/c at large
KT , because of the large transverse velocities of the source and
the positive values of 〈 r̃o t̃ 〉. In this case σ̃ cannot reflect the
real lifetime of the source. At small KT , the larger values of
σ̃ for the pion source for ICSP are due to the large negative
values of 〈 r̃o t̃ 〉 as well as the small transverse velocities of the
source in this case. The errors of σ̃ exhibited in Fig. 12 are only
from the statistic errors of Rout and Rside related to the HBT
parametrized fits. In high-energy heavy ion collisions, there are
other effects which may bring uncertainty to the observable,
for example, the nonequilibrium dynamics during the decay of
resonances after the hadronization. Further investigations on
these effects will be of interest.

IV. SUMMARY AND CONCLUSIONS

We investigate the two-particle HBT interferometry for
the hydrodynamic particle-emitting sources that undergo the
first-order phase transition from the quark-gluon plasma with
finite baryon chemical potentials to hadron resonance gas. The
effects of source expansion, lifetime, and particle absorption
on the HBT radii are examined. For pion, the large transverse
expansion of the source for ICQGP decreases the HBT radii
Rout and Rside at large transverse momentum of particle pair
KT . The source has a long lifetime and small expansion
when the system is initially located at the boundary between
the mixed phase and the QGP (soft point). In this case, the
difference between the transverse HBT radii Rout and Rside

increases with KT significantly. The ratio of
√

R2
out − R2

side
to the transverse velocity of the particle pair vKT , σ̃ , is an
observable for probing the long lifetime of the source for
the soft point of the first-order phase transition. As compared
to pion HBT interferometry kaon HBT interferometry may
present more clearly the source space-time geometry at the
emission. The larger values of σ̃ for the soft point of the
first-order phase transition can be observed both by two-pion
and two-kaon HBT measurements. Further investigations on
other effects on the observable will be of interest.
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