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Relation between baryon number fluctuations and experimentally observed proton number
fluctuations in relativistic heavy ion collisions
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We explore the relation between proton and nucleon number fluctuations in the final state in relativistic heavy
ion collisions. It is shown that the correlations between the isospins of nucleons in the final state are almost
negligible over a wide range of collision energy. This leads to a factorization of the distribution function of
the proton, the neutron, and their antiparticles in the final state with binomial distribution functions. Using the
factorization, we derive formulas to determine nucleon number cumulants, which are not direct experimental
observables, from proton number fluctuations, which are experimentally observable in event-by-event analyses.
With a simple treatment for strange baryons, the nucleon number cumulants are further promoted to the baryon
number ones. Experimental determination of the baryon number cumulants makes it possible to compare various
theoretical studies directly with experiments. The effects of nonzero isospin density on this formula are addressed
quantitatively. It is shown that the effects are well suppressed over a wide energy range.
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I. INTRODUCTION

Now that the observation of quark-gluon matter in relativis-
tic heavy ion collisions has been established for small baryon
chemical potential (μB) [1], a challenging experimental subject
following this achievement is to reveal the global structure
of the QCD phase diagram on the temperature (T ) and μB

plane. In particular, finding the QCD critical point(s), whose
existence is predicted by various theoretical studies [2,3],
is one of the most intriguing problems. Since the value of
μB of the hot medium created by heavy ion collisions can
be controlled by varying the collision energy per nucleon
pair,

√
sNN, the μB dependences of the nature of the QCD

phase transition should be observed as the
√

sNN dependence
of observables. An experimental project to explore such
signals in the energy range 10 � √

sNN � 200 GeV, called
the energy scan program, is now ongoing at the Relativistic
Heavy Ion Collider (RHIC) [4,5]. Experimental data which
will be obtained in future experimental facilities designed
for lower-beam-energy collisions will also provide important
information on this subject [6].

Observables which are suitable to analyze bulk properties
of the matter around the phase boundary of QCD in heavy ion
collisions are fluctuations [7]. Experimentally, fluctuations are
measured through event-by-event analyses [4]. Theoretically,
it is predicted that some of them, including higher order
cumulants, are sensitive to critical behavior near the QCD
critical point [8–12] and/or locations on the phase diagram,
especially on which side the system is, the hadronic side or the
quark-gluon side [13–19].

Among the fluctuation observables, those of conserved
charges are believed to possess desirable properties to probe
the phase structure in relativistic heavy ion collisions. One
of the advantages of using conserved charges is that the
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characteristic times for the variation of their local densities are
longer than those for nonconserved ones, because the variation
of the local densities of conserved charges are achieved only
through diffusion [13,14]. The fluctuations of the former thus
can better reflect fluctuations generated in earlier stages of
fireballs, when the rapidity coverage is taken sufficiently large.
From a theoretical point of view, an important property of
conserved charges is that one can define the operator of a
conserved charge, Q, as a Noether current. Moreover, their
higher order cumulants, 〈δQn〉c, are directly related to the
grand canonical partition function Z(μ) = Tre−β(H−μQ) as

〈δQn〉c = T n ∂n log Z(μ)

∂μn
, (1)

with H and μ being the Hamiltonian and the chemical
potential associated with Q, respectively. These properties
make the analysis of cumulants of conserved charges well
defined and feasible in a given theoretical framework. For
example, they can be measured in lattice QCD Monte Carlo
simulations [20–24]. Equation (1) also provides an intuitive
interpretation for the behavior of higher order cumulants of
conserved charges. For instance, the third-order cumulant
of the net baryon number, N

(net)
B , satisfies 〈(δN (net)

B )3〉c =
T ∂〈(δN (net)

B )2〉c/∂μB. This formula means that 〈(δN (net)
B )3〉c

changes its sign around the phase boundary on the T -μB plane
where the baryon number susceptibility 〈(δN (net)

B )2〉c has a peak
structure [17]. The change of the sign of observables like this
will serve as a clear experimental signal [17–19].

QCD has several conserved charges, such as baryon and
electric charge numbers and energy. Among these conserved
charges, theoretical studies suggest that the cumulants of the
baryon number have the most sensitive dependences on the
phase transitions and phases of QCD. In order to see this
feature, let us compare the baryon number cumulants with
the electric charge ones. First, the baryon number fluctuations
show the critical fluctuations associated with the QCD critical
point more clearly. Although the baryon and electric charge
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number fluctuations diverge with the same critical exponent
around the critical point, it should be remembered that this does
not mean similar clarity of signals for the critical enhancement
in experimental studies. Fluctuations near the critical point are
generally separated into singular and regular parts, and only
the former diverges with the critical exponent. The singular
part of the electric charge fluctuations is relatively suppressed
compared to the baryon number ones, because the former ones
contain isospin number fluctuations, which are regular near the
critical point [9]. The additional regular contribution makes
the experimental confirmation of the enhancement of the
singular part difficult, and this tendency is more pronounced
in higher order cumulants [17]. While it is known that proton
number fluctuations in the final state also reflect the critical
enhancement near the critical point [9], as we will show later
the baryon number fluctuations are superior to this observable,
too, in the same sense. Second, the ratios of baryon number
cumulants [16] behave more sensitively to the difference of
phases, i.e., hadrons or quarks and gluons. This is because
the ratios depend on the magnitude of charges carried by the
quasiparticles composing the state [13,14,16], while the charge
difference between hadrons and quarks is more prominent in
the baryon number.

Experimentally, however, the baryon number fluctuations
are not directly observable, because chargeless baryons, such
as neutrons, cannot be detected by most detectors. Proton
number fluctuations can be measured [4,5], and recently its
cumulants have been compared with theoretical predictions
for baryon number cumulants. Indeed, in a free hadron gas in
equilibrium the baryon number cumulants are approximately
twice the proton number ones, because the baryon number
cumulants in a free gas are simply given by the sum of those
for all baryons, and the baryon number is dominated by proton
and neutron numbers in the hadronic medium relevant to
relativistic heavy ion collisions. In general, however, these
cumulants behave differently. In fact, we will see later that the
nonthermal effects which exist in baryon number cumulants
are strongly suppressed in the proton number ones.

In heavy ion collisions, because of the dynamical evolution
the medium at kinetic freeze-out is not completely in thermal
equilibrium. The original ideas to exploit fluctuation observ-
ables of conserved charges as probes of primordial properties
of fireballs [13,14] dealt with this nonthermal effect encoded
in the final state as a hysteresis of the time evolution. To
observe such effects, it is highly desirable to measure baryon
number cumulants, which are expected to retain more effects
of the phase transition and the singularity around the critical
point. The experimental determination of baryon number
cumulants also makes the comparison between experimental
and theoretical studies more robust, since many theoretical
works including lattice QCD simulations are concerned with
the baryon number cumulants, not the proton number ones.

In Ref. [25], the authors of the present paper have argued
that, whereas the baryon number cumulants are not the direct
experimental observables as discussed above, they can be
determined in experiments by only using the experimentally
measured proton number fluctuations for

√
sNN � 10 GeV.

The key idea is that isospins of nucleons in the final state
are almost completely randomized and uncorrelated, because

of reactions of nucleons with thermal pions in the hadronic
stage, as will be elucidated in Sec. II. This leads to the
conclusion that, when NN nucleons exist in a phase space
of the final state, the probability that Np nucleons among them
are protons follows the binomial distribution. More generally,
the probability distribution that Np protons, Nn neutrons, Np̄

antiprotons, and Nn̄ antineutrons are found in the final state in
a phase space is factorized as

PN(Np,Nn,Np̄,Nn̄) =F(NN, NN̄)Br (Np; NN)Br̄ (Np̄; NN̄),

(2)

where the nucleon and antinucleon numbers are NN = Np +
Nn and NN̄ = Np̄ + Nn̄, respectively, and

Br (k; n) = n!

k!(n − k)!
rk(1 − r)n−k (3)

is the binomial distribution function with probabilities r =
〈Np〉/〈NN〉 and r̄ = 〈Np̄〉/〈NN̄〉. The function F(NN, NN̄)
describes the distribution of nucleons and antinucleons and
the correlation between them in the final state, which are
determined by the dynamical history of fireballs. Using the
factorization Eq. (2), one can obtain formulas to represent the
(anti)nucleon number cumulants by the (anti)proton number
ones, and vice versa; whereas the neutron number is not
determined by experiments, this missing information can
be reconstructed with the knowledge for the distribution
function, Eq. (2). The (anti)nucleon number in Eq. (2) can
further be promoted to the (anti)baryon number in practical
analyses with a simple treatment for strange baryons to a
good approximation. These formulas enable one to determine
the baryon number cumulants solely with the experimentally
measured proton number fluctuations, and, as a result, to obtain
insights into the present experimental results on the proton
number cumulants.

The main purpose of the present paper is to elaborate
upon the discussion in Ref. [25] with some extensions. In
Ref. [25] the formulas are derived only for an isospin-
symmetric medium. In the present study we extend them to
incorporate cases with nonzero isospin densities. With the
extended relations, it is shown that the effect of nonzero
isospin density is well suppressed for

√
sNN � 10 GeV. The

procedures of the manipulations and discussions omitted in
Ref. [25] are also addressed in detail.

In the next section, we show that the factorization given by
Eq. (2) is well applied to the nucleon and baryon distribution
functions in the final state in heavy ion collisions. We then
derive formulas to relate baryon and proton number cumulants
in Sec. III. In Sec. IV, we discuss the recent experimental
results at STAR [4,5] using the results in Sec. III, and possible
extensions of our results. The final section is devoted to a short
summary.

Throughout this paper, we use NX to represent the number
of particles X leaving the system after each collision event,
where X = p, n, N, and B represent proton, neutron, nucleon,
and baryon, respectively, and their antiparticles, p̄, n̄, N̄, and
B̄. The net and total numbers are defined as N

(net)
X = NX − NX̄

and N
(tot)
X = NX + NX̄, respectively.
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II. DISTRIBUTION FUNCTION FOR PROTON
AND NEUTRON NUMBERS

In this section, we discuss the time evolution of the proton
and neutron number distributions in the hadronic medium
generated by relativistic heavy ion collisions, and we show that
the nucleon distribution in the final state in a phase space is
factorized as in Eq. (2) at sufficiently large

√
sNN. In Sec. II A,

as a preliminary example we show that Eq. (2) is applicable
to the equilibrated free hadron gas in the ranges of T and μB

relevant to relativistic heavy ion collisions. We then extend
the argument to the distribution function in the final state in
relativistic heavy ion collisions in Sec. II B.

A. Free hadron gas in equilibrium

Let us first consider nucleons in the free hadron gas in
equilibrium. For T and μB which are relevant to relativistic
heavy ion collisions, the nucleon mass mN satisfies mN −
|μB| � T . One thus can apply the Boltzmann approximation
for the distribution functions of nucleons. The number of
particles in a phase space, N , which obey Boltzmann statistics
is given by the Poisson distribution,

Pλ(N ) = e−λλN

N !
, (4)

with the average λ = 〈N〉 = ∑
N NPλ(N ). Accordingly, the

probability of finding Np (Np̄) protons (antiprotons) and Nn

(Nn̄) neutrons (antineutrons) in the phase space is given by the
product of the Poisson distribution functions,

PHG(Np,Nn,Np̄,Nn̄)

= P〈Np〉(Np)P〈Nn〉(Nn)P〈Np̄〉(Np̄)P〈Nn̄〉(Nn̄). (5)

The product of two Poisson distribution functions satisfies
the identity

Pλ1 (N1)Pλ2 (N2)

= Pλ1+λ2 (N1 + N2)Bλ1/(λ1+λ2)(N1; N1 + N2), (6)

where Br (k; n) is the binomial distribution function [Eq. (3)].
By using Eq. (6), Eq. (5) is rewritten as

PHG(Np,Nn,Np̄,Nn̄)

= P〈NN〉(NN)P〈NN̄〉(NN̄)Br (Np; NN)Br̄ (Np̄; NN̄), (7)

where NN = Np + Nn and NN̄ = Np̄ + Nn̄ are the nucleon
and antinucleon numbers, respectively, and r = 〈Np〉/〈NN〉
and r̄ = 〈Np̄〉/〈NN̄〉. Equation (7) shows that the distribution
of nucleons in the free hadron gas is factorized using binomial
functions as in Eq. (2) with

F(NN, NN̄) = P〈NN〉(NN)P〈NN̄〉(NN̄). (8)

The appearance of the binomial distribution functions in
Eq. (7) is understood as follows. When one finds a nucleon
in the hadron gas, the probability that the nucleon is a proton
is r . The isospins of all nucleons found in the phase space,
moreover, are not correlated with one another as a consequence
of Boltzmann statistics and the absence of interactions. Once
NN nucleons are found in the phase space, therefore, the
probability that Np particles are protons is a superposition

of independent events with probability r , i.e., the binomial
distribution.

We note that the above discussion is not applicable when the
condition mN − |μB| � T , required for Boltzmann statistics,
is not satisfied. When quantum correlations of nucleons arising
from Fermi statistics are not negligible, the isospin of each
nucleon can no longer be independent. As long as we are
concerned with the range of T and μB which can be realized
by relativistic heavy ion collisions, however, the condition for
the Boltzmann approximation is well satisfied except for very
low energy collisions [26].

B. Final state in heavy ion collisions

Next, we consider the nucleon distribution functions in the
final state in heavy ion collisions. We show that the nucleon
distribution in this case is also factorized as in Eq. (2), by
demonstrating that the isospins of all nucleons in the final
state are random and uncorrelated.

1. �(1232) resonance

The key ingredient to obtain the factorization given by
Eq. (2) in the final state in relativistic heavy ion collisions
is Nπ reactions in the hadronic stage mediated by �(1232)
resonances having isospin I = 3/2. As we will see later, this
is the most dominant reaction of nucleons in the hadronic
medium. This is because (i) the cross section of Nπ → �

reactions exceeds 200 mb = 20 fm2 and is comparable with
that of NN and NN̄ reactions for Plab � 300 MeV [27] and
(ii) the pion density dominates over those of all other particles
in the ranges of T and μB accessible with heavy ion collisions
at

√
sNN � 10 GeV; at the top RHIC energy, the density of

pions is more than one order larger than that of nucleons. We
shall show below that these reactions frequently take place
even after chemical freeze-out in the hadronic medium during
the time evolution of the fireballs.

The Nπ reactions through the � contain charge exchange
reactions, which alter the isospin of the nucleon in the reaction.
The reactions of a proton to form the � are

p + π+ → �++ → p + π+, (9)

p + π0 → �+ → p(n) + π0(π+), (10)

p + π− → �0 → p(n) + π−(π0). (11)

Among these reactions, Eqs. (10) and (11) are responsible
for the change of the nucleon isospin. The ratio of the cross
sections of a proton to form �++, �+, and �0 is 3:1:2,
which is determined by the isospin SU(2) symmetry of the
strong interaction. The isospin symmetry also tells us that the
branching ratios of �+ (�0) decaying into the final state having
a proton and a neutron are 1:2 (2:1). Using these ratios, one
obtains the ratio of the probabilities that a proton in the hadron
gas forms �+ or �0 with a reaction with a thermal pion, and
then decays into a proton and a neutron, respectively, Pp→p

and Pp→n, as

Pp→p : Pp→n = 5 : 4, (12)
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provided that the hadronic medium is isospin symmetric and
that the three isospin states of the pion are equally distributed
in the medium. Because of the isospin symmetry of the strong
interaction one also obtains the same conclusion for neutron
reactions:

Pn→n : Pn→p = 5 : 4. (13)

Similar results are also obtained for antinucleons. Equa-
tions (12) and (13) show that these reactions act to randomize
the isospin of nucleons during the hadronic stage.

2. Mean time

Next, let us estimate the mean time of these reactions. By
assuming that pions are thermally distributed, the mean time
τ� of a nucleon at rest in the medium to undergo a reaction via
Eq. (10) or (11) is given by

τ−1
� =

∫
d3kπ

(2π )3
σ (Ec.m.)vπn(Eπ ), (14)

with the Bose distribution function n(E) = (eE/T − 1)−1, the
pion momentum kπ , the pion velocity vπ = kπ/Eπ , Eπ =√

m2
π + k2

π , and the pion mass mπ . σ (Ec.m.) is the sum of
the cross sections for Nπ reactions producing �+ and �0 for
the center-of-mass energy Ec.m. = [(mN + Eπ )2 − k2

π ]1/2 with
nucleon mass mN. For the cross section σ (Ec.m.), we assume
that the peak corresponding to the �(1232) resonance is well
reproduced by the Breit-Wigner form

σ (Ec.m.) = σ�


2/4

(Ec.m. − m�)2 + 
2/4
, (15)

which is a sufficient approximation for our purpose. Here,
we use the value of the parameters determined by the Nπ

reactions in vacuum, m� = 1232 MeV, 
 = 110 MeV, and
σ� = 20 fm2 [27]. The medium effects on the cross section
will be discussed later. Substituting mN = 940 MeV and mπ =
140 MeV, one obtains the T dependence of the mean time τ�

presented in Fig. 1. The figure shows that the mean time is
τ� = 3–4 fm for T = 150–170 MeV. One can confirm that

 3

 4

 5

 6

 130  140  150  160  170

τ Δ
 [f

m
]

T [MeV]

FIG. 1. (Color online) Mean time τ� of a rest nucleon to form
�+ or �0 in the hadronic medium as a function of temperature T .

the mean time hardly changes even for moving nucleons in
the range of momentum p � 3T by extending Eq. (14) to
cases with nonzero nucleon momentum. The lifetime of �

resonances is τ
 = 1/
 � 1.8 fm.
The mean time evaluated above is much shorter than

the lifetime of the hadronic stage in relativistic heavy ion
collisions. According to a dynamical model analysis for
collisions at the RHIC, nucleons in the hadron phase continue
to interact for a couple of tens of femtometers on average at
midrapidity [28]. As a result, at the RHIC energy each nucleon
in a fireball has chances to undergo charge exchange reactions
several times in the hadronic stage.

Two remarks are in order here. First, the above result on
the time scales shows that the reactions to produce the �

proceed even after chemical freeze-out. These reactions do not
contradict the success of the statistical model, which describes
chemical freeze-out [29], because chemical freeze-out is a
concept to describe ratios of particle abundances such as
〈Np̄〉/〈Np〉 and the above reactions do not alter the average
abundances in the final state. The success of the model, on
the other hand, indicates that creation and annihilation of
(anti)nucleons hardly occur after chemical freeze-out. Second,
we note that the dynamical model in Ref. [28] uses an
equation of state having a first-order phase transition in
the hydrodynamic simulations for the time evolution above
the critical temperature Tc. Recently, dynamical simulations
have been carried out with more realistic equations of state
obtained by lattice QCD simulations [30]. The lifetime of the
hadronic stage evaluated in these studies is more relevant to
this argument. We, however, note that the qualitative behavior
of the time evolution seems to be insensitive to the difference
in equations of state [30].

While Nπ reactions frequently take place even below the
chemical freeze-out temperature, Tchem, NN̄ annihilation and
production almost terminate at Tchem. This is necessary for the
success of the thermal model. For Ec.m. � T the cross section
of the NN̄ pair annihilation is largest among all NN and NN̄
reactions. If nucleons and antinucleons are distributed without
correlation, therefore, all NN and NN̄ reactions cease to take
place at Tchem. This conclusion is, of course, obtained also
by evaluating the mean time for each reaction using the cross
sections [27] as in Eq. (14). After chemical freeze-out, the
only inelastic reactions nucleons go through are thus Eqs. (10)
and (11), and after each reaction the nucleon loses its initial
isospin information. Only after repeating the reactions of
Eq. (12) twice, the ratio becomes 41:40, which is almost even.
If medium effects on the formation and decay of the � are
negligible, therefore, irrespective of the nucleon distribution
at chemical freeze-out, the isospin of nucleons at kinetic
freeze-out can be regarded as random and uncorrelated. On the
other hand, the nucleon number distribution can deviate from
the Boltzmann distribution, reflecting the dynamical history of
fireballs.

Because of the absence of correlations between isospins
of nucleons in the final state, once NN (NN̄) nucleons
(antinucleons) exist in a phase space in the final state, their
isospin distribution is simply given by the binomial one. This
conclusion leads to the factorization Eq. (2) for proton and
neutron number distribution in the final state for an arbitrary
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phase space. In particular, the final state proton and antiproton
number distribution is written as

G(Np,Np̄) =
∑

Nn,Nn̄

PN(Np,Nn,Np̄,Nn̄)

=
∑

NN,NN̄

F(NN, NN̄)Br (Np; NN)Br̄ (Np̄; NN̄). (16)

Unlike in the simple example in Sec. II A, the nucleon
distribution function F(NN, NN̄) in this case is determined
by the time evolution of fireballs and is not necessarily of a
thermal or separable form as in Eq. (8); no specific form for
F(NN, NN̄) is assumed here or will be assumed in the analyses
in Sec. III. What we have used here is the fact that the time
scale for the exchange of isospins between nucleons and pions
is sufficiently short compared to the lifetime of the hadronic
stage after chemical freeze-out. On the other hand, the time
scale for the variation of conserved charge in a phase space
depends on the form of the phase space, and it can become
arbitrary long by increasing the spatial volume. When the time
scale is long, information of the physics of the early stages is
encoded in F(NN, NN̄).

3. Medium effects

Next, let us inspect the possibility of medium effects on the
formation and decay rates of the �. In medium, the decay rate
of the � acquires the statistical factor

[1 − f (EN)] [1 + n(Eπ )] , (17)

where f (E) = (e(E−μB)/T + 1)−1 is the Fermi distribution
function and EN and Eπ are the energies of the nucleon and
pion produced by the decay, respectively. The first term in
Eq. (17) represents the Pauli blocking effect. At the RHIC
energy, since the Boltzmann approximation is well applied
to nucleons, the Pauli blocking effect is suppressed. The
Bose factor [1 + n(Eπ )] in Eq. (17), on the other hand, has
a non-negligible contribution since mπ � Tchem. As long as
all n(Eπ ) for the three isospin states of the pion are the
same, however, this factor does not alter the branching ratios
given by Eqs. (12) and (13), while the factor enhances the
decay of the �. A possible origin for the variation of n(Eπ )
is the isospin density of nucleon number; since the isospin
density is locally conserved, the isospin density of pions is
affected by the nucleon isospin. This effect on n(Eπ ) is,
however, well suppressed since the density of pions is much
larger than that of nucleons below Tchem. Another possible
source which gives rise to a different pion distribution is the
event-by-event fluctuation of the isospin density in the phase
space at hadronization. It is, however, expected that the effect
is well suppressed, again because of the large pion density.
One, therefore, can conclude that the medium effect hardly
changes the branching ratios Eqs. (12) and (13). The same
conclusion also applies to the formation rate of the �, since
the medium effect on the probabilities of a nucleon to undergo
reactions Eqs. (9)–(11) depends only on n(Eπ ). After all, all
medium effects on the ratios Eqs. (12) and (13) are negligible.

When the system has a nonzero isospin density, the
probabilities in Eqs. (12) and (13) receive modifications

because the three isospin states of the pion are not equally
distributed, although this effect is not large, as will be shown in
Sec. III D. Even in this case, however, the only modification to
the above conclusion is to replace the probabilities r and r̄ with
appropriate values, since the reactions given by Eqs. (9)–(11)
still act to randomize the nucleon isospins with the modified
probabilities determined by the detailed balance condition.

Here, we emphasize that the large pion density in the
hadronic medium is responsible for the validity of Eq. (16)
in the final state. In the hadronic medium, there are so many
pions and they can be regarded as a heat bath when the nucleon
sector is concerned, while nucleons are so dilutely distributed
that they do not feel each other’s existence.

So far, we have limited our attention to reactions mediated
by �(1232). Interactions of nucleons with other mesons,
however, can also take place in the hadronic medium, while
they are much less dominant. It is also possible that the �

interacts with thermal pions to form another resonance before
its decay [31]. All these reactions with thermal particles,
however, proceed with certain probabilities determined by the
isospin SU(2) symmetry as long as they are caused by the
strong interaction. Each reaction of a nucleon thus makes its
isospin random and acts to realize the factorization Eq. (2).

4. Low-beam-energy region

The factorization given by Eq. (16) is fully established for
the RHIC energy. At very low beam energy, however, pions
are not produced enough and the duration of the hadron phase
below Tchem becomes shorter. Nucleons, therefore, will not
undergo sufficient charge exchange reactions below Tchem.
When the reactions hardly occur, the isospin correlations
generated at the hadronization remain until the final state. At
low beam energy, also the density of the nucleon becomes
comparable to that of pions, and pions can no longer be
regarded as a heat bath to absorb isospin fluctuations of
nucleons. The requirements to justify the factorization given
by Eq. (16), therefore, eventually breaks down as the beam
energy is decreased. This would happen when Tchem � mπ ,
since the abundance of pions is responsible for all of the
above conditions. From the

√
sNN dependence of the chemical

freeze-out line on the T -μB plane [26], the factorization given
by Eq. (16) should be well satisfied in the range of beam energy√

sNN � 10 GeV.

C. Strange baryons

So far, we have limited our attention to nucleons. Since
baryons in the final state in heavy ion collisions are dominated
by nucleons, the nucleon number, which is not a conserved
charge, is qualitatively identified with the baryon one. It is,
however, important to recognize the difference between these
two fluctuation observables especially in considering higher
order cumulants. The difference predominantly comes from
the strange baryons � and �. In this section, we argue a
practical method to include the effect of these degrees of
freedom in our factorization formula.
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Strange baryons produced in the hadronic medium decay
via the weak or electromagnetic interaction outside the fireball.
The � decays via the weak interaction into pπ− and nπ0 with
the branching ratio

P�→p : P�→n � 16 : 9. (18)

On the other hand, the branching ratio of �+ is

P�+→p : P�+→n � 13 : 12, (19)

while �− always decays into nπ−. �0 decays into a � via the
electromagnetic interaction and then decays with Eq. (18) [27].
If the � and � multiplets are created with an equal probability,
the production ratio of p and n from their decays is given by

P�,�→p : P�,�→n � 9 : 11. (20)

Actually, because of the mass splitting between the � and the
� triplets, δm � Tchem/2, the production of the � triplets are a
bit suppressed compared to that of the �. This makes the
above ratio even closer to even. If one can assume that the
correlations between strange baryons emitted from the fireball
are negligible, therefore, the number of nucleons produced by
these decays can be incorporated into Np and Nn in Eq. (2).
The nucleon number in Eq. (2), then, is promoted to that of
baryons. The same argument holds also for the antiparticles �̄

and �̄.
In short, by simply counting all protons observed by

detectors in the event-by-event analysis, NN and NN̄ in Eq. (2)
are automatically promoted to the baryon and antibaryon
numbers, respectively.

III. RELATING BARYON AND PROTON
NUMBER CUMULANTS

In this section, we focus on the cumulants of the baryon and
proton numbers, and we derive formulas to relate these cumu-
lants on the basis of the factorization given by Eq. (2). With
these relations the cumulants of the baryon number, which
is a conserved charge, are calculated from experimentally
observed proton number ones.

In this section, we change the variables in the probability
distribution function in Eq. (2) as

P(Np,Np̄; NB, NB̄) = PN (Np,Nn,Np̄,Nn̄), (21)

where we have replaced the neutron numbers with the baryon
ones, NB = Np + Nn and NB̄ = Np̄ + Nn̄. It is understood
that the prescription discussed in Sec. II C is adopted for �,
�, and their antiparticles.

A. Probability distribution functions

Before deriving formulas to relate the baryon and proton
number cumulants, in this section we first remark that the
distribution functions of these degrees of freedom satisfy a
linear relation under the factorization given by Eq. (2). This
relation explains why the baryon number cumulants can be
represented by the proton number cumulants and vice versa.

Let us start with the final state proton and antiproton number
distribution function, Eq. (16),

G(Np,Np̄) =
∑

NB,NB̄

P(Np,Np̄; NB, NB̄)

=
∑

NB,NB̄

F(NB, NB̄)M(Np,Np̄; NB, NB̄) (22)

with

M(Np,Np̄; NB,NB̄) = Br (Np; NB)Br̄ (Np̄; NB̄). (23)

Equation (22) shows that the distribution functions
G(Np,Np̄) and F(NB, NB̄) satisfy a linear relation. Since
M(Np,Np̄; NB, NB̄) has the inverse M−1(NB,NB̄ ; Np,Np̄),
F(NB, NB̄) is given in terms of G(Np,Np̄) as

F(NB, NB̄) =
∑

Np,Np̄

G(Np,Np̄)M−1(NB, NB̄; Np,Np̄). (24)

The specific form of M−1(NB, NB̄; Np,Np̄) is easily obtained
by using the fact that the matrix given by Eq. (23) has
a triangular structure, in the sense that M(Np,Np̄; NB, NB̄)
takes nonzero values only for Np � NB and Np̄ � NB̄. By
using Eq. (24), the baryon number distribution function
F(NB, NB̄) [32] is in principle determined by G(Np,Np̄). In
practice, however, this analysis does not work efficiently since
the elements of M−1(NB, NB̄; Np,Np̄) are rapidly oscillating,
which results in large error bars in F(NB, NB̄) determined in
this way. In the following, instead of the distribution functions
themselves, we concentrate on the cumulants of F(NB, NB̄)
and G(Np,Np̄).

B. Generating functions and cumulants

The moments and cumulants of a distribution function are
defined in terms of their generating functions. The moment-
generating function for the proton and antiproton numbers with
probability P(Np,Np̄; NB, NB̄) is given by

G(θ, θ̄ ) =
∑

Np,Np̄,NB,NB̄

P(Np,Np̄; NB, NB̄)eNpθ eNp̄θ̄ , (25)

and the corresponding cumulant generating function reads

K(θ, θ̄ ) = log G(θ, θ̄ ). (26)

Derivatives of Eq. (25) give moments of P(Np,Np̄; NB, NB̄):

〈
Nn

pNm
p̄

〉 = ∂n

∂θn

∂m

∂θ̄m
G(θ, θ̄ )

∣∣∣∣
θ=θ̄=0

, (27)

as long as the sum in Eq. (25) converges, while cumulants of
the proton and antiproton numbers are defined with Eq. (26)
as

〈(δNp)n(δNp̄)m〉c = ∂n

∂θn

∂m

∂θ̄m
K(θ, θ̄ )

∣∣∣∣
θ=θ̄=0

. (28)

The first-order cumulant is the expectation value of the
operator,

〈δNp〉c = 〈Np〉, 〈δNp̄〉c = 〈Np̄〉, (29)
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while the second- and third-order cumulants are moments of
fluctuations, such as

〈δNpδNp̄〉c = 〈δNpδNp̄〉, (30)

and so forth, with δNX = NX − 〈NX〉.
Substituting the explicit form of P(Np,Np̄; NB, NB̄) in

Eq. (16) for K(θ, θ̄ ), one obtains

K(θ, θ̄ ) = log
∑

NB,NB̄

F(NB, NB̄) exp[kNB,NB̄
(θ, θ̄ )], (31)

where

kNB,NB̄
(θ, θ̄ ) = log

∑
Np

Br (Np; NB)eNpθ

+ log
∑
Np̄

Br̄ (Np̄; NB̄)eNp̄θ̄ (32)

is the cumulant-generating function for two independent
binomial distribution functions. With Eq. (32), one easily finds

that this function satisfies kNB,NB̄
(0, 0) = 0 and

∂n

∂θn
kNB,NB̄

(0, 0) = ξnNB, (33)

∂m

∂θ̄m
kNB,NB̄

(0, 0) = ξ̄mNB̄, (34)

∂n+m

∂θn∂θ̄m
kNB,NB̄

(0, 0) = 0, (35)

for positive integers n and m, with the cumulants of the
binomial distribution function normalized by the total number,

ξ1 = r, ξ2 = r(1 − r), ξ3 = r(1 − r)(1 − 2r),
(36)

ξ4 = r(1 − r)(1 − 6r + 6r2), · · · ,

and the same formulas for the antiparticle sector. By imposing
Eqs. (31)–(35) as the structure of K(θ, θ̄ ), cumulants of net
proton and baryon numbers, N (net)

p = Np − Np̄ and N
(net)
B =

NB − NB̄, respectively, are calculated to be

〈
N (net)

p

〉 = 〈ξ1NB − ξ̄1NB̄〉, (37)〈(
δN (net)

p

)2〉 = 〈(ξ1δNB − ξ̄1δNB̄)2〉 + 〈ξ2NB + ξ̄2NB̄〉, (38)〈(
δN (net)

p

)3〉 = 〈(ξ1δNB − ξ̄1δNB̄)3〉 + 3〈(ξ2δNB + ξ̄2δNB̄)(ξ1δNB − ξ̄1δNB̄)〉 + 〈ξ3NB − ξ̄3NB̄〉, (39)〈(
δN (net)

p

)4〉
c

= 〈(ξ1δNB − ξ̄1δNB̄)4〉c + 6〈(ξ2δNB + ξ̄2δNB̄)(ξ1δNB − ξ̄1δNB̄)2〉 + 3〈(ξ2δNB + ξ̄2δNB̄)2〉
+ 4〈(ξ3δNB − ξ̄3δNB̄)(ξ1δNB − ξ̄1δNB̄)〉 + 〈ξ4NB + ξ̄4NB̄〉 (40)

and 〈
N

(net)
B

〉 = 〈
ξ−1

1 Np − ξ̄−1
1 Np̄

〉
, (41)〈(

δN
(net)
B

)2〉 = 〈(
ξ−1

1 δNp − ξ̄−1
1 δNp̄

)2〉 − 〈
ξ2ξ

−3
1 δNp + ξ̄2ξ̄

−3
1 δNp̄

〉
, (42)

〈(
δN

(net)
B

)3〉 = 〈(
ξ−1

1 δNp − ξ̄−1
1 δNp̄

)3〉− 3
〈(
ξ2ξ

−3
1 δNp + ξ̄2ξ̄

−3
1 δNp̄

)(
ξ−1

1 δNp − ξ̄−1
1 δNp̄

)〉+
〈

3ξ 2
2 − ξ1ξ3

ξ 5
1

Np − 3ξ̄ 2
2 − ξ̄1ξ̄3

ξ̄ 5
1

Np̄

〉
,

(43)〈(
δN

(net)
B

)4〉
c

= 〈(
ξ−1

1 δNp − ξ̄−1
1 δNp̄

)4〉
c
− 6

〈(
ξ2ξ

−3
1 δNp + ξ̄2ξ̄

−3
1 δNp̄

)(
ξ−1

1 δNp − ξ̄−1
1 δNp̄

)〉 + 12
〈(
ξ 2

2 ξ−5
1 δNp − ξ̄ 2

2 ξ̄−5
1 δNp̄

)
× (

ξ−1
1 δNp − ξ̄−1

1 δNp̄

)〉 + 3
〈(
ξ2ξ

−3
1 δNp + ξ̄2ξ̄

−3
1 δNp̄

)2〉 − 4
〈(
ξ3ξ

−4
1 δNp − ξ̄3ξ̄

−4
1 δNp̄

)(
ξ−1

1 δNp − ξ̄−1
1 δNp̄

)〉

−
〈

15ξ 3
2 − 10ξ1ξ2ξ3 + ξ 2

1 ξ4

ξ 7
1

Np − 15ξ̄ 3
2 − 10ξ̄1ξ̄2ξ̄3 + ξ̄ 2

1 ξ̄4

ξ̄ 7
1

Np̄

〉
. (44)

A detailed description of the procedure to obtain these results
is given in Appendix A. We emphasize that no explicit form of
F(NB, NB̄) is assumed in deriving these results. Moreover,
in Appendix A we only use Eq. (31) for the structure of
K(θ, θ̄ ) and Eqs. (33)–(35) for properties of kNB,NB̄

(θ, θ̄ ) to
derive Eqs. (37)–(44). Therefore, these results hold for any
distribution functions satisfying these conditions with the
appropriate choice for the values of ξi and ξ̄i .

C. Isospin-symmetric case

In a hot medium produced by heavy ion collisions,
(anti)proton and (anti)neutron number densities are in general

different because of the isospin asymmetry of colliding
heavy nuclei. In relativistic heavy ion collisions at suffi-
ciently large

√
sNN and small impact parameters, however,

the isospin density is negligibly small because a large
number of particles having nonzero isospin charges (mainly
pions) are created and most of the initial isospin density is
absorbed by these degrees of freedom (see Appendix B).
When the isospin density vanishes, r and r̄ are to be set
at 1/2 in the binomial distribution functions in Eq. (2).
Substituting

ξ1 = 1
2 , ξ2 = 1

4 , ξ3 = 0, ξ4 = − 1
8 (45)
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into Eqs. (37)–(44), which are obtained by putting r = 1/2 in
Eq. (36), one obtains

〈
N (net)

p

〉 = 1
2

〈
N

(net)
B

〉
, (46)〈(

δN (net)
p

)2〉 = 1
4

〈(
δN

(net)
B

)2〉 + 1
4

〈
N

(tot)
B

〉
, (47)〈(

δN (net)
p

)3〉 = 1
8

〈(
δN

(net)
B

)3〉 + 3
8

〈
δN

(net)
B δN

(tot)
B

〉
, (48)〈(

δN (net)
p

)4〉
c

= 1
16

〈(
δN

(net)
B

)4〉
c
+ 3

8

〈(
δN

(net)
B

)2
δN

(tot)
B

〉
+ 3

16

〈(
δN

(tot)
B

)2〉 − 1
8

〈
N

(tot)
B

〉
(49)

and

〈
N

(net)
B

〉 = 2〈N (net)
p 〉, (50)

〈(
δN

(net)
B

)2〉 = 4
〈(
δN (net)

p

)2〉 − 2
〈
N (tot)

p

〉
, (51)

〈
(δN (net)

B )3
〉 = 8

〈
(δN (net)

p )3
〉 − 12

〈
δN (net)

p δN (tot)
p

〉 + 6
〈
N (net)

p

〉
,

(52)〈(
δN

(net)
B

)4〉
c

= 16
〈(
δN (net)

p

)4〉
c
− 48

〈(
δN (net)

p

)2
δN (tot)

p

〉
+ 48

〈(
δN (net)

p

)2〉 + 12
〈(
δN (tot)

p

)2〉 − 26
〈
N (tot)

p

〉
,

(53)

which are the results given in Ref. [25]. Here a note is in
order about the terms on the right-hand sides (RHSs) of
Eqs. (51)–(53). Each term on the RHS of these equations
is not necessarily uncorrelated with each other. In particular,
generally F(NB, NB̄) is not separable; i.e., it cannot be written
as F(NB, NB̄) = f (NB)g(NB̄). If there is such a correlation,
the statistical fluctuations of these terms are not independent
but mutually correlated. Thus, appropriate care needs to be
taken in estimating the statistical error for the LHSs of
Eqs. (51)–(53).

D. Effect of nonzero isospin density

As the collision energy is lowered, the effect of nonzero
isospin density eventually gives rise to a non-negligible
contribution to the above relations. To investigate this effect,
we first assume that the isospins of nucleons, antinucleons,
and pions in the final state are in chemical equilibrium, as is
indicated by the fast Nπ reactions discussed in the previous
section. Because the nucleon distribution is well approximated
by the Boltzmann distribution, the numbers of (anti)protons
and (anti)neutrons in the final state are given with isospin
chemical potential μI and temperature T as

〈Np〉 = CeμI/(2T ), 〈Np̄〉 = De−μI/(2T ),
(54)

〈Nn〉 = Ce−μI/(2T ), 〈Nn̄〉 = DeμI/(2T ),

where C and D are constants determined by the chemical
freeze-out condition such as the volume of the system, the
rapidity coverage, and so on. These relations lead to

〈Np〉
〈Nn〉 = 〈Nn̄〉

〈Np̄〉 = eμI/T , (55)

and thereby r = 1 − r̄ . One thus can parametrize r and r̄ as

r = 1
2 − α, r̄ = 1

2 + α, (56)

with the negative isospin density per nucleon,

α = 1

2

〈Nn〉 − 〈Np〉
〈Nn〉 + 〈Np〉 = 1

2

1 − eμI/T

1 + eμI/T
. (57)

α assumes a positive value in heavy ion collisions.
When the value of α is small (α � 1), the effects of nonzero

isospin density on Eqs. (41)–(44) are well described by the
Taylor series with respect to α. By substituting Eq. (56)
in these equations, up to first order in α Eqs. (50)–(53)
become

〈
N

(net)
B

〉 = 2
〈
N (net)

p

〉 + 4α
〈
N (tot)

p

〉 + O(α2), (58)〈(
δN

(net)
B

)2〉 = 4
〈(
δN (net)

p

)2〉 + 2
〈
N (tot)

p

〉 + 4α
[
4
〈
δN (net)

p δN (tot)
p

〉 − 3
〈
N (net)

p

〉] + O(α2), (59)〈(
δN

(net)
B

)3〉 = 8
〈(
δN (net)

p

)3〉 − 12
〈
δN (net)

p δN (tot)
p

〉 + 6
〈
N (net)

p

〉 + 4α
[
12〈(δN (net)

p

)2
δN (tot)

p

〉 − 18
〈(
δN (net)

p

)2〉
− 6

〈(
δN (toe)

p

)2〉 + 13
〈
N (tot)

p

〉] + O(α2), (60)〈(
δN

(net)
B

)4〉
c

= 16
〈(
δN (net)

p

)4〉
c
− 48

〈(
δN (net)

p

)2
δN (tot)

p

〉 + 48
〈(
δN (net)

p

)2〉 + 12
〈(
δN (tot)

p

)2〉 − 26
〈
N (tot)

p

〉 + 4α
[
32

〈(
δN (net)

p

)3
δN (tot)

p

〉
c

− 72
〈(

δN (net)
p

)3〉 − 48
〈
δN (net)

p (δN (tot)
p )2

〉 + 164
〈
δN (net)

p δN (tot)
p

〉 − 75
〈
N (net)

p

〉] + O(α2). (61)

Next, let us estimate the value of α in relativistic heavy ion
collisions. Under the chemical equilibrium condition, the ratio
of the charged pion numbers, 〈Nπ+〉 and 〈Nπ−〉, having isospin
charges ±1, is given by

〈Nπ−〉
〈Nπ+〉 � e−2μI/T , (62)

where we have adopted Boltzmann statistics for pions, since
the effect of Bose-Einstein correlation on the pion density is
about 10% for Tchem = mπ and does not affect our qualitative
conclusion. The experimental result for 〈Nπ−〉/〈Nπ+〉 in the
final state is almost unity for high-energy collisions in accor-
dance with the approximate isospin symmetry. Substituting
Eq. (62) in Eq. (57) and using 〈Nπ−〉/〈Nπ+〉 − 1 � 1, one
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obtains

α � 1

8

( 〈Nπ−〉
〈Nπ+〉 − 1

)
. (63)

The value of α, as well as 〈Nπ−〉/〈Nπ+〉 − 1, grows as
√

sNN

is lowered. In order to see how these parameters become non-
negligible for small

√
sNN, we focus on the 40-GeV collision

at the Super Proton Synchrotron (SPS) (
√

sNN � 9 GeV).
For this collision, the experimental value of 〈Nπ−〉/〈Nπ+〉
is 1.05 ± 0.05 [29]. Substituting the worst value within 1σ ,
〈Nπ−〉/〈Nπ+〉 = 1.1, in Eq. (63), one obtains α � 1/80. On
the other hand, below the top SPS energy the production
of antinucleons is well suppressed and one can replace all
δN (net)

p and δN (tot)
p in Eqs. (58)–(61) with δNp to a good

approximation. Equation (61), for example, then becomes

〈(
δN

(net)
B

)4〉
c
�16(1 + 8α)〈(δNp)4〉c − 48(1 + 10α)〈(δNp)3〉

+ 60(1+10.1α)〈(δNp)2〉−26(1+11.5α)〈Np〉.
(64)

This result shows that for α = 1/80 the corrections of nonzero
isospin density to Eqs. (50)–(53) are less than 10% in
magnitude. The effect is smaller in relations for the lower order
cumulants, Eqs. (58)–(60), and formulas for proton number
cumulants, Eqs. (46)–(49).

With these results, one can conclude that the formulas for
the isospin symmetric case, Eqs. (50)–(53), can safely be
used for the analysis of the baryon number cumulants for√

sNN � 9 GeV with a precision of better than 10%. Because
the production of isospin charged particles increases as

√
sNN

goes up, the value of α and hence the effect of nonzero isospin
density on Eqs. (50)–(53) are more suppressed for higher
energy collisions.

As
√

sNN is lowered, the value of α grows and eventually
approaches the one in the colliding heavy nuclei, αA � 0.1. For
α � 0.1, the first-order correction in Eq. (64) is comparable
with the zeroth-order one. Relations for the isospin symmetric
case, Eqs. (50)–(53), therefore, are no longer applicable. For
such collision energies, however, conditions required for the
factorization given by Eq. (2) themselves break down, as
discussed in Sec. II B.

Before closing this section, we recapitulate that the suppres-
sion of the isospin density in the nucleon sector, and hence α, in
the final state is caused by the production of the large number
of particles having isospin charges, especially charged pions.
In Appendix B, we present an analysis for this effect.

IV. DISCUSSION

A. Recent experimental results on proton number cumulants

As emphasized in the previous sections, the cumulants
of the proton and baryon numbers are in general different.
One, therefore, has to be careful when comparing theoretical
predictions on baryon number cumulants with experimental
proton number ones. In this section, we show that the deviation
from the thermal distribution in baryon number cumulants
becomes difficult to measure in proton number cumulants

using relations obtained in the previous section with some
additional assumptions.

In general, it is possible that, while the net baryon
number fluctuations in the final state have a considerable
deviation from the grand canonical ones reflecting the
hysteresis of fireballs and/or global charge conservation,
baryon and antibaryon numbers separately follow thermal
(Boltzmann) distributions. For example, if the net baryon
number fluctuations above Tc survive until the final state,
the net baryon number fluctuations remain small compared
to the thermal ones in the hadronic medium, while baryon
and antibaryon number fluctuations separately follow the
thermal one. Generally, cumulants of net numbers cannot take
arbitrary values; for instance, the second-order cumulant is
constrained by the Cauchy-Schwartz inequality:

(
√

〈(δNB)2〉 −
√

〈(δNB̄)2〉)2

�
〈(
δN

(net)
B

)2〉 � (
√

〈(δNB)2〉 +
√

〈(δNB̄)2〉)2. (65)

The values of net baryon number cumulants satisfying these
constraints are not forbidden. Suppose that, as an extreme
case, the net baryon number fluctuations completely vanish
and the left equality in Eq. (65) is realized. A baryon and
antibaryon distribution function

F(NB, NB̄) = Pλ(NB)δNB,NB̄
, (66)

which is a constrained baryon and antibaryon number
distribution following the canonical distribution, constitutes
such an example. The distribution function F(NB, NB̄)
for a free gas in the grand canonical ensemble, i.e., an
unconstrained case, on the other hand, is given by Eq. (8).

Now, let us consider the difference between the net baryon
and net proton number cumulants when the baryon and
antibaryon number distributions follow Boltzmann statistics
while the net baryon number does not. Because of the
Boltzmann nature of NB and NB̄, distributions of Np and Np̄

are also Poissonian from Eq. (2). Thus, cumulants of the baryon
and proton numbers satisfy

〈NB〉 = 〈(δNB)2〉 = 〈(δNB)3〉 = 2〈Np〉HG

= 2〈(δNp)2〉HG = 2〈(δNp)3〉HG = 2〈(δNp)4〉c,HG, (67)

and the same for the antibaryon and antiproton numbers,
where 〈·〉HG is the expectation value for free hadron gas (HG)
composed of mesons and nucleons at Tchem, i.e., a simplified
version of the hadron resonance gas (HRG) model [33]. The
factors of 2 in front of the proton number cumulants in Eq. (67)
are understood from Eq. (6).

By using Eq. (67), the second terms in Eqs. (47) and (48)
are transformed as〈

N
(tot)
B

〉 = 2〈(δNp)2 + (δNp̄)2〉HG

= 2
〈(
δN (net)

p

)2〉
HG, (68)

〈
δN

(net)
B δN

(tot)
B

〉 = 〈(δNB)2 − (δNB̄)2〉
= 2〈(δNp)3 − (δNp̄)3〉HG = 2

〈(
δN (net)

p

)3〉
HG,

(69)

where in the last equalities we have used the fact that the proton
and antiproton numbers do not have correlations in the free gas,
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i.e., 〈δNpδNp̄〉HG = 〈(δNp)2δNp̄〉HG = 〈δNp(δNp̄)2〉HG = 0.
Substituting Eqs. (68) and (69) in Eqs. (47) and (48),
respectively, one obtains〈(

δN (net)
p

)2〉 = 1
4

〈(
δN

(net)
B

)2〉 + 1
2

〈(
δN (net)

p

)2〉
HG, (70)

〈(
δN (net)

p

)3〉 = 1
8

〈(
δN

(net)
B

)3〉 + 3
4

〈(
δN (net)

p

)3〉
HG. (71)

These results show that the second terms on the RHSs, which
come from the binomial distributions of the nucleon isospin,
have significant contribution to the cumulants of the proton
number, and the contributions of the net baryon number
cumulants, 〈(δN (net)

B )n〉, are relatively suppressed. Since the
second terms give the thermal fluctuations, these results show
that the deviation of 〈(δN (net)

B )n〉 from the thermal value is hard
to see in the proton number cumulants. Although one cannot
transform the fourth-order relation Eq. (49) to a simple form
as in Eqs. (70) and (71), from the factor of 1/16 in front of
〈(δN (net)

B )4〉c in Eq. (49) it is obvious that the direct contribution
of this term to experimentally measured 〈(δN (net)

p )4〉c is more
suppressed compared to the lower order cumulants and that
its experimental confirmation is more difficult. These analyses
strongly indicate that, even if the baryon number cumulants
have considerable deviation from the thermal values, they
are obscured in the experimentally measured proton number
cumulants due to the redistribution in isospin space. Such a
tendency seems to become more prominent for higher order
cumulants. It is known that higher order cumulants of the
baryon number have large critical exponents and thus can be
significantly enhanced in the vicinity of the critical point [10].
The above result, however, indicates that such enhancement
is suppressed by a factor of 1/2n and difficult to measure
in experiments in proton number cumulants. The analysis of
the baryon number cumulants with Eqs. (50)–(53) enables
us to remove the thermal contribution in the proton number
cumulants and makes the direct experimental observation of
signals in 〈(δN (net)

p )n〉c possible.
The

√
sNN dependencies of proton number cumulants have

recently been measured by the STAR Collaboration at the
RHIC [4,5]. The experimental result shows that ratios between
net proton number cumulants follow the prediction of the HRG
model within about 10% precision. We, however, emphasize
that one should not conclude from this result that baryon
number cumulants also follow the prediction of the HRG
model within 10% precision. As demonstrated above, the
binomial nature of the isospin distribution makes proton
number cumulants close to the ones in the HRG model. In
this sense, it is interesting that the experimental results for
skewness and kurtosis nevertheless have small but significant
deviations from the HRG predictions [5]. The deviation, for
example, in skewness, can be a consequence of 〈(δN (net)

B )3〉 in
Eq. (71), which possibly reflects the properties of the matter
in the early stage.

A remark on Eqs. (70) and (71) is in order. These formulas
are obtained with the assumption that baryon and antibaryon
number distributions are Poissonian, while the net baryon
number is not. When one further assumes that the net baryon
number cumulants also follow the thermal distribution in
these results, these formulas simply reproduce the free gas

result 〈(
δN

(net)
B

)n〉
c
= 2

〈(
δN (net)

p

)n〉
c,HG (72)

as they should do. This is easily checked by substituting
〈(δN (net)

p )n〉 = 〈(δN (net)
p )n〉HG in Eqs. (70) and (71).

In this section, we considered the experimental results
on proton number cumulants using the results in Sec. III.
More direct application of these formulas, i.e., to determine
baryon number cumulants from experimental results on proton
number cumulants with Eqs. (50)–(53), remains to be done.
The baryon number cumulants obtained in this way are to be
compared with various theoretical predictions.

B. Efficiency and acceptance corrections

So far, we have considered the reconstruction of the missing
information for the neutron number in experiments using
Eq. (2). It is possible to extend this argument to infer different
information from the event-by-event analysis.

An example is the evaluation of the effect of efficiency and
acceptance of detectors. The experimental detectors usually
do not have 2π acceptance. Moreover, protons entering a
detector are identified with some efficiency. If one can assume
that protons (antiprotons) in the final state are detected by
the detector with a fixed probability σ (σ̄ ) independent of
momentum, multiplicity, and so on, and the efficiency for each
particle does not have correlations, the distribution function
G(obs)(N (obs)

p ,N
(obs)
p̄ ) for the observed proton and antiproton

numbers, N (obs)
p and N

(obs)
p̄ , respectively, are related to the one

for all particles entering the detector, Np and Np̄, as

G(obs)
(
N (obs)

p ,N
(obs)
p̄

)
=

∑
Np,Np̄

G(Np,Np̄)Bσ

(
N (obs)

p ; Np

)
Bσ̄

(
N

(obs)
p̄ ; Np̄

)
, (73)

or substituting Eq. (16) in this result and using the property of
the binomial distribution one obtains

G(obs)
(
N (obs)

p ,N
(obs)
p̄

)
=

∑
NB,NB̄

F(NB, NB̄)Brσ

(
N (obs)

p ; NB

)
Br̄σ̄

(
N

(obs)
p̄ ; NB̄

)
. (74)

Equation (74) indicates that when the deviations of σ and σ̄

from unity become large, they affect cumulants with different
orders differently. The effect of efficiency, therefore, cannot
be canceled out by taking the ratio between cumulants. In
particular, as σ and σ̄ become smaller, G(obs)(N (obs)

p ,N
(obs)
p̄ )

approach the product of independent Poisson distributions
irrespective of the form of F(NB, NB̄). This would be another
reason for the present experimental results on proton number
cumulants [5], which is consistent with the HRG model.

Other experimental artifacts which have not been taken
into account yet in experimental analyses are background and
misidentified protons. In particular, according to Ref. [34], the
contamination from knockout protons is not negligible. By
their nature, they give a Poissonian contribution and make the
observed proton number cumulants approach the Poissonian
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values. Indeed, the HIJING + GEANT simulation in Ref. [4]
shows that these effects are considerable.

V. SUMMARY

The most important results of the present paper are
summarized in Eqs. (46)–(49) and Eqs. (50)–(53), which are
formulas relating baryon and proton number cumulants in
the final state in heavy ion collisions. The baryon number
cumulants are a conserved charge and one of the fluctuation
observables which is most widely analyzed in theoretical
studies. Our results enable us to determine the baryon
number cumulants with experimental results in heavy ion
collisions, and hence they make the direct comparison between
theoretical predictions and experiments possible. Such a
comparison will provide significant information on the QCD
phase diagram. Equations (46)–(53) are obtained on the
basis of the binomial nature of the nucleon and antinucleon
number distributions in isospin space, which is justified for√

sNN � 10 GeV. Although these results are obtained for
an isospin-symmetric medium, the effect of nonzero isospin
density in relativistic heavy ion collisions is well suppressed
in this energy range because of the abundance of the created
pions.
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APPENDIX A: BARYON AND PROTON
NUMBER CUMULANTS

In this Appendix, we derive Eqs. (37)–(44). To obtain
these relations, we start from the cumulant-generating function
Eq. (31),

K(θ, θ̄ ) = log
∑
F

exp[k(θ, θ̄ )], (A1)

where
∑

F is a shorthand notation for
∑

NB,NB̄
F(NB, NB̄). In

this Appendix, we also suppress the subscript in kNB,NB̄
(θ, θ̄ ).

We require the following four conditions for the properties
of k(θ, θ̄ ):

k(0, 0) = 0, (A2)
∂n

∂θn
k(0, 0) = ξnNB, (A3)

∂n

∂θ̄n
k(0, 0) = ξ̄nNB̄, (A4)

∂n+m

∂θn∂θ̄m
k(0, 0) = 0, (A5)

for positive integers n and m. Eq. (A2) is satisfied for probabil-
ity distribution functions normalized to unity. Equations (A3)–
(A5) are Eqs. (33)–(35) in the text. All calculations in this
Appendix are based only on these constraints on K(θ, θ̄ ).

1. Net proton number cumulants

By using K(θ, θ̄ ), the net proton number cumulants are
given by

〈(
δN (net)

p

)n〉
c
=

(
∂

∂θ
− ∂

∂θ̄

)n

K(0, 0). (A6)

To proceed to calculate Eq. (A6), it is convenient to use the
cumulant expansion of Eq. (A1),

K(θ, θ̄ ) =
∑
m

1

m!

∑
F

[k(θ, θ̄ )]mc

= 1 +
∑
F

k(θ, θ̄ ) + 1

2

∑
F

[δk(θ, θ̄ )]2

+ 1

3!

∑
F

[δk(θ, θ̄ )]3 + 1

4!

∑
F

[δk(θ, θ̄ )]4
c + · · · .

(A7)

Each term on the far right-hand side defines each cumulant,∑
F [k(θ, θ̄ )]mc , up to the fourth order, with

δk(θ, θ̄ ) = k(θ, θ̄ ) −
∑
F

k(θ, θ̄ ), (A8)

∑
F

[δk(θ, θ̄ )]4
c =

∑
F

[δk(θ, θ̄ )]4−3

( ∑
F

[δk(θ, θ̄ )]2

)2

. (A9)

Because of Eq. (A2), all k(θ, θ̄ ) and δk(θ, θ̄ ) in the term
in Eq. (A7) must receive at least one differentiation so that
the term gives a nonzero contribution to Eq. (A6). This
immediately means that the mth-order term in Eq. (A7) can
affect Eq. (A6) only if m � n.

The first-order net proton number cumulant, Eq. (37), is
calculated to be〈

N (net)
p

〉 = (∂θ − ∂θ̄ )K(0, 0) =
∑
F

(∂θ − ∂θ̄ )k(0, 0)

=
∑
F

(ξ1NB − ξ̄1NB̄) = 〈ξ1NB − ξ̄1NB̄〉, (A10)

with ∂θ ≡ ∂/∂θ and ∂θ̄ ≡ ∂/∂θ̄ . In the third equality in
Eq. (A10), we have used Eqs. (A3) and (A4). The second-order
relation, Eq. (38), is obtained as follows:

〈(
δN (net)

p

)2〉
= (∂θ − ∂θ̄ )2K(0, 0)

=
∑
F

(∂θ − ∂θ̄ )2k(0, 0) + 1

2

∑
F

(∂θ − ∂θ̄ )2 [δk(0, 0)]2

=
∑
F

(∂2
θ + ∂2

θ̄

)
k(0, 0) + 2 × 1

2

∑
F

[(∂θ − ∂θ̄ )δk(0, 0)]2

= ξ2〈NB〉 + ξ̄2〈NB̄〉 + 〈(ξ1δNB − ξ̄1δNB̄)2〉. (A11)

024904-11



MASAKIYO KITAZAWA AND MASAYUKI ASAKAWA PHYSICAL REVIEW C 86, 024904 (2012)

To obtain the third line, we have used Eqs. (A5) and (A2)
for the first and second terms, respectively. The factor of 2
in the second term comes from the number of outcomes of
the application of the two derivatives to the two δk(θ, θ̄ ) in
the second line. Equations (A3) and (A4) are used in the last
equality.

Similar manipulations lead to Eqs. (39) and (40). We note
that the relation

(∂θ − ∂θ̄ )4
∑
F

[δk(θ, θ̄ )]4
c = 4!

∑
F

[(∂θ − ∂θ̄ )k(θ, θ̄ )]4
c (A12)

makes the calculation for the fourth-order cumulant more
concise.

2. Net baryon number cumulants

To obtain Eqs. (41)–(44), we start from the following
relation for the net baryon number cumulants:〈(

δN
(net)
B

)n〉
c

= ∑
F

[(
ξ−1

1 ∂θ − ξ̄−1
1 ∂θ̄

)
k
]n

c
≡ ∑

F [∂ξ k]nc ,

(A13)

with ∂ξ = ξ−1
1 ∂θ − ξ̄−1

1 ∂θ̄ . We suppress arguments in K(0, 0)
and k(0, 0) throughout this section.

The manipulation of Eq. (A13) for n = 1 is trivial. For
n = 2, Eq. (A13) is calculated to be

〈(
δN

(net)
B

)2〉 =
∑
F

(∂ξ δk)2 = 1

2
∂2
ξ

∑
F

(δk)2

= ∂2
ξ K −

∑
F

∂2
ξ k = ∂2

(1)K − ∂(2)K

=
〈(

δNp

ξ1
− δNp̄

ξ̄1

)2〉
−

〈
ξ2

ξ 3
1

Np+ ξ̄2

ξ̄ 3
1

Np̄

〉
. (A14)

In the second line, we introduced the symbol

∂(n) = ξn

ξn+1
1

∂θ + (−1)n
ξ̄n

ξ̄ n+1
1

∂θ̄ (A15)

and used the relation

∂n
ξ k =

(
1

ξn
1

∂n
θ + 1

ξ̄ n
1

∂n
θ̄

)
k

=
(

ξn

ξn+1
1

∂θ + (−1)n
ξ̄n

ξ̄ n+1
1

∂θ̄

)
k = ∂(n)k, (A16)

where we have used Eqs. (A3)–(A5). The last equality in
Eq. (A14) comes from the definition of K .

To proceed to n � 3, we first introduce the following
notation:

∂(n,m) = ξnξm

ξn+m+1
1

∂θ + (−1)n+m+1(∗ → ∗̄), (A17)

∂(n,m,l) = ξnξmξl

ξn+m+l+1
1

∂θ + (−1)n+m+l+2(∗ → ∗̄), (A18)

for positive integers n, m, and l. ∂(n1,n2,··· ,ni ) for i > 3 is also
defined as in Eqs. (A15), (A17), and (A18). One easily finds
that (i) ∂(n,m,··· ,l) are invariant under the permutations of the
subscripts, for example, ∂(n,m,l) = ∂(m,n,l), and (ii) when a

subscript is one, it can be eliminated, e.g., ∂(n,m,1) = ∂(n,m),
while ∂(1) = ∂ξ . With this notation, the derivatives of δk are
written as

∂n
ξ δk = ∂(n)δk, (A19)

∂(n)∂(m)δk = ∂(n,m,2)δk, (A20)

∂(n)∂(m)∂(l)δk = ∂(n,m,l,3)δk, (A21)

and so forth.
By using these relations, for example, Eq. (A13) for n = 3

is calculated as〈(
δN

(net)
B

)3〉 =
∑
F

(∂ξ δk)3

= ∂3
ξ K − 3

∑
F

(
∂2
ξ δk

)
(∂ξ δk) −

∑
F

∂3
ξ k

= ∂3
(1)K − 3

∑
F

(∂(2)δk)(∂(1)δk) −
∑
F

∂(3)k

= ∂3
(1)K−3(∂(2)∂(1)K−∂(2,2)K)−∂(3)K, (A22)

which leads to Eq. (43). In the second and last equalities, we
used

∂3
ξ K =

∑
F

(∂ξ δk)3 + 3
∑
F

(
∂2
ξ δk

)
(∂ξ δk) +

∑
F

∂3
ξ k,

(A23)

∂(n)∂(m)K = ∂(n,m,2)K +
∑
F

(∂(n)δk)(∂(m)δk). (A24)

A similar manipulation for n = 4 leads to
〈(
δN

(net)
B

)4〉
c

= ∂4
(1)K − 6∂(2)∂

2
(1)K + 12∂(2,2)∂(1)K

+ 3∂2
(2)K − 4∂(3)∂(1)K − 15∂(2,2,2)K

+ 10∂(2,3)K − ∂(4)K, (A25)

which gives Eq. (44).

APPENDIX B: ISOSPIN DENSITY IN THE FINAL STATE

In this Appendix, we demonstrate that the isospin density of
nucleons in the final state of heavy ion collisions is suppressed
owing to the abundant production of particles having nonzero
isospin charges.

To simplify the calculation, we consider a gas composed of
nucleons and pions in chemical equilibrium, and we assume
that pions and (anti)nucleons obey Boltzmann statistics, since
this approximation does not alter the qualitative conclusion
in this Appendix. Under these assumptions, the ratios between
the numbers of (anti)protons and (anti)neutrons in a phase
space are given in terms of μI and T as

Np

Nn

= Nn̄

Np̄

= eμI/T = 1 − 2α

1 + 2α
, (B1)

with α = Np/(Np + Nn), and the ratio of the numbers of π+
and π− is given by

Nπ+

Nπ−
= e2μI/T . (B2)
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With these relations, the total isospin in the phase space is
calculated to be

NI = 1

2
(Np − Nn − Np̄ + Nn̄) + Nπ+ − Nπ−

= α

(
NN + NN̄ + 4

1 − 4α2
Nπch

)
, (B3)

with the number of charged pions Nπch = Nπ+ + Nπ− .
In the initial state of heavy ion collisions, the isospin asym-

metry of the colliding heavy nuclei αA is (Nn − Np)/[2(Np +
Nn)] � 0.1. Assuming that this isospin asymmetry equally
distributes along the rapidity direction in the final state, one

has NI/N
(net)
N � αA. With Eq. (B3), one then obtains

α

(
N

(tot)
N

N
(net)
N

+ 4

1 − 4α2

Nπch

N
(net)
N

)
� αA. (B4)

The term in the parentheses is larger than unity, and it
becomes larger as more charged pions and antinucleons are
produced. Equation (B4) thus shows that the value of α is
more suppressed than αA owing to the production of these
particles. If the contribution of other particles with nonzero
isospin charges is taken into account, the value of α is further
suppressed.
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