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Effects of minijets on hadronic spectra and azimuthal harmonics in Au-Au collisions at 200 GeV
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The production of hadrons in heavy-ion collisions at the Relativistic Heavy-Ion Collider in the low-transverse-
momentum (pT ) region is investigated in the recombination model with emphasis on the effects of minijets on
the azimuthal anisotropy. Since the study is mainly focused on the hadronization of partons at late time, the fluid
picture is not used to trace the evolution of the system. The inclusive distributions at low pT are determined as the
recombination products of thermal partons. The pT dependencies of both the pion and the proton have a common
exponential factor apart from other dissimilar kinematic and resonance factors, because they are inherited from the
same pool of thermal partons. Instead of the usual description based on hydrodynamics, the azimuthal anisotropy
of the produced hadrons is explained as the consequence of the effects of minijets, either indirectly through the
recombination of enhanced thermal partons in the vicinity of the trajectories of the semihard partons or directly
through thermal-shower recombination. Although our investigation is focused on the single-particle distribution
at midrapidity, we give reasons why a component in that distribution can be identified with the ridge, which,
together with the second harmonic v2, is due to the semihard partons created near the medium surface that lead
to calculable anisotropy in φ. It is shown that the higher azimuthal harmonics, vn, can also be well reproduced
without reference to flow. The pT and centrality dependencies of the higher harmonics are prescribed by the
interplay between thermal-thermal (TT) and thermal-shower (TS) recombination components. The implication
of the success of this drastic departure from the conventional approach is discussed.
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I. INTRODUCTION

As the data on single-particle distributions of identified
hadrons produced in heavy-ion collisions become more abun-
dant and precise [1–7], more demands are put on theoretical
models to reproduce them. It is generally recognized that
in Au-Au collisions at

√
sNN = 200 GeV at the Relativistic

Heavy-Ion Collider (RHIC) the low-transverse-momentum
(pT ) region (pT < 2 GeV/c) is well described by hydrody-
namics [8–12]. Because using hydrodynamics has attained the
status of the conventional approach, it is of interest to point out
that an alternative approach without using the fluid description
can also reproduce the same data on pT and azimuthal
angular (φ) dependencies without using more parameters.
The approach that we present here does not have the virtue
of tracking the time evolution of the dense system, but it
presents a different point of view on the origin of the azimuthal
asymmetry. Instead of emphasizing early thermalization and
the effects of the anisotropic pressure gradient, we consider
the nonflow effects of minijets due to semihard scattering of
partons. The basic idea has been discussed previously [13–15].
Here we present a more detailed phenomenological analysis
of the pT and φ distributions of pions and protons produced at
the RHIC for a range of centralities.

Our calculations are based on the recombination model
[16], which is a particular implementation of the general ap-
proach of coalescence that has been shown to be successful in
the intermediate region, 2 < pT < 6 GeV/c [17–19]. Here we
push to the lower region pT < 2 GeV/c, in which the thermal
partons are dominant. However, because semihard partons can
lose energy to the thermal medium and result in local en-
hancement that is azimuthally anisotropic, there are nontrivial
complications in the thermal sector. The point that motivates

our study is related to the question of what happens to the
initial system within 1 fm/c after collision. Semihard partons
created within 1 fm from the surface will have already left the
initial overlap region before thermalization is complete. They
are the minijets that can give rise to a φ dependence that is not
accounted for by conventional hydrodynamics. When the par-
ton kT is low enough so that minijets are copiously produced,
the corresponding effect on the φ anisotropy can become
dominant, and it is insensitive to the type of hadron produced.

Another area of concern is the pT distributions in the low-
pT region, where the pion and the proton appear empirically
to have different behaviors. In the parton recombination model
the hadrons should have the same inverse slope as that of the
coalescing quarks if the hadrons are formed by recombination
of the thermal partons, but because of the difference in the
meson and baryon wave functions, the net pT distributions
turn out to be different. This line of analysis takes into account
the quark degree of freedom just before hadronization, which
is overlooked by the fluid description of the flow effect. The
burden is to show that the data on v2(pT ) can be reproduced
for both the pion and the proton at low pT in an approach using
a common inverse slope T without relying explicitly on the
hydrodynamic description of elliptic flow.

The basic assertion in our study is that the recombination
of thermal partons has two components: one, called the base,
is azimuthally isotropic, while the other one is identified with
the ridge, which has a φ dependence that is calculable. Our
focus is on single-particle distributions at midrapidity and low
pT and on how they are affected by minijets. The semihard
partons that give rise to the observed minijets generate also
the second component in the inclusive distribution. It will be
our main task to show that the second component exhibits
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the properties of both the ridge and the second harmonic
in φ.

Recently, there have been experimental and theoretical
studies of higher harmonic coefficients, vn, of the azimuthal
asymmetry that have been related to the fluctuations of the
initial configuration of the collision system [20–25]. Although
the phenomena are not of first order in importance compared
to the second harmonic v2, which has been regarded as
the primary evidence for hydrodynamical flow [26], it is
imperative for us to explain their origin in our approach that
has no explicit formalism to connect the initial and final states.
We shall show that their dependence on pT and centrality
can be well accounted for by the thermal-shower component
of recombination, so the minijets themselves cause the φ

anisotropy that leads to vn, whereas the dominant phenomenon
in v2 is due to the enhancement in the thermal-thermal sector.

We are aware that our approach is not in the mainstream
and that we do not have a code to simulate the evolution
of the dense system. However, it is of some value to have
explicit analytic expressions that show why the pion and proton
distributions in pT and φ have common properties based on
the parton distributions before hadronization and how minijets
can affect azimuthal harmonics in ways that are in accord with
the measured behaviors. To have phenomenological evidence
for the validity of an alternative approach that does not rely
on hydrodynamical flow enriches the scope of inquiry into the
various processes that can be important in heavy-ion collisions
and may even cast doubt on the validity of the assumptions
made in the conventional approach.

Before entering into the details of our formalism, it is
helpful to clarify possible confusion as to what we do with
the conventional approach when common terms are used with
different meanings. In a hydrodynamical treatment of a dense
system, it is usually assumed that rapid thermalization is com-
pleted in less than 1 fm/c and that the expansion of the system
can then be described by the hydrodynamic equations with
suitable assumptions about equations of state and viscosity.
Thus the words hydro and thermal are almost synonymous. In
our treatment we use thermal without implying hydro. That
is because we apply the notion of thermal to the soft partons
only at late time just before hadronization. If the system takes
over 5 fm/c to equilibrate fully, that would invalidate the use
of hydrodynamics from early time, but it would not affect the
validity of our approach. Or, if minijets make enhanced thermal
contribution to the soft sector through energy loss of semihard
partons to the medium without being a part of the equilibrated
system from the beginning, then the thermal sector describable
by hydro consists of only a portion of the soft hadrons in the
final state, leaving another soft (but thermal) component that
is outside hydro. These are possibilities that do not invalidate
our approach; indeed, our treatment is aimed at accounting for
the effects of those minijets.

II. COMMON FORM OF HADRONIC SPECTRA

We begin with a recapitulation of our description of
single-particle distributions [16]. At low pT we consider first
the recombination of thermal partons, for which the pion and

proton spectra at y = 0 are given by

p0 dNTT
π

dpT

=
∫ 2∏

i=1

[
dqi

qi

T (qi)

]
Rπ (q1, q2, pT ), (1)

p0
dNTTT

p

dpT

=
∫ 3∏

i=1

[
dqi

qi

T (qi)

]
Rp(q1, q2, q3, pT ), (2)

where T (qi) is the thermal distribution of the quark (or
antiquark) with momentum qi , and Rh is the recombination
function (RF) for h = π or p. On the assumption that collinear
quarks make the dominant contribution to the coalescence
process (so that the integrals are one-dimensional for each
quark along the direction of the hadron), the RFs are

Rπ (q1, q2, pT ) = q1q2

p2
T

δ

(
2∑

i=1

qi

pT

− 1

)
, (3)

Rp(q1, q2, q3, pT ) = fp

(
q1

pT

,
q2

pT

,
q3

pT

)
δ

(
3∑

i=1

qi

pT

− 1

)
,

(4)

where the details of fp(qi/pT ), which depends on the proton
wave function, are given in Ref. [16] and need not be repeated
here. The main point to be made here is that if the quark
thermal distribution T (qi) has the canonical invariant form

T (qi) = qi

dNq

dqi

= Cqie
−qi/T , (5)

where C has the dimension of inverse momentum, then the
δ functions in the RFs require that the hadron distributions
p0dNh/dpT in Eqs. (1) and (2) have the common exponential
factor exp(−pT /T ) for both h = π and p. The factors before
the exponentials are different. The integrals in Eqs. (1) and
(2) must yield on dimensional grounds C2p2

T and C3p3
T ,

respectively, apart from different multiplicative constants.
Upon dividing the results of the integration by p0pT we get
the general form

dN
TT(T)
h

pT dpT

= Nh(pT )e−pT /T , (6)

where, for y = 0, we set p0 = pT for the pion and p0 = mT

for the proton, so that

Nπ = Nπ
0 C2, Np(pT ) = N

p

0 C3 p2
T

mT

,

(7)
mT = (

p2
T + m2

p

)1/2
,

with Nπ
0 and N

p

0 being constants. Note that the factor p2
T /mT

in the proton spectrum causes the p/π ratio to vanish as pT →
0, on the one hand, but to become large, as pT increases, on
the other. When pT exceeds 2 GeV/c, shower partons become
dominant and the above description must be corrected for
the effects of thermal-shower recombination, which limits the
increase of the p/π ratio to a maximum of about 1 [16].

Remaining in the low-pT region, pT < 2 GeV/c, we
want to demonstrate that a common value of T is shared
by dNh/pT dpT for both h = π and p. The normalization
factor Nh(pT ) in Eq. (6) depends on centrality, which is a
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FIG. 1. Proton spectrum at y ≈ 0 averaged over φ (and hence
there is no 1/2π factor) at 20–30% centrality. The solid line is a
fit of the data by Eqs. (6) and (7) using T = 0.283 GeV with free
adjustment of normalization. The data are from Ref. [1].

subject discussed in the Appendix. Here we consider a specific
centrality, 20–30%, and fit the pT dependence of the proton
spectrum using Eqs. (6) and (7) with free adjustment of the
normalization constant. Figure 1 shows the result upon using

T = 0.283 GeV. (8)

The one-parameter fit (apart from normalization) is evidently
very good compared to the data from Ref. [1]. It demonstrates
that the proton is produced in that pT range by thermal partons
and that the flattening of the spectrum at low pT is due to the
prefactor p2

T /mT arising from proton recombination.
As already discussed at the end of the preceding section,

the thermal parton distribution we consider is for the time
just before hadronization. T in Eq. (5) is the inverse slope
that we have determined here phenomenologically without
the assumption that the hydro description is appropriate for the
entire period from collision to hadronization. It is, however,
assumed that local equilibration is achieved for the soft sector
at late time to justify the use of Eq. (5) for all pT < 2 GeV/c.
We refer to T as the inverse slope, instead of temperature,
because we allow for the possibility that the value of T can
be affected by the motion of the collective system and become
larger than the temperature defined in the local rest frame.
For that reason the value of T should not be identified with
what is referred to as freeze-out temperature in some fluid
descriptions.

Having determined T , we have no more freedom to adjust
the exponential behavior of the pion spectrum dNπ/pT dpT .
We show in Fig. 2 the data from PHENIX [1] for the pion
distribution for 20–30% centrality; the exp(−pT /T ) factor is
shown by the solid line, the normalization being adjusted to
fit. The excellent agreement thus supports the assertion that
both proton and pion spectra can be described by the same
T in the exponential factor, exp(−pT /T ). For pT < 1 GeV/c

the pion spectrum is dominated by the resonance contribution,
which we cannot calculate for lack of knowledge about the RFs
of hadrons above the ground states with orbital excitation.
For that reason we show only the data in the region pT >

1 GeV/c, which is sufficient to verify the commonality of T

in the calculable part of our approach.
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FIG. 2. The pion spectrum with data from Ref. [1]. The solid line
that shows e−pT /T has the same T as for the proton.

Our basic formulas for recombination shown in Eqs. (1)
and (2) are valid for the direct production of all hadrons from
thermal partons at any pT . However, those hadrons are not
the only ones produced in certain pT regions due to other
processes, such as TS and SS recombination, which dominate
at pT > 2 GeV/c. For proton production TTT recombination
is prevalent at pT < 2 GeV/c. For pions from resonance
decays that are important for pT < 1 GeV/c, Eq. (1) is an
inadequate description. When the contributions from shower
partons are significant even at pT < 2 GeV/c, appropriate
equations will be given below to describe them. pT = 2 GeV/c

is the upper limit of what we consider in this paper.

III. AZIMUTHAL ANISOTROPY
WITHOUT HYDRODYNAMICS

We now broaden our consideration to include the φ depen-
dence. For noncentral collisions the almond-shaped average
initial configuration leads to φ anisotropy. The conventional
description in terms of hydrodynamics relates the momentum
anisotropy to the variation of pressure gradient at early times
upon equilibration [26]. The success in obtaining the large v2

as observed gives credibility to that approach. Our alternative
approach can be justified on the same basis that we can also
reproduce the empirical v2, as we shall show. Concerns about
higher harmonics are at a higher level of detail and we shall
also address these. Our main objective is first and foremost
to demonstrate that the essential phenomenological features
of hadron production can be reproduced by considering the
effects of semihard partons without explicitly treating the fluid
flow.

To include the azimuthal φ dependence, let us use
ρh(pT , φ, b) to denote the single-particle distribution of
hadron h produced at midrapidity in a heavy-ion collision
at impact parameter b, i.e.,

ρh(pT , φ, b) = dNh

pT dpT dφ
(Npart), (9)

where Npart is the number of participants related to b in a known
way through the Glauber description of nuclear collisions [27].
The main point of our approach is to assert that ρh at low pT
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can be separated into three components:

ρh(pT , φ, b) = Bh(pT , b) + Rh(pT , φ, b) + Mh(pT , φ, b),

(10)

referred to as base, ridge, and minijet components, respec-
tively. Bh(pT , b) is azimuthally isotropic, while Rh(pT , φ, b)
and Mh(pT , φ, b) are φ dependent. The first two components
are due to the recombination of thermal partons (TT for
the pion and TTT for the proton), while the third is due to
thermal-shower recombination (TS and TTS) [16]. The latter is
dominant in the intermediate-pT region (2 < pT < 6 GeV/c),
but it is not negligible at low pT [15]. In a figure later on in
this paper (Fig. 6) the relative magnitudes of the three terms
will be shown. Because of the smallness of Mh(pT , φ, b)
relative to the other two for pT < 2 GeV/c we shall ignore
the shower partons in this and the following sections in order
to emphasize the effect of semihard partons on the thermal
sector. At the sacrifice of accuracy in reproducing v2, the role
of thermal partons in the ridge formation becomes clearer. A
more accurate result that includes the shower partons will be
presented in Sec. VI.

Semihard partons created near the surface, and directed
outward, can give rise to φ anisotropy in the thermal compo-
nent. That is because each such semihard parton loses some
energy to the medium, thereby enhancing the thermal motion
of the soft partons near its trajectory. Those thermal partons
eventually lead to hadrons at late time that are dependent on
the azimuthal angle of the semihard parton. In Refs. [13–15]
those hadrons are identified with the ridge that stands above
the background with characteristic peaking in φ, which is
described by Rh(pT , φ, b) in Eq. (10) with improved treatment
to be detailed below. The recoil semihard partons being
directed inward are absorbed and randomized. They become
a part of the medium consisting of all the soft and semihard
partons that are farther away from the surface and are unable
to lead to hadrons with a distinctive φ dependence. That part of
the medium is described by the Bh(pT , b) component, which
should not be confused with the φ-dependent bulk distribution
in the hydro description. For this reason we avoid using the
term bulk.

The ridge is a phenomenon characterized by an extended
range in pseudorapidity η and a narrow range in φ [28]. It
may seem hard to relate the ridge to the term Rh(pT , φ, b) in
Eq. (10), which has no η dependence. It is therefore important
to emphasize that we are addressing here the φ dependence of
the ridge at small η, leaving aside the issues related to the range
in η that have been considered in our approach in Refs. [29,30].
More discussion specifically on the ridge characteristics is
given in Sec. V.

Earlier it was found that the azimuthal correlation between
a semihard parton and a ridge hadron formed by TT recombi-
nation can be described by a Gaussian distribution in φ with a
width σ = 0.33 in order to reproduce the ridge data [31]. That
result was then extended in a study of the dependence of the
ridge yield per trigger on the trigger angle φs relative to the
reaction plane [15,32]. The key piece of physics that succinctly
captures the essence of the correlation involving either a trigger
or an untriggered semihard parton that generates the ridge is a

quantity called S(φ, b). It is the segment on the initial ellipse
through which semihard partons should be emitted if it is to
contribute to the formation of any ridge particle that is directed
at φ. The importance of S(φ, b) is that it relates the spatial and
momentum asymmetries. The derivation of S(φ, b) given in
Ref. [15] is based on the simple geometry of the average initial
configuration taken to be an ellipse with width w and height h,
where w = 1 − b/2 and h = (1 − b2/4)1/2 in units of nuclear
radius RA. The fluctuations from that configuration will be
considered later, but for now it is more important to focus on the
relationship between the spatial asymmetry (the short side of
the ellipse being on the x axis) and the momentum asymmetry
of the emitted hadron (〈px〉 > 〈py〉). Without repeating the
derivation here, let us first state the result, and then follow up
with a discussion on the physics involved. The result is

S(φ, b) = h[E(θ2, α) − E(θ1, α)], (11)

where E(θi, α) is the elliptic integral of the second kind with
α = 1 − w2/h2 and

θi = tan−1

(
h

w
tan φi

)
, φ1 = φ − σ, φ2 = φ + σ, (12)

for φi � π/2, and an analytic continuation of it for φ2 >

π/2. Thus S(φ, b) is a compact formula that is completely
calculable for any given b, and it has the property that it
decreases as φ is increased from 0 to π/2—more so at
medium or large b than at small b. Since it will prescribe
the φ dependence of Rh(pT , φ, b), the average hadron mo-
mentum for noncentral collisions is larger along px than
along py .

It should be noted that Eqs. (11) and (12) involve azimuthal
angles only, which are meaningful in both coordinate space
and momentum space. The relationship between the angles is
based on the correlation between the hadronic momentum in
the ridge at angle φ and the direction φs of the semihard parton
emitted from the ellipse in coordinate space with |φ − φs | < σ .
Although the angle φs refers to the parton momentum at early
time and the angle φ refers to the hadron momentum at late
time, they are nevertheless correlated, since σ was determined
in Ref. [31] to fit the data on ridge yield as a function of
the trigger angle φs [32]. The only assumption here is that
the trigger angle is identified with the semihard parton angle,
which is not directly measurable. Such an identification does
not rely on the details of hydrodynamics.

The physical origin of the φ anisotropy generated by
semihard partons is that on the broader side of the spatial
ellipse there can be more semihard partons within an angle
σ contributing to a hadron emitted with small φ at small y,
where the curvature on the ellipse is small, thus allowing a
longer segment on the ellipse with a normal in the range
φ ± σ . On the narrow side at the tip of the ellipse the
curvature is larger, thus restricting the segment through which
semihard partons can contribute to a hadron at φ ∼ π/2. The
mechanism that gives rise to this orthogonality between the
spatial and momentum asymmetry axes is entirely different
from that in the fluid description, which is basically that the
higher pressure gradient along the x axis in the initial state
generates more hadronic momentum along that direction in
the final state. Without hydrodynamics we, of course, cannot
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describe the evolutionary history of the system. While the
hydro approach assumes rapid thermalization, we allow an un-
specified time interval for expansion and equilibration except
that by the time of hadronization at late time the soft partons
have exponential pT behavior, which is the only property we
ascribe to the thermal partons, apart from the φ dependence of
the enhanced thermal partons caused by the semihard partons
on their way out of the medium at early time. If this approach
can lead to sensible phenomenology of the azimuthal harmon-
ics, as we shall show below, then it is an alternative that should
be weighed against the merits of the conventional approach.

The discussion above is about the φ anisotropy of the
thermal partons. Also to be considered is the role of the shower
partons, which are the fragmentation products of the semihard
parton outside the medium before they hadronize. Inasmuch
as the former reveals the effect of the semihard partons on
the medium through which they traverse, the latter is the
minijet manifestation of the semihard partons themselves by
TS recombination. The hadrons formed are to be described by
the third term Mh(pT , φ, b) in Eq. (10). The SS component is
not considered in this paper because it is negligible at pT <

2 GeV/c [16,33]. Shower partons can arise from semihard and
hard partons created throughout the medium in random direc-
tions. Because of jet quenching the partons that emerge from
the medium have reduced momenta, and the distribution of the
shower partons generated by subsequent fragmentation peaks
at low pT . They recombine with the thermal partons in the
immediate vicinity of the emerging partons and therefore form
hadrons that have approximately the same φ angles as the initi-
ating semihard or hard partons. Upon averaging over all events
the azimuthal dependence of the TS term can have all harmonic
components as in Fourier decomposition. Since the pT depen-
dence of the azimuthal harmonics is what we shall calculate
and compare with data, we summarize here the formulas for
pion production by TS recombination that are relevant:

dNTS
π

pT dpT

= 2

p2
T

∫
dp1

p1

dp2

p2
T (p1)S(p2, ξ̄ )Rπ (p1, p2, pT ),

(13)

where

S(p2, ξ̄ ) =
∫

dq

q

∑
i

F̄i(q, ξ̄ )Si(p2/q). (14)

S(p2, ξ̄ ) is the shower parton distribution integrated over the
semihard parton momentum q at the medium surface after
momentum degradation parametrized by ξ̄ , and Si(p2/q) is
the distribution of shower partons with momentum p2 in a jet
of type i with momentum q. The details of these quantities
can be found in Refs. [16,33].

IV. SECOND HARMONIC OF φ ANISOTROPY

This topic is usually referred to as elliptic flow, a ter-
minology that is rooted in hydrodynamics. Since hydro is
not the basis of our investigation, we use the more general

language of harmonic analysis and refer to vn as the harmonic
coefficients:

vh
n(pT , b) = 〈cos nφ〉hρ =

∫ 2π

0 dφ cos nφρh(pT , φ, b)∫ 2π

0 dφρh(pT , φ, b)
, (15)

where ρh(pT , φ, b) in our formalism has the three components
given in Eq. (10). We now describe the φ dependence of
Rh(pT , φ, b) and Mh(pT , φ, b) separately.

As discussed in the last section, Rh(pT , φ, b) contains
the φ anisotropy arising from the initial elliptical spatial
configuration through the S(φ, b) function that transforms
the spatial asymmetry to momentum asymmetry. We now
insert some details omitted in our general discussion. Since
the elliptical axes need not coincide with the reaction plane
that contains the impact parameter vector �b, we introduce a
tilt angle ψ2 and average over it. Furthermore, we modify the
notation slightly by using S2(φ, b) to denote what is defined
in Eq. (11) and write the average over π/2n as

S̃2(φ, b) = 2

π

∫ π/4

−π/4
dψ2S2(φ − ψ2, b). (16)

We then define S(φ, b) as the normalized S̃2(φ, b), i.e.,

S(φ, b) = S̃2(φ, b)

/
1

2π

∫ 2π

0
dφS̃2(φ, b). (17)

Following our discussion in the last section on the ridge
component of ρh that responds to the minijets through TT
recombination, we now can write

Rh(pT , φ, b) = S(φ, b)R̄h(pT , b), (18)

where R̄h(pT , b) is the second of two components of
dN

TT(T)
h /pT dpT . The exponential behavior of the first compo-

nent, which is the φ-independent base component Bh(pT , b),
has a lower T0 than the overall T for the sum of the two thermal
terms described by Eq. (6). Thus, with the unenhanced base
thermal component expressed as

Bh(pT , b) = Nh(pT , b)e−pT /T0 , (19)

the enhanced ridge component is

R̄h(pT , b) = Nh(pT , b)[e−pT /T − e−pT /T0 ]. (20)

We emphasize that the only factor that depends on the hadron
type isNh(pT , b). It is a specific property of the recombination
model that the exponential factors of the hadrons (whether π

or p) are inherited from those of the partons, as discussed in
the preceding section. Note also that T0 is the only unknown
parameter introduced here. If for the present we neglect the TS
component for the sake of simplicity, since it is small at low
pT , we would have only the first two terms of ρh(pT , φ, b) in
Eq. (10), and the formalism up to this point should be sufficient
to provide an approximate description of the second harmonic.

Applying Eqs. (18) to (15), we obtain for n = 2

vh
2 (pT , b) = R̄h(pT , b) 1

2π

∫ 2π

0 dφ cos 2φS(φ, b)

Bh(pT , b) + R̄h(pT , b)

= 〈cos 2φ〉S
Z−1(pT ) + 1

, (21)
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FIG. 3. (Color online) (a) Average of cos 2φ weighted by S(φ, b) vs impact parameter b in units of RA. (b) Common dependence of
vh

2 (pT , b) on Npart for various pT , shifted vertically for comparison. The diamond and square points are horizontally shifted slightly from the
points in circles to aid visualization. The solid line is from 〈cos 2φ〉S shown in (a) but is rescaled and plotted in terms of Npart. The data are
from Ref. [2].

where

〈cos 2φ〉S = 1

2π

∫ 2π

0
dφ cos 2φS(φ, b), (22)

Z(pT ) = R̄h(pT )

Bh(pT )
= epT /T ′ − 1, T ′ = T0T

T − T0
. (23)

These equations are remarkable in that the b dependence
resides entirely in Eq. (22) and the pT dependence entirely
in Eq. (23); furthermore, there is no explicit dependence on
the hadron type.

From Eqs. (11), (16), (17), and (22) we can calculate
〈cos 2φ〉S and obtain its dependence on b. The result is shown
in Fig. 3(a). To check how realistic phenomenologically the
factorizability of pT and b dependencies of vh

2 (pT , b) is, we
show in Fig. 3(b) the data from Ref. [2] on vh

2 (pT ,Npart) for
three pT values, but shifted vertically so that they agree with
the data for pT = 0.975 GeV/c for most of the large Npart

region. The diamond and square points are slightly shifted
horizontally to spread out the overlapping points for the sake
of visual distinguishability. The fact that their dependencies on
Npart are so nearly identical is remarkable in itself. The solid

line is a reproduction of the curve in Fig. 3(a) but plotted in
terms of Npart and reduced in normalization by a factor of 0.9 to
facilitate the comparison with the data points. For Npart > 100
the line agrees with the data on v2 very well, thus proving
the factorizability of Eq. (21). For Npart < 100, corresponding
to b/RA > 1.3 or centrality > 40%, there is disagreement,
which is expected because the density is too low in peripheral
collisions to justify the simple formula in Eq. (11), which is
based on no punch-through of recoil partons.

Since T0 describes the pT dependence of the Bh(pT , b)
component, it is not directly related to any observable
spectrum. Thus we turn to vh

2 (pT , b) in Eq. (21) for the pion
first and find that the low-pT data of vπ

2 (pT , b) can be well
reproduced. In Fig. 4(a) is shown the data for the pion from
Ref. [2] for 0–5% centrality; the solid line is the result of our
calculation from Eq. (21) using

T0 = 0.245 GeV. (24)

The fit, though not perfect, is remarkable because the
normalization of vπ

2 is fixed by Eq. (21) without freedom
of adjustment. Note that we have not used any additional
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FIG. 4. vπ
2 at 0–5% centrality for (a) the pion and (b) the proton. The data are from Ref. [2]. The solid lines are calculated from Eq. (21)

using T0 as the adjustable parameter to fit vπ
2 .
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parameters besides T0 to accomplish this, which is a fitting
procedure not more elaborate than the hydro approach where
the initial condition and viscosity are adjusted. A better result
will be shown below when the TS component is taken into
account.

For the proton v
p

2 (pT , b) we take the mass effect into
account in the same way as we have done before [14] by
working with the transverse kinetic energy ET , where

ET (pT ) = mT (pT ) − mh, (25)

and adopt the ansatz that pT is to be replaced by ET in Eq. (23),
i.e.,

Z(pT ) = eET (pT )/T ′ − 1. (26)

Using the same formula, Eq. (21), without any change of T0,
we show in Fig. 4(b) that the result agrees with the proton
data [2] fairly well.

So far we have concentrated on vh
2 (pT , b) at low pT for

0–5% centrality as a first step toward demonstrating the
phenomenological relevance of our approach based on thermal
partons only in the first two terms of ρh(pT , φ, b) in Eq. (10).
To widen the pT and b ranges, as well as to consider higher
harmonics, we must include the third component generated
by TS recombination. But before doing so, we pause in our
study of the azimuthal anisotropy and revisit the subject of the
ridge.

V. THE RIDGE

As remarked earlier in Sec. III, our study of the pT and
φ dependencies of ρh(pT , φ, b) at midrapidity in this paper
does not give us the scope that can include the rapidity
dependence. The �η range of the ridge either in a triggered
correlation or in an untriggered autocorrelation reaches as high
as 4 [34–38] and has therefore been regarded as a long-range
correlation [39–41]. That problem in the framework of our
approach is addressed in Ref. [30]. The subject of our concern
here is the property of the ridge at η ∼ 0; more specifically, we
describe the effect of the ridge in the inclusive distribution at
low pT .

Ignoring the third term in Eq. (10) for the present discussion,
and using Eq. (18) for the second term, we have

ρh(pT , φ, b) = Bh(pT , b) + S(φ, b)R̄h(pT , b), (27)

so that, upon averaging over φ, we obtain the two terms

ρ̄h(pT , b) = Bh(pT , b) + R̄h(pT , b). (28)

Their sum is the inclusive distribution with the exponential
behavior given by Eq. (6) for pT < 2 GeV/c, whereas
they separately behave according to Eqs. (19) and (20).
Bh(pT , b) has been referred to as the base, while R̄h(pT , b)
describes the ridge. They are both the hadronic products of the
recombination of thermal partons.

It is not obvious by examining Eq. (20) that R̄h(pT , b)
exhibits a ridge structure, but the derivation of S(φ, b) outlined
in Sec. III clearly indicates that Rh(pT , φ, b) has a quadrupole
behavior because of the effect of semihard partons. That is, in
addition to the φ-independent base term, the additional ridge
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ridge
sum

p
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FIG. 5. (Color online) The pT distributions of the base
Bπ (pT , b)/Nπ (pT , b) (red dash-dotted line), ridge R̄π (pT , b)/
Nπ (pT , b) (blue dashed line), and their sum (black solid line). The
centrality is for b = 1 in units of RA.

term is made manifest at φ when semihard partons are within
a cone of width σ around φ, owing to the enhancement of the
thermal partons in the cone due to energy loss by the semihard
partons. The hadrons formed in the ridge have a higher 〈pT 〉
than those in the base. For a single-particle distribution we
have, of course, no trigger to select a direction around which
the enhancement can be measured. But that does not mean
that the effect of semihard partons (and therefore the ridge)
is not present in the inclusive distribution. For b/RA = 1 we
show in Fig. 5 the pT dependencies of Bπ (pT , b)/Nπ (pT , b)
and R̄π (pT , b)/Nπ (pT , b), defined in Eqs. (19) and (20), by
the (red) dash-dotted line and (blue) dashed line, respectively,
and referred to as the base and the ridge. The former has
T0 = 0.245 GeV according to Eq. (24); the latter is not exactly
straight in Fig. 5 but can be fitted by exp(−pT /TR) with

TR = 0.32 GeV. (29)

This larger inverse slope clearly indicates that the hadrons
in the ridge are the products of enhanced thermal partons
compared to those in the base. The sum ρ̄π (pT , b)/Nπ (pT , b),
which is the inclusive term, is shown by the (black) solid
line in Fig. 5, whose inverse slope is given by T in
Eq. (8). Note that TR − T = 47 MeV is very close to the
value 45 MeV that Putschke reported as the difference in
the values of T between the triggered ridge and inclusive
distributions [28].

Figure 5 does not show the η and φ characteristics of the
ridge, but the φ dependence of Rπ (pT , φ, b) is completely con-
tained in S(φ, b) as expressed in Eq. (18). Hence, v2(pT , b) and
the ridge are intimately related, both being the consequences
of semihard partons. If the shower partons generated by the
semihard partons lead to a trigger particle, then the hadrons
associated with that trigger would exhibit a peak in φ around
the trigger direction, as was shown in Ref. [31], in agreement
with data [32]. In fact, a prediction on the asymmetry of
hadrons produced on the two sides of the trigger direction was
subsequently verified to exist in the data [42]. If the trigger
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direction is integrated over, then the φ distribution of the ridge
hadrons would behave as Rπ (pT , φ, b).

VI. HIGHER HARMONICS

In recent years the study of φ anisotropy has advanced from
v2(pT , b) to higher harmonics [43–46]. It is widely accepted
that the coefficients vn with n > 2 are due to fluctuations of
the initial configuration whose spatial eccentricity εn leads to
the corresponding vn of the hadronic momentum distribution
through hydrodynamical flow [21,47,48]. It has therefore
become our burden of proof that our approach can also
reproduce the higher vn without flow.

In the preceding section we have shown that v2 can
be understood in terms of the φ dependence of the TT
recombination of the thermal partons affected by the passage
of semihard partons through the medium. Although we have
no transport model to follow the evolution of the system, the
space-momentum transformation is accomplished by studying
the minijets emitted from the initial elliptical configuration,
hence v2. It is then natural for us to focus on the effects of the
same minijets on the higher harmonics. In a sense minijets play
a role similar to the fluctuations of the initial configuration,
because their effects on the φ distribution present a departure
from the consequence of the simple and smooth approximation
of that configuration by an ellipse, except that minijets are
themselves fluctuations in momentum space and do not depend
on flow dynamics. In our formalism the minijets affect the
low-pT region through TS recombination.

Since minijets are produced in any given event in unpre-
dictable directions, the average φ distribution can have all
terms in a harmonic analysis. The only aspect of the behavior
for which our formalism has a predictable power is the
dependence on pT and centrality because the φ-integrated TS
component of recombination has already been formulated and
parametrized. To be explicit, let us write the third component
of ρh(pT , φ, b) in Eq. (10) as

Mh(pT , φ, b) = J (φ, b)M̄h(pT , b), (30)

where J (φ, b) describes the φ-dependent part of the minijet
contribution, which is assumed to be factorizable from the
average M̄h(pT , b) in the same manner as for Rh(pT , φ, b) in
Eq. (18). Moreover, as in Eq. (17), J (φ, b) is the normalized
form of J̃ (φ, b):

J (φ, b) = J̃ (φ, b)

/
1

2π

∫ 2π

0
dφJ̃ (φ, b), (31)

where J̃ (φ, b) contains all the harmonic components, cos nφ,
averaged over the tilt angle ψn, i.e.,

J̃ (φ, b) = 1 + b

∞∑
n=2

an

n

π

∫ π/2n

−π/2n

dψn cos n(φ − ψn). (32)

The b dependence in the above will be discussed below. We
include the n = 2 term in Eq. (32) as an additional contribution
to v2 besides the one from Eq. (18), which is dominant at
low pT because it is from TT recombination. With the Mh

term arising from TS recombination included, we shall go

above the pT < 1 GeV region shown in Fig. 4. There is no
way to calculate the amplitudes an, n � 2, but the pT and b

dependence of M̄h(pT , b) is a unique attribute of our model,
and will be put it to test in our phenomenology of vn(pT , b)
below.

Including all three components of ρh(pT , φ, b) in Eq. (10),
we obtain from (15)

vh
n(pT , b) = 〈cos nφ〉SR̄h(pT , b) + 〈cos nφ〉J M̄h(pT , b)

ρ̄h(pT , b)
,

(33)

where

ρ̄h(pT , b) = Bh(pT , b) + R̄h(pT , b) + M̄h(pT , b), (34)

〈cos nφ〉J = 1

2π

∫ 2π

0
dφ cos nφJ (φ, b). (35)

〈cos nφ〉S is as defined in Eq. (22) for any n, but it is zero for
n � 3 because of the periodicity of S(φ, b). Indeed, 〈cos nφ〉J
receives a contribution only from the an term in Eq. (32)
because of the orthogonality of the harmonics. It is clear from
Eq. (33) that the pT and b dependencies of vh

n(pT , b) are no
longer separable as in Eq. (21), when M̄h(pT , b) is included,
as is necessary for pT > 1 GeV.

In the following we shall consider only pion production by
TS recombination, since TTS and TSS recombination for the
proton is less important for pT < 2 GeV/c. The equations for
dNTS

π /pT dpT given in Eqs. (13) and (14) are more elaborate
than we need for M̄π (pT , b). The b dependence of ξ̄ given
in Ref. [33] is of a scaling form at intermediate pT and is
complicated. We shall use the approximate form used in the
earlier treatment [16] where for the most central collisions

dNTS
π

pT dpT

∣∣∣∣
b=0

= 2C

p3
T

∫ pT

0
dp1p1e

−p1/T S(pT − p1), (36)

S(p2) = ξeff σg

∫ ∞

k0

dkkfg(k)Sg(p2/k), (37)

where only gluon jets are considered explicitly with fg(k)
being the distribution of (semi)hard gluons created with
momentum k. The factor σg = 1.2 is used to take into
account the other (semi)hard partons whose contribution we
approximate by adding 20% to the contribution from gluon jets
[49]. The parameter ξeff is the effective fraction of (semi)hard
partons created anywhere in the medium that emerges to
fragment into clusters of shower partons; it is determined
phenomenologically to be 0.07 [16]. For noncentral collisions
we regard M̄π (pT , b) to be proportional to C(Npart)Ncoll(b),
where C(Npart) ∝ N0.52

part [see Eqs. (A1) and (5)]; it is the
normalization of the thermal parton distribution. Ncoll(b) is
the number of binary collisions that normalizes fg(k). We thus
have

M̄π (pT , b) = C(Npart)Ncoll(b)

C
(
Nmax

part

)
Ncoll(b = 0)

dNTS
π

pT dpT

∣∣∣∣
b=0

, (38)

which completely specifies the pT dependence. There is just
one more piece of physics that needs to be added. That is
the decrease of average path length in the medium as the
collision becomes more peripheral. Its consequence is that a
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FIG. 6. (Color online) Bπ (pT , b), R̄π (pT , b), and M̄π (pT , b) for
0–10% centrality.

greater fraction of the (semi)hard partons can emerge from
the medium as b increases. In [33] a detailed study of the
dependence of the nuclear modification factor on φ and b has
been carried out. For the purpose of promoting a transparent
connection between the harmonic coefficients vn and the input,
we make the simple first-order approximation here that the
increase of minijets with b can be expressed as a linear rise
shown in Eq. (32), which then exhibits very plainly the φ and
b dependencies of J̃ (φ, b), and therefore also Mπ (pT , φ, b).

It is useful to have a visual comparison of the various
components of ρ̄π (pT , b) in Eq. (34). In Fig. 6 we show
Bπ (pT , b), R̄π (pT , b), and M̄π (pT , b) for 0–10% centrality,
determined from using Eqs. (19), (20), and (38), respectively.
Evidently, R̄π (pT , b) and M̄π (pT , b) become increasingly
more important at increasing pT . They set the scale of
vπ

n (pT , b) through their roles in Eq. (33). For specific har-
monics, we limit ourselves to n = 2, 3, and 4 and calculate
vπ

2 (pT , b), vπ
3 (pT , b), and vπ

4 (pT , b). The results are shown by
the solid lines in Fig. 7, where the data are from PHENIX [50].
The values of the parameters used are

a2 = 0.6, a3 = 1.6, a4 = 1.2. (39)

It is remarkable how well the calculated curves agree with the
data for pT dependence for the four centrality bins in each case.
One parameter an for each n can affect only the magnitude
of vn(pT , b), so the excellent reproduction of the pT and b

dependencies reveals the basic attributes of the approach that
we have taken to describe the harmonics.

We note that Fig. 7(a) represents an improvement over
Fig. 5(a) owing to our use of Eq. (33) instead of (21) for
vπ

2 (pT , b). It is clear that the difference is due to the inclusion
of the third term in Eq. (10). However, it is also significant
to point out that the change is not large except in the ranges
of pT and b. That is, the major features of vπ

2 (pT , b) can be
well reproduced by considering TT recombination only with
the neglect of the TS component.

The fit of the data is not perfect for vπ
3 (pT , b) and vπ

4 (pT , b)
at 30–40% centrality. That may be due to larger fluctuations
of the minijet contribution at less central collisions, for which
more detailed study is called for.
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FIG. 7. pT dependencies of (a) vπ
2 (pT , b), (b) vπ

3 (pT , b), and
(c) vπ

4 (pT , b) for four centralities in each case. The data are from
Ref. [50]. Solid lines are the results of our calculation using an given
in Eq. (39).

Note that the curvatures of the lines and the data for v2 are
different from those of v3 and v4. To see the origin of that
difference, we rewrite Eq. (33) to reflect the dominance of the
numerator of vπ

2 (pT , b) by R̄π (pT , b) and of vπ
3,4(pT , b) by

M̄π (pT , b):

vπ
2 (pT , b) ≈ 〈cos 2φ〉S R̄π (pT , b)

ρ̄π (pT , b)
, (40)

vπ
n (pT , b) = 〈cos nφ〉J M̄π (pT , b)

ρ̄π (pT , b)
, n = 3, 4. (41)
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Thus the pT dependencies of vπ
2 (pT , b) and vπ

3,4(pT , b) are
dictated by those of R̄π (pT , b)/ρ̄π (pT , b) and M̄π (pT , b)/
ρ̄π (pT , b), respectively, which are prescribed by the behav-
iors shown in Fig. 6. vπ

2 is convex upward because, as
pT increases, M̄(pT , b) becomes larger so the increase of
R̄π (pT , b)/ρ̄π (pT , b) decelerates; in fact, it would decrease as
pT gets above pT ∼ 3 GeV/c, a property that has previously
been obtained in Ref. [14] because of TS dominance. On
the other hand, vπ

3 and vπ
4 are concave upward because

R̄π (pT , b) is much larger than M̄π (pT , b) around pT ∼
1 GeV/c, so M̄π (pT , b)/ρ̄π (pT , b) is suppressed at low pT .
Eventually, as pT gets much larger, the SS term will become
important and turn vπ

3,4 over and diminish them. Since the
properties of the three components in Fig. 6 are specific
results of the recombination model, the appropriate curvatures
of the solid lines in Fig. 7 in agreement with the data lend
support to our minijet approach to the treatment of azimuthal
anisotropy.

Our study here is mainly a demonstration of principle
in that minijets are important and can explain all the low-
pT data in the recombination framework. However, it is
important to bear in mind that what we have shown is the
sufficiency of our approach to reproduce the data—but not its
necessity. Nor has anyone shown that the hydro approach is
necessary. Indeed, there is no theoretical treatment that can
prove necessity. Nevertheless, it is significant to recognize
that various dynamical mechanisms can be responsible for the
same phenomenological features of the hadronic observables.
By the same token, a combination of those mechanisms may
be at play in reality. The base component in our description
could possibly be treated by hydrodynamics if thermalization
is rapid for the subsystem that is left behind after the emission
of semihard partons near the surface. There are other related
issues concerning the fluctuation of the initial configuration
and the variation of the thermalization time for various
different eccentricities. Such complications combined with the
effects of minijets that we have found here open up a range
of possibilities, on which our present treatment may reveal
only a restricted view that is opposite to the traditional hydro
view. A comprehensive study that includes both components
of the mixture is a worthwhile problem for the future. For
now, our simple remark is that the common usage of the term
“elliptic flow” for v2 is inadequate in generality and tends to
be misleading.

VII. CONCLUSION

We have shown that the major properties of pion and proton
production at low pT can be reproduced in our formulation
of hadronization that includes the effects of minijets. The
pT spectra have exponential behavior, exp(−pT /T ), with a
common value of T for both the pion and the proton that
is the same as the T of the thermal partons just before
hadronization. Minijets generate azimuthal anisotropy both
through energy loss to the medium and in creating shower
partons that recombine with the thermal partons. Harmonic
analysis of the φ dependence leads to vn(pT , b) that agrees
with the data.

We have also shown that the ridge phenomenon is a
consequence of minijets. Although our study in this paper
is limited to the small-η region of inclusive distribution, the
ridge component is shown to have a harder pT spectrum
because of the enhancement of the thermal partons. The φ

dependence around a trigger was described in Ref. [31], but
now we show that when integrated over the trigger direction
the ridge component in the inclusive distribution generates a
quadrupole v2(pT , b) with the correct pT dependence. Thus,
v2 and the ridge are tightly related.

Since our treatment is only for the system at late time, we
employ no model to carry out the development of the system
from early time. The thermal partons are assumed to have an
exponential form that is determined by phenomenology. Not
following the evolution of the system is not equivalent to an
assumption that the system does not expand. It is just that we
do not make any assumption concerning the equilibration time
or the properties of the fluid. Obviously, we do assume that by
the time of hadronization there is local thermalization to justify
the use of T . The claim we make is that taking the minijets
into account is sufficient to reproduce the measured azimuthal
anisotropy. We cannot exclude the validity of hydrodynamical
flow, but we do show that the phenomenology that supports
the flow dynamics provides the same support for our approach.
Thus there are two possible descriptions of the low-pT process,
neither of which can claim exclusive validity. The reality may
even be a combination of both.

While further investigation is needed to determine the extent
of the admixture of flow and minijets at the RHIC, it is
conceivable that in collisions at the Large Hadron Collider
(LHC) the density of semihard partons is so high initially
that the system has insufficient time for equilibration before
the abundant minijets created near the surface dominate the
expansion characteristics, even though the higher density of
soft gluons speeds up the thermalization process at the core
of the medium. If that is so, then one may think of what we
have done here as the lower-energy precursor of what needs
to be done at higher energies. The study of the pT spectra at
the LHC has already shown the importance of minijets through
thermal-shower recombination [49]. It will therefore be natural
to apply the formalism developed here to elucidate the problem
of azimuthal harmonics measured at the LHC.
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APPENDIX: CENTRALITY DEPENDENCE
OF HADRONIC pT DISTRIBUTIONS

Having obtained the correct centrality dependence
of vh

2 (pT , b) in Fig. 5 of Sec. IV, which is to-
tally calculable without free parameters, we consider
here the centrality dependence of the inclusive spectra
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FIG. 8. Inclusive spectra at three centralities for (a) the pion and (b) the proton. The data are from Ref. [1].

ρ̄h(pT , b). We note that the unknown normalization fac-
tors N h in Eq. (6) never enter into the calculation of
vh

2 (pT , b) because of cancellation, but for ρ̄h(pT , b) they
must be reckoned with. As indicated in Eq. (7), N π and
N p are proportional to C2 and C3, respectively, due to qq̄

and qqq recombination. The magnitude C of the thermal
partons depends on b in a way that cannot be reliably
calculated. By the phenomenology of the pion spectrum it
was previously estimated for pT > 1.2 GeV/c [15], but that
estimate is inadequate for our purpose here; moreover, N π

and N p have different statistical factors that can depend on
b because of resonances. We give here direct parametriza-
tions of the normalization factors in Eq. (7) in terms

of Npart:

Nπ
0 C2 = 0.667N1.05

part , (A1)

N
p

0 C3 = 0.149N1.18
part . (A2)

Using them in Eqs. (6) and (7) we obtain the curves in Figs. 8(a)
and 8(b) for the pion and the proton, respectively, for three
centrality bins. They agree with the data from PHENIX [1]
very well over the range of pT shown. In all those curves T is
kept fixed at 0.283 GeV, thus reaffirming our point that both
pions and protons are produced by the same set of thermal
partons despite the apparent differences in the shapes of their
pT dependencies.
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