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Glauber-model analysis of total reaction cross sections for Ne, Mg, Si, and S isotopes
with Skyrme-Hartree-Fock densities
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A systematic analysis is made on the total reaction cross sections for Ne, Mg, Si, and S isotopes. The
high-energy nucleus-nucleus collision is described based on the Glauber model. Using the Skyrme-Hartree-Fock
method in the three-dimensional grid-space representation, we determine the nuclear density distribution for a
wide range of nuclei self-consistently without assuming any spatial symmetry. The calculated total reaction cross
sections consistently agree with the recent cross section data on the Ne+12C collision at 240 AMeV, which makes
it possible to discuss the radius and deformation of the isotopes. The total reaction cross sections for Mg+12C,
Si+12C, and S+12C cases are predicted for future measurements. We also find that the high-energy cross section
data for O, Ne, and Mg isotopes on a 12C target at around 1000 AMeV can not be reproduced consistently with
the corresponding data at 240 AMeV.
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I. INTRODUCTION

Advances in measurements of unstable nuclei have been
providing information on exotic nuclei toward the neutron and
proton drip lines. Recently total reaction or interaction cross
sections have been measured in the pf -shell region [1–3].
They exhibit interesting trends that imply exotic structure,
for example, halos, skins, deformations, and so on, as we
approach the drip lines. In particular, the first observation of
a halo structure of 31Ne [4] has stimulated several theoretical
studies [5–7].

Nuclear deformation is one of the unique properties of a
finite quantum system. If the intrinsic wave function shows
some deformation, the nuclear radius becomes effectively
large because the ground-state wave function is expressed as a
superposition of the intrinsic wave functions with different
orientations. Since the total and interaction cross sections
are closely related to the nuclear radius, it is interesting to
investigate a relation between these cross sections and nuclear
deformation.

In this paper, we present a systematic analysis of total
reaction cross sections, on a 12C target, of unstable nuclei in the
sd- and pf -shell regions, focusing on nuclear size properties,
especially radius and deformation, and their relationship with
the cross section. This study is motivated by the recent
systematic measurements of the total reaction cross sections
of the pf -shell region [1–3]. We also predict the cross sections
of other nuclei for future measurements. The analysis will give
us important information on the interplay between the nuclear
structure and the cross section.

In Refs. [8,9], two of the present authors (W.H. and Y.S.), B.
Abu-Ibrahim, and A. Kohama performed systematic analyses
of the total reaction cross sections of C and O isotopes on
a 12C target. In these studies, the wave functions generated
from a spherical Woods-Saxon model were employed and
the center-of-mass motion was appropriately removed. The
Glauber model, which gives a fair description of high-energy

nucleus-nucleus collisions from nucleon degrees of freedom,
provided a good agreement with the experiment. However, in
the present paper, we study the region including the island of
inversion where the nuclear deformation may play a significant
role. Thus, we perform the Skyrme-Hartree-Fock calculation
in the three-dimensional (3D) coordinate-mesh representation,
which allows us to treat the correct asymptotic behaviors
of single-particle orbitals and the nuclear deformation self-
consistently. Although the parameter sets of Skyrme energy
functionals are mostly determined by fitting the properties
of heavy closed-shell nuclei and the nuclear matter, they
are known to give a good description of light nuclei as
well. This universality is one of the main advantages of the
density-dependent mean-field models. To see the sensitivity of
the nuclear deformation to the radius, two different types of
Skyrme parameter sets are employed for comparison.

This paper is organized as follows. In Sec. II, we briefly
explain our reaction and structure models to calculate the total
reaction cross sections. Section III presents the calculated total
reaction cross sections on a 12C target at the medium energy of
240 AMeV, corresponding to the recent experiments carried
out at RIKEN. We compare our theoretical cross sections and
the experimental ones for Ne in Sec. III A. Motivated by a very
recent measurement [3], we show our theoretical predictions
for Mg isotopes in Sec. III B. Predictions for Si and S isotopes
are also made in Sec. III C. We discuss in Sec. III D a problem
concerning the total reaction cross section data at around
1000 AMeV for O, Ne, and Mg isotopes. A conclusion is
drawn in Sec. IV.

II. MODELS

A. Glauber model

We describe a high-energy nucleus-nucleus collision in the
Glauber formalism [10]. The total reaction cross section is
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obtained by integrating the reaction probability P (b) over the
impact parameter b

σR =
∫

db P (b), (1)

with

P (b) = 1 − |eiχ(b)|2, (2)

where χ (b) is the phase-shift function for the elastic scattering
of a projectile (P ) and a target (T ). The phase shift function
is given in terms of the ground-state wave functions of the
projectile and the target as

eiχ(b) = 〈
�P

0 �T
0

∣∣ AP∏
i∈P

AT∏
j∈T

[
1 − �NN

(
sP
i − sT

j + b
)]∣∣�P

0 �T
0

〉
,

(3)

where si is the transverse component of the ith nucleon
coordinate and �NN is the nucleon-nucleon profile function
which we parametrize in the following form

�NN (b) = 1 − iαNN

4πβNN

σ tot
NN exp

(
− b2

2βNN

)
. (4)

The parameter sets of σ tot
NN , αNN , and βNN used here are given

in Ref. [11].
Though the multiple integration in Eq. (3) may be per-

formed with a Monte Carlo integration as was done for light
nuclei [12], we take the usual approximation in this paper.The
optical limit approximation (OLA) offers the most simple
expression, which is obtained by taking only the first-order
term of the cumulant expansion [10] of Eq. (3), that is,

eiχOLA(b) = exp

[
−

∫∫
d rP d rT ρP (rP )ρT (rT )

×�NN (sP − sT + b)

]
, (5)

which involves a double-folding procedure of the projectile
and target densities (ρP , ρT ) with the effective interaction
�NN . The OLA misses some higher-order terms of �NN and
multiple scattering effects. The resulting total reaction cross
section of the nucleus-nucleus collision tends to overestimate
the measured cross section [8].

In Ref. [13], another expression of evaluating the phase shift
function is proposed to take account of the multiple scattering
processes missing in the OLA. To derive the formula, first we
use the cumulant expansion of the phase shift function for the
nucleon-target system and take the first-order term back to the
original phase shift function (3). Using the cumulant expansion
again, its leading term is called the nucleon-target formalism
in the Glauber model (NTG) approximation, which is

eiχNTG(b)

= exp

{
−

∫
d rP ρP (rP )

×
[

1 − exp

(
−

∫
d rT ρT (rT )�NN (sP − sT + b)

)]}
.

(6)

In the numerical calculations shown in Sec. III, we use
the symmetrized expression of Eq. (6) by exchanging the
role of the projectile and target nuclei. Note that the NTG
approximation requires the same inputs as those of the OLA.
It gives a simple but fair description for high-energy reactions.
For example, the total reaction cross sections of 12C + 12C
collisions are improved very much in a wide energy range [8].

B. Skyrme-Hartree-Fock method in 3D
coordinate-mesh representation

We perform the Skyrme-Hartree-Fock calculation for the
density distribution of a variety of projectiles. The ground
state is obtained by minimizing the following energy density
functional [14]

E[ρ] = EN + EC − Ec.m.. (7)

For the ground states of even-even nuclei, the nuclear energy
EN is given by a functional of the nucleon density ρq(r),
the kinetic density τq(r), the spin-orbit-current density ∇ ·
Jq(r) (q = n, p). The Coulomb energy EC among protons
is a sum of direct and exchange parts. The exchange part
is approximated by means of the Slater approximation,
∝ ∫

d rρp(r)4/3. The center-of-mass recoil effect is also treated
approximately by a subtraction of the expectation value of
Ec.m. = (

∑
i pi)

2/(2mA) ≈ ∑
i p2

i /(2mA).
Every single-particle wave function φi(r, σ, q) is repre-

sented in the 3D grid points with the mesh size of �x =
�y = �z = 0.8 fm. All the grid points inside the sphere of
radius of 15 fm are adopted in the model space. The ground
state is constructed by the imaginary-time method [15] with
the constraints on the center-of-mass and the principal axis

∫
d rxρ(r) =

∫
d ryρ(r) =

∫
d rzρ(r) = 0,

(8)∫
d rxyρ(r) =

∫
d ryzρ(r) =

∫
d rzxρ(r) = 0.

For odd-A nuclei, we adopt the half-filling approximation,
thus the time-odd densities, such as the current density and
the spin density, do not contribute to the present calculation.
The computer program employed in the present work has been
developed previously for linear-response calculations [16–18],
including all the time-odd densities. However, those time-
odd parts automatically vanish in converged self-consistent
solutions. Because of this simple filling treatment for odd-A
nuclei, we do not expect a quantitative description of the odd-
even effect in our calculation. For nuclei very near the neutron
drip line, the nuclear radius becomes extremely sensitive to the
neutron separation energy. In other words, a light modification
of the Skyrme parameter set could drastically modify the final
result. Thus, we do not show such results for the drip-line
nuclei in Sec. III.

We calculate isotopes with even proton numbers, Z = 8,
10, 12, 14, and 16. The two parameter sets of SkM∗ [19] and
SLy4 [20] are employed in the following, and we compare
the results obtained with these two parameter sets. The SkM∗
functional is known to well account for the properties of the
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nuclear deformation, while the SLy4 is superior to SkM∗ in
reproducing the total binding energy.

The self-consistent solution becomes, in most cases, a
deformed intrinsic state |�K〉 with the definite K quantum
number. The ground-state wave function in the laboratory
frame is constructed according to the strong-coupling scheme
[21] as

|KIM〉 =
(

2I + 1

16π2(1 + δK0)

)2{|�K〉DI
MK (ω)

+ (−1)I+K |�K̄〉DI
M−K (ω)

}
, (9)

where DI
MK (ω) is the D function depending on the three Euler

angles ω. The density distribution in the ground state with
I = K is simply given by

ρ(Lab)
q (r) = 1

4π

∫
d r̂ρq(r), (10)

taking the average over states with different magnetic quantum
number M . The density ρ(Lab)

q (r) of Eq. (10) is utilized in
Eq. (6) as the projectile density distribution ρP (r). Since the
Skyrme energy functional is constructed so as to give a density
distribution ρ(r) in the center-of-mass frame, we directly use
the density in Eq. (10) in the NTG formula (6).

III. RESULTS AND DISCUSSION

Here we treat a reaction on a 12C target. Proton and neutron
density distributions of 12C are obtained in the same way
as in Ref. [8]. The obtained density reproduces the proton
charge radius determined by an electron scattering. The total
reaction cross sections of both p + 12C and 12C + 12C are
reproduced very well in a wide energy range [8,11]. We adopt
this density distribution for the target nucleus. The density
distribution of the projectile nucleus is determined by the
Skyrme-Hartree-Fock calculation as explained in Sec. II B.
For both the projectile and target, we use proton and neutron
densities separately.

A. Neon isotopes

Figure 1 displays the point matter, neutron, and proton
root-mean-square (rms) radii of Ne isotopes as a function of
neutron number N . The enhancement of the matter radius in the
neutron-rich isotopes is dominantly due to that of the neutron
radius. An interesting observation is that both the neutron and
proton radii follow the same behavior as the matter radius.
Both SkM∗ and SLy4 energy functionals produce similar
results for N � 18. We see, however, a noticeable difference
beyond N = 18, and then the two results coincide again at
N = 24. What kind of structure property is responsible for
these differences?

Figure 2 shows the calculated neutron Fermi energies.
Both SkM∗ and SLy4 results exhibit similar behavior, except
for very neutron-rich isotopes with N > 20, in which the
neutron separation energy is calculated to be larger for SkM∗
than SLy4. Since a smaller separation energy is expected to
produces a larger matter radius, the behavior of the Fermi
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FIG. 1. (Color online) Point matter, neutron, and proton rms radii
of Ne isotopes calculated with the SkM∗ and SLy4 interactions.

energy or the neutron separation energy does not explain
the difference of the calculated matter radii for nuclei with
18 < N < 24 (Fig. 1). On the contrary, this gives an opposite
effect. The matter radius is predicted to be larger for the SkM∗
calculation.

The different matter radii are found to be mainly due to
the difference in the nuclear deformation. We calculate the
quadrupole deformation parameters from the mass quadrupole
moments

β =
√

β2
20 + β2

22, (11)
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FIG. 2. (Color online) Neutron Fermi energies of Ne isotopes as
a function of neutron number N .
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FIG. 3. (Color online) Quadrupole deformation parameter β of
Ne isotopes calculated with the SkM∗ and SLy4 interactions.

with

β20 =
√

π

5

〈2z2 − x2 − y2〉
〈r2〉 ,

(12)

β22 =
√

3π

5

〈y2 − x2〉
〈r2〉 .

The quantization axis is chosen as the largest (smallest) prin-
cipal axis for prolate (oblate) deformation. Figure 3 presents
the quadrupole deformation parameters β obtained from the
Hartree-Fock (HF) solutions. The positive (negative) values of
β indicate the prolate (oblate) deformations. Beyond N = 16,
we find a significant difference in the magnitude of β, between
SkM∗ and SLy4. In the SkM∗ calculation, the deformation
parameter β is positive and rapidly increases for N > 18. On
the other hand, the SLy4 predicts the nearly spherical ground
states (weakly oblate) for N � 20 and changes its shape into
prolate for N > 20. The value of |β| is always larger in SkM∗
for 18 < N < 24. This nicely corresponds to the observation
of the different behavior in the matter radii at 18 < N < 24 in
Fig. 1. The matter radii coincide again at N = 24, so does the
predicted β values. It should be noted that the kink behavior
in the matter radii at N = 20 (SLy4) in Fig. 1 can be explained
by the onset of the deformation at N > 20, while the kink at
N = 14 is due to the occupation of the s1/2 orbitals at N > 14.

The proton number Z = 10 of the Ne isotope is known to
strongly favor the prolate shape because it corresponds to the
magic number at the superdeformation [16,21]. This is con-
sistent with the results in Fig. 3 for Ne isotopes with N ∼ 10.
Recent experiments reveal that the excitation energy of the first
Jπ = 2+ states E(2+

1 ) in even Ne isotopes decrease from N =
16 to N = 22 [22]. This is qualitatively consistent with the
increase of the quadrupole deformation calculated with SkM∗.

The calculated total reaction cross sections of Ne isotopes
incident on a 12C target at 240 AMeV are shown in Fig. 4 as a
function of neutron number N . The agreement with the recent
data [2] is very good. The slope of the curve in Fig. 4 changes at
N = 14. The cross section increases gradually from N = 10
to 14 and shows a rapid rise from N = 14. This neutron-
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FIG. 4. (Color online) Total reaction cross sections of Ne isotopes
on a 12C target at 240 AMeV. Experimental data are the interaction
cross sections at 240 AMeV taken from Ref. [2].

number dependence of the total reaction cross sections also
well corresponds to the calculated matter radii.

For the nuclei with N = 10 ∼ 14, the calculated cross
sections are slightly larger than the observed values, while the
agreement between the theory and experiment is fairly good in
the neutron-rich region beyond N = 14. This may be explained
by the difference between the total reaction and interaction
cross sections. The theory gives the total reaction cross section
σR while the experiment is the interaction cross section
σI . Since the latter cross section does not contain inelastic
reaction cross sections, the inequality σR � σI always holds.
Contributions of the inelastic processes are classified as two
cases. (i) The projectile nucleus is excited to particle-bound
excited states that are located below the particle-emission
threshold, while the target can take any states. (ii) The target
nucleus is excited, but the projectile remains in the ground
state. The difference between the total reaction and interaction
cross sections is expected to be smaller as going closer to the
neutron drip line. The difference is estimated to be at most
100 mb in a phenomenological way [23].

For the neutron-rich nuclei 28−32Ne, the results of SkM∗
nicely reproduce an average behavior of the experimental
cross sections, but not their odd-even staggering. This may
be due to the pairing correlation [24], which is neglected in
the present study. Our result for these nuclei is similar to the
one obtained with the deformed Woods-Saxon potential [25].
Approaching the neutron drip line, the neutron separation
energy becomes very small. In such a situation, a spatial
extension of the last neutron orbit is very sensitive to the
separation energy. The 3D coordinate-space representation
for the single-particle orbitals is suitable for the treatment of
their asymptotics. However, in the case of 31Ne, the measured
neutron separation energy is only about 0.33 MeV with a large
error bar [26], while the calculated separation energy is as
large as 2 MeV with the SkM∗ interactions. Together with
the half-filling approximation, the present Skyrme functionals
may not provide us with such a precise description of a
loosely bound system. To artificially adjust the Fermi level
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FIG. 5. (Color online) (a) Point matter density distributions of
30Ne calculated with the SkM∗ and SLy4 interactions. (b) The same
as the upper panel but drawn in a logarithmic scale.

to 300 keV, we multiply the mean-field potentials (Un and
Up [27]) obtained with SkM∗ by a common scaling factor,
then, the total reaction cross section is easily increased by
140 mb. This, in fact, significantly overestimates the experi-
mental cross section. Thus, an accurate measurement of the
neutron separation energy is highly desired.

Figure 5 presents the calculated density profiles of 30Ne
in both linear and logarithmic scales. The nucleus 30Ne is
strongly deformed with SkM∗ (β = 0.35), while the shape
is almost spherical with SLy4 (β = −0.06). In this case,
two parameter sets exhibit quite different density profiles,
especially in the outer region that is crucial to determine the
matter radius. The density calculated with SkM∗ is larger than
the one with SLy4 at r � 5 fm.

To see how the above density difference leads to
the difference in the total reaction cross section, we plot the
difference of the reaction probabilities calculated with the
SkM∗ and SLy4 interactions

D(b) = PSkM∗ (b) − PSLy4(b). (13)

Note that D(b) depends only on b = |b|. In Fig. 6, we show
D(b) multiplied by 2πb for 30Ne projectile on both 12C and
proton targets for comparison. Though we see some difference
in the interior density as shown in Fig. 5, it has almost no
contribution to D(b) for a 12C target, while D(b) on a proton
target shows oscillatory behavior reflecting the difference of
the density profiles between 2–4 fm. The reaction on a 12C
target is insensitive to the internal density profiles. In contrast,
we can see the difference in the outer region (Fig. 6). The
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FIG. 6. (Color online) Impact parameter dependence of the
difference of the reaction probabilities for 30Ne calculated with the
SkM∗ and SLy4 interactions.

reaction on a 12C target is advantageous to probe the density
at large distances.

B. Magnesium isotopes

Let us next discuss Mg isotopes. Figures 7 and 8 display the
quadrupole deformation parameters and the matter, neutron,
and proton rms radii for Mg isotopes. The trend of the deforma-
tion parameters is very similar to that of Ne isotopes. Similarly
to Ne case, the β values obtained with SkM∗ are larger than
that with SLy4 for 18 < N < 24. This behavior influences the
matter radii as well as the neutron and proton radii as shown in
Fig. 8. We also plot the radii obtained by the fermionic molecu-
lar dynamics approach (FMD) [28,29]. Though the FMD radii
tend to be slightly smaller than our HF radii in 12 � N < 18,
the HF radii with SkM∗ are very close to the FMD radii for
N > 18. As shown in Ref. [28], the trend of the quadrupole
deformations is also similar to that obtained with SkM∗.

The deformation β calculated with SkM∗ is very similar
to that of Ne case. The difference can be observed only
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FIG. 7. (Color online) Quadrupole deformation parameter β of
Mg isotopes calculated with the SkM∗ and SLy4 interactions.
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FIG. 8. (Color online) Point matter, neutron, and proton rms radii
of Mg isotopes calculated with the SkM∗ and SLy4 interactions. The
radii obtained by the FMD [28,29] are also shown.

for N = 14–16: the Ne isotopes have oblate shape with
small deformation, while the Mg isotopes have prolate shape.
Experimental excitation energies of the first 2+ states, E(2+

1 ),
of 28,30Mg (N = 16, 18) are almost the same, whereas we
see a rapid decrease of E(2+

1 ) in 26,28Ne [22]. Again, this is
qualitatively consistent with the calculation.

In Fig. 9 we show the total reaction cross sections calculated
using the SkM∗ and SLy4 interactions for Mg isotopes incident
on a 12C target. A comparison with the experiment is very
interesting to judge whether the neutron-rich Mg isotopes favor
the strong deformation or not and also whether the HF densities
at 12 � N < 18 can reproduce experimental cross sections or
not because they predict larger radii than the FMD calculation.

 1100

 1200

 1300

 1400

 1500

 1600

 12  14  16  18  20  22  24  26

σ R
 [m

b]

Neutron Number N

Mg

SkM*

SLy4

FIG. 9. (Color online) Total reaction cross sections of Mg
isotopes incident on a 12C target at 240 AMeV.
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FIG. 10. (Color online) Quadrupole deformation parameters of
Si and S isotopes calculated with the SkM∗ interaction as a function
of neutron number N .

Here we comment on the cross section of 37Mg. Since the
neutron separation energy of 37Mg is considered to be small
(∼162 keV) [30], and the β value of 37Mg is fairly large, a
situation similar to 31Ne may occur in 37Mg as well. If that is
the case, the cross section predicted for 37Mg will be increased
than the present value. We hope the measured values of the
total reaction (interaction) cross sections are made available
soon [3].

C. Silicon and sulfur isotopes

We now discuss the cases of Si and S isotopes, which
will show deformation different from Ne and Mg isotopes.
Figures 10 and 11 plot the quadrupole deformation parameters
as well as the point matter, neutron, and proton rms radii for
Si and S isotopes, respectively. We also see some kinks in
the calculated matter, neutron, and proton radii in Fig. 11,
corresponding to the peaks of the quadruple deformation
parameter displayed in Fig. 10. The magnitudes of β for Si
and S isotopes are significantly smaller than those of Ne and
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FIG. 11. (Color online) Point matter, neutron, and proton rms
radii of (a) Si and (b) S isotopes as a function of neutron number N .
The SkM∗ interaction is used.
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Mg isotopes, in the region of N ≈ 20, which suggests that
the island of inversion does not reach Z = 14 (Si). This is
probably due to the fact that 14 protons favor the oblate shape,
while the neutrons tend to deform the system into a prolate
shape for N > 16. Thus, the competition between protons
and neutrons determines the deformation. The enhancement
of the matter radii for N > 14 is not as strong as that in Ne
and Mg isotopes, corresponding to the moderate change of
β values. The matter radii of Si and S isotopes show similar
enhancement. The proton radii of S isotopes, however, tend to
be larger than those of Si isotopes due to the occupation of the
s orbit. The neutron and matter radii of S isotopes also show
kink behaviors at N = 28. This may be due to the decrease of
the deformation at N = 26 to 28 and the occupation of low-�
(p) orbitals beyond N = 28. Note that similar kink behaviors
at N = 28 are predicted in the low-energy E1 strength for S
isotopes but not for Si isotopes [18].

In Fig. 12, we plot the predicted total reaction cross sections
of Si and S isotopes on a 12C target at 240 AMeV. For the
sake of comparison, the σR values for Ne and Mg isotopes
are also drawn. Though some behavior indicating the nuclear
deformation appears to persist in Si and S isotopes as well, the
change of the cross sections in 18 � N � 24 is not as drastic
as that of the cross sections of Ne and Mg isotopes. In fact,
the increase of σR from N = 18 to 24 is 210, 180, 140, and
130 mb, for Ne, Mg, Si, and S isotopes, respectively.

D. Problems in the high-energy data

We have shown that the present theory reproduces the total
reaction or interaction cross section data at the medium energy

of 240 AMeV. Since it is based on the Glauber model, our
theory should provide us with a very good description of
high-energy collisions around 1000 AMeV. In fact, as shown in
Ref. [8], the total reaction cross section of 12C + 12C collision
is reproduced very well in the wide energy ranging up to
1000 AMeV. The calculated cross sections with the NTG
(OLA) approximation are 791 (814) mb at 240 AMeV, and
851 (891) mb at 1000 AMeV, respectively. The NTG values
are in excellent agreement with the measured total reaction
and interaction cross sections, 782 ± 10 mb [31] at 250 AMeV
and 853 ± 6 mb [32] at 950 AMeV, whereas the OLA cross
sections tend to overestimate the measured values. Though the
NTG approximation can reproduce the 12C − 12C cross section
at high energies, we here point out that some cross sections for
O, Ne, and Mg isotopes at around 1000 AMeV are difficult to
reproduce.

We start with a problem concerning the interaction cross
sections of O isotopes. The anomalously large cross section of
23O on a 12C target at around 1000 A MeV has been a long
standing problem [32–34]. A large jump of the measured cross
section σI from 22O to 23O was analyzed by a model of adding
one neutron in a loosely bound 1s orbit to the 22O core [35].
However, it failed to explain the data because one neutron
separation energy (2.74 MeV) is too large to form a halo
structure. Figure 13 displays the total reaction cross sections of
O isotopes calculated with the SkM∗ interaction. The measured
interaction cross sections are taken from Ref. [32] for 13−24O
and from Ref. [36] for 22,23O. The second of these are new
data remeasured in 2011. In the case of 23O, our result agrees
well with the new data [36] as well as the calculation based on
a phenomenological Woods-Saxon potential [9]. The previous
experimental value for 23O [32] seems to be too large.

Next, we show in Fig. 14 the total reaction cross sections of
Ne and Mg isotopes on a 12C target at around 1000 AMeV. The
experimental cross sections are taken from Refs. [1,32]. Again,
a considerable difference between the theory and experiment
is observed. This difference is unexpected, however, in view of
the fact that we have a good agreement with the measurement
at 240 AMeV for Ne isotopes (Fig. 4). It is also noted that,
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FIG. 13. (Color online) Total reaction cross sections of O isotopes
on a 12C target at 1000 AMeV. The SkM∗ interaction is used. Mea-
sured interaction cross sections at around 950 AMeV are taken from
Ref. [32] (open diamonds). Most recently measured interaction cross
sections by the authors of Ref. [36] are denoted by filled diamonds.
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FIG. 14. (Color online) (a) Total reaction cross sections of Ne
isotopes on a 12C target at 1000 AMeV. The SkM∗ interaction is
used. Measured interaction cross sections at around 950 AMeV are
taken from Ref. [32]. (b) Total reaction cross sections of Mg isotopes
on a carbon target at 900 AMeV. The SkM∗ interaction is used.
Measured interaction cross sections at around 950 AMeV are taken
from Refs. [32] (closed diamonds) and [1] (filled diamonds).

although the calculation produces a smooth neutron number
dependence, the measured cross sections show an irregular
decrease at 33Mg.

Since our calculations at 240 AMeV reproduce the recent
measurement very well and since the total reaction cross
sections are expected to be very close to the interaction
cross sections at around 1000 AMeV, we think that updating
experimental cross section data is necessary to resolve the
above problems.

IV. CONCLUSION

We make a systematic analysis of the total reaction cross
sections of Ne, Mg, Si, and S isotopes on a 12C target.
The densities are obtained using the Skyrme-Hartree-Fock
method on a full 3D grid space. High-energy nucleus-nucleus
collisions are described using the Glauber model. Both

the structure and reaction models employed here have no
adjustable parameters.

Comparing our results with the recent measurements of the
total reaction cross sections for Ne isotopes at 240 AMeV,
we find that a good agreement is obtained for both stable and
unstable projectiles. We show that the nuclear deformation
plays an important role to determine the matter radius of the
neutron-rich isotopes. A similar trend in the total reaction
cross sections is expected for Mg isotopes whose deformation
behaves like that of Ne isotopes. We also show that the total
reaction cross sections on a 12C target is sensitive to the nuclear
density, especially near its surface where the deformation
contributes to changing the density profile. The systematic
measurements of σR (σI ) for a long chain of isotopes may
reveal the enhancement of the nuclear size which can be a
signature of the nuclear deformation. We find that the proton
radii also follow the same behavior of the matter radii. If
one can measure the proton radii, for example, by charge
changing cross sections, they also give information on nuclear
deformations as well as nuclear skin-thicknesses.

We predict the total reaction cross sections for Mg, Si, and S
isotopes on a 12C target. We also point out some contradictions
in the high-energy cross section data at around 1000 AMeV.
In spite of the fact that we can excellently reproduce the
experimental data at 240 AMeV, we observe considerable
disagreement between our calculation and the measured cross
sections for O, Ne, and Mg isotopes on a 12C target at around
1000 AMeV. The resolution of these problems requires further
investigations in both the theory and experiment.

It is interesting to examine the total reaction cross sections
on a different target because they give different sensitivity to
the density profile of the projectile nucleus. Since a 12C target
has a finite size, the reaction mainly takes place at the nuclear
surface where more particles are involved. On the contrary,
a proton target, as a point particle, is able to probe the inner
region of the nucleus. This will provide us with information
on the interior density differently from the carbon target. Work
along this direction is underway.
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