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Neutrino-nucleus coherent scattering as a probe of neutron density distributions
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Neutrino-nucleus coherent elastic scattering provides a theoretically appealing way to measure the neutron part
of nuclear form factors. Using an expansion of form factors into moments, we show that neutrinos from stopped pi-
ons can probe not only the second moment of the form factor (the neutron radius) but also the fourth moment. Using
simple Monte Carlo techniques for argon, germanium, and xenon detectors of 3.5 tonnes, 1.5 tonnes, and 300 kg,
respectively, we show that the neutron radii can be found with an uncertainty of a few percent when near a neutrino
flux of 3 × 107 neutrinos/(cm2 s). If the normalization of the neutrino flux is known independently, one can deter-
mine the moments accurately enough to discriminate among the predictions of various nuclear energy functionals.
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I. INTRODUCTION

The size of a nucleus is one of its most fundamental
properties. Although the distributions of protons in nuclei
are well known, the neutron distributions are comparatively
poorly constrained. A precise measurement of neutron radii
could have important implications in both nuclear physics and
astrophysics.

In nuclear physics the most common framework for
predicting neutron densities is energy density functional
theory (DFT)—both relativistic and nonrelativistic—with
parameters that are at least in part fitted to other nuclear
observables or pseudodata such as nuclear-matter properties,
root-mean-square radii, atomic masses, etc. [1]. Recent efforts
to determine new generations of energy density functionals
have pointed to the complex correlations among the values of
physical quantities that they predict [2,3]. Among observables
used to optimize functionals, the neutron form factor is
particularly important because it determines the neutron skin
and radii, which in turn are strongly correlated in density
functionals with the symmetry energy and incompressibility
of nuclear matter [4]. Precise measurements of neutron radii
could, therefore, significantly improve the predictive power
of energy functionals.

In astrophysics, the size of the neutron skin may have
important implications for neutron stars. While there are
accurate measurements of pulsar orbital periods and masses,
the radius of neutron stars, as well as their moments of
inertia or gravitational redshift remain poorly constrained by
observation, and must be provided by theory [5–8]. Such global
properties as masses, radii, and composition, are determined
by the equation of state (EOS) of neutron-rich nuclear matter,
which involves such quantities as the density dependence of
the nuclear symmetry energy. As just noted, the symmetry
energy is itself strongly correlated with the neutron skin [9].
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Precise measurements on the neutron skin, therefore, provide
information about the equation of state of neutron matter and
thus the size of neutron stars [10].

Experiments with hadrons [11,12] quote errors as low as
1% but rely on models of nuclear structure and/or hadron-
nucleus interactions to extract their results. Parity-violating
electron scattering, used by the PREX experiment at Jefferson
Laboratory to measure the radius of lead, is cleaner. The
parity-violating asymmetry, i.e., the fractional difference in
cross section between positive- and negative-helicity electrons,
is roughly proportional to the weak form factor, which is the
Fourier transform of the weak charge density. If one can
measure the asymmetry (at a single Q2) to 3% then one
can determine the root-mean-square neutron radius to 1%.
The uncertainty on the neutron radius from PREX is about
2.5% [13] but ±1% may be possible in the future.

The use of neutrino-nucleus coherent scattering to probe
the weak form factor was first proposed in Ref. [14]. The
authors considered a one tonne 40Ar detector, with a nucleus
described by a simplified form factor. Their analysis suggested
that ton-scale detectors could replicate the 10% uncertainty of
hadronic scattering methods when used in conjunction with a
source of Michel-spectrum neutrinos. While large detectors are
required since neutrinos interact only weakly, the theoretical
interpretation of the results is straightforward and model
independent. Neutrino-nucleus coherent scattering has been
proposed for a number of other purposes as well, for example
to detect supernova neutrinos [15], to measure the Weinberg
angle [16,17], to look for a neutrino magnetic moment, and
to search for sterile neutrinos [18]. In all these cases, a weak
nuclear form factor must be either measured or assumed before
useful information can be extracted.

Both neutron and proton distributions in the nucleus
affect neutrino-nucleus coherent scattering, but the neutron
distribution has much more leverage. In this paper we suggest
the use of a Taylor expansion to write the nuclear-neutron form
factor in terms of moments of the neutron density distribution.
Using this expansion and a simple Monte Carlo simulation,
we show that neutrino-nucleus coherent scattering can probe
not only neutron radii, but also the higher-order moments
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of neutron distributions. We use the examples of argon [16],
germanium [19], and xenon targets to show the expected ranges
of sensitivity.

The paper is organized as follows. In Sec. II, we introduce
the model used to estimate neutrino-nucleus scattering count
rates, including in our discussion the Taylor expansion of the
neutron form factor and the calculation of the moments of the
neutron distribution in nuclear DFT. In Sec. III, we present and
discuss the results of the Monte Carlo simulations.

II. COHERENT SCATTERING AND THE FORM FACTOR

We present in this section the details of the model, including
the kinematics of neutrino-nucleus coherent scattering, the
dependence of the neutron form factor on the moments of
the neutron distributions, and the DFT-based calculations of
the moments.

A. Kinematics

To calculate the cross section for neutrino-nucleus coherent
elastic scattering, we sum the contributions of each nucleon to
the amplitude, which we then square and sum over available
phase space. The resulting cross section, for spherical nuclei
(neglecting small corrections from various sources) is [20]

dσ

dT
(E, T ) = G2

F

2π
M

[
2 − 2T

E
+

(
T

E

)2

− MT

E2

]

× Q2
W

4
F 2(Q2), (1)

where E is the energy of the incoming neutrino, T is the
nuclear recoil energy, M is the mass of the nucleus, GF is the
Fermi constant, and QW = N − (1 − 4 sin2 θW )Z is the weak
charge of the nucleus (with N the number of neutrons, Z the
number of protons, and sin2 θW ≈ 0.231). The cross section
also contains the form factor F (Q2), which is a function of the
momentum transfer Q2 = 2E2T M/(E2 − ET ) and which, by
convention, is normalized so that F (0) = 1.

The form factor corrects for scattering that is not completely
coherent at higher energies. It encodes information about
the nuclear densities through a Fourier transform, which in
spherical nuclei takes the approximate form [15]

F (Q2) = 1

QW

∫
[ρn(r) − (1 − 4 sin2 θW )ρp(r)]

× sin (Qr)

Qr
r2dr, (2)

where ρn,p(r) are the neutron and proton densities. This
expression neglects effects due to the finite size of the nucleons,
which alter the relation between the point-neutron density
and the form factor at high Q. These effects could easily be
included and would barely change the results of our sensitivity
analysis below. The same is true, in odd-A nuclei, of higher
multipoles, which reflect nuclear deformation and nonzero
spin. The higher multipoles alter the form factor only at order
Q4, and even those changes are much smaller than O(1/A) in
the nuclei considered here.

The separation of the neutron and proton terms in Eq. (2)
makes it possible to write the form factor as

F (Q2) = 1

QW

[NFn(Q2) − (1 − 4 sin2 θW )ZFp(Q2)]. (3)

Since the coefficient of the proton form factor, (1 −
4 sin2 θW )Z ≈ 0.076Z, is small, the scattering depends mainly
on the neutrons, making neutrino-nucleus coherent scattering
well suited to measuring neutron distributions. Proton form
factors, moreover, are usually known from electron scattering
experiments. We include them in the quantitative analysis to
follow, but their role is small.

There are two primary types of neutrino sources to consider:
neutrinos generated from fission processes in nuclear reactors,
and neutrinos from the decay of stopped pions. Reactor
neutrinos have lower energy, resulting in correspondingly
low nuclear-recoil energies. Because background can obscure
low-energy recoil, we consider neutrinos produced from the
decay of stopped pions. Stopped pions are produced in large
quantities at both spallation sources and accelerator sources.
An example of a spallation source is the Spallation Neutron
Source at Oak Ridge National Laboratory, which hits a
mercury target with a beam of protons. Pions are produced,
with negative pions captured in the target and positive pions
coming to rest and decaying. The pions decay through π+ →
νμ + μ+. The muon neutrinos are monoenergetic with an
energy of 29.9 MeV. The muons then come to rest and further
decay via μ+ → e+ + νe + νμ. The probability that neutrinos
νe or antineutrino νμ are emitted in the range (E,E + dE) read

fνe
= 96

m4
μ

(
mμE2

νe
− 2E3

νe

)
dEνe

,

(4)

fνμ
= 16

m4
μ

(
3mμE2

νμ
− 4E3

νμ

)
dEνμ

,

where mμ is the mass of the muon. The energy of the neutrinos
range up to ∼ 52 MeV, which results in typical nuclear recoil
energies on the order of tens of keV to 100 keV. The momentum
transfer associated with these energies runs up to ∼100 MeV.

To calculate the number of scattering events as a function
of recoil energy, we fold the neutrino spectra with the cross
section:

dN

dT
(T ) = NtC

∫ mμ/2

Emin(T )
f (E)

dσ

dT
(E, T )dE , (5)

where Nt is the number of targets in the detector, C is the
flux of neutrinos of a given flavor arriving at the detector,
the normalized energy spectra f (E) includes all three types
of neutrino produced in pion decay, and Emin(T ) = 1

2 (T +√
T 2 + 2T M) is the minimum energy a neutrino must have to

cause a nuclear recoil at energy T . The upper bound of mμ/2
is the maximum energy for a neutrino produced from muon
decay at rest.

B. Form-factor expansion

Since the form factor is included in the calculation of the
number of events, nuclei with different density distributions
will produce different recoil-energy distributions. The recoil
distributions therefore provide a good test for models that
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predict the density. We can increase the usefulness of the recoil
distribution by expanding the form factor in Q. The dominant
neutron piece can be represented as

Fn(Q2) ≈ 1

N

∫
ρn(r)

(
1− Q2

3!
r2+ Q4

5!
r4 − Q6

7!
r6 + · · ·

)
r2dr

≈
(

1 − Q2

3!

〈
R2

n

〉 + Q4

5!

〈
R4

n

〉 − Q6

7!
〈R6

n〉 + · · ·
)

, (6)

with

〈
Rk

n

〉 =
∫

ρnr
kd3r∫

ρnd3r
. (7)

Written this way, the form factor is a sum of the even
moments of the neutron density distribution. These moments
are straightforward to calculate from the density, and represent
physically relevant and measurable quantities. Since the
neutrinos we consider have relatively low energy, we can
truncate the expansion after just two terms for lighter nuclei
such as argon and germanium, and three terms for heavier
nuclei like xenon. As an illustration, we show in Fig. 1
the theoretical neutron form factor predicted by the Skyrme
functional SkM∗ [21] for selected isotopes of Ar, Ge, and
Xe. Including moments up to 〈R4

n〉 in Ar and Ge and 〈R6
n〉 in

Xe is sufficient to reproduce the form factors with reasonable
accuracy over the relevant range of Q values. In other words,
one will be able to fit experimental scattering data in Ar and Ge
with just two parameters, 〈R2

n〉 and 〈R4
n〉, and in Xe with three.

Figure 2 shows the effects on event rates in 40Ar of changing
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FIG. 1. (Color online) The neutron form factors Fn(Q2) for
40Ar (a), 74Ge (b), and 132Xe (c) predicted by the Skyrme functional
SkM∗ (solid black curve), and truncations of the expanded form
factor at various orders of Q: Q0 (dashed blue curve), Q2 (dotted
red curve), Q4 (dot-dashed green curve), and, in the bottom panel,
Q6 (dot-dashed red curve). Terminating the expansion at Q4 (with
coefficient 1

5! 〈R4
n〉) gives good agreement with the full form factor

in 40Ar and 74Ge over the range of Q2 relevant for the scattering
of neutrinos from stopped pion beams. Precise agreement in 132Xe
requires the Q6 term as well.
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FIG. 2. (Color online) (a) Event rates in 40Ar as a function of
recoil energy, with two different rms neutron radii. The red (solid)
curve represents predictions of the Skyrme functional SkM∗, while
the blue (dotted) curve represents the same for an rms radius made
10% larger, as described in the text. The flux at the detector is taken to
be 3 × 107 neutrinos/(cm2 s) per flavor. (b) The difference between
the two curves on top. The discontinuity in both panels is due to the
monoenergetic muon neutrinos emitted promptly in pion decay.

a single important measure of the density distribution, the
root-mean-square (rms) neutron radius 〈R2

n〉
1
2 . We produced

the figure as follows: First, we calculated event rates as a
function of recoil energy with the functional SkM∗, via the
expansion in Eq. (6). Next, we did the same with the rms
neutron radius 10% larger and no changes to the other terms in
the expansion. The resulting curves for 40Ar, with an assumed
neutrino flux of 3 × 107 neutrinos/(cm2 s) per flavor, appear
in panel (a) of Fig. 2, while the difference between them is
plotted in panel (b). A 10% difference in the rms neutron
radius results in a difference of ∼780 events, which is about
1.2% of the total event rate over the entire energy range. This
difference is concentrated at a nuclear recoil energy of 30 keV.

We obtain similar results in Ge and Xe, though there we
must use effective moments, which we define in the next
section, to average over different isotopes. In Ge, a 10%
difference in the effective rms radius yields an integrated
difference of ∼8100 events in one tonne over a year, or about
6% of the total, concentrated around a nuclear recoil of 15 keV.
In a one tonne Xe detector, the same change in effective rms
radius results in a difference of ∼20200 events over a year, or
about 8% of the total, and is concentrated at a nuclear recoil
energy of 8 keV.

As Q2 goes to zero, the form factor approaches F (0) = 1,
so the low energy portions of the event-rate curves converge
and all the difference curves go to zero. At high energies, there
are very few events, so both event-rate curves approach zero
and the differences also approach zero. The larger elements
have smaller total recoil-energy ranges. In all three cases,
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however, the largest difference in the event-rate curves occurs
at a recoil energy of about 20% of the maximum possible
recoil energy. We note that the highest and lowest energies
will most likely be excluded from an experimental analysis
because of background at the detector, and that the effect of
changing 〈R2

n〉
1
2 is most prominent in the energy range that

is experimentally accessible to cryogenic detectors such as
CLEAN [22] and CLEAR [16,23], even though more events
occur at inaccessibly low recoil.

C. Effective moments

Naturally occurring argon is made at 99.6% of 40Ar: the
expansion in Eq. (6) is therefore sufficient to accurately
compute neutrino-nucleus scattering. Germanium and xenon,
however, both have multiple isotopes that occur naturally with
relatively high abundance (see Table I). To account for that fact,
we define effective moments for these elements as follows:

To calculate the event curves for germanium and xenon, it is
necessary to sum over all isotopes. There are several isotope-
specific quantities in the cross section, including the mass,
neutron number, and the moments of the neutron and proton
distributions. In addition, each isotope will have a different
number of atoms in the detector. To calculate the rate for all
isotopes, we therefore use

dN

dT
(T ) = NAMdetectorC

×
∫

f (E)
∑

i

[
Xi

Mi

(
dσ

dT
(T ,E)

)
i

]
dE, (8)

TABLE I. Isotopes and abundances used in the calculations for
germanium and xenon [24].

Isotope Abundance Isotope Abundance

70Ge 0.205 128Xe 0.0191
72Ge 0.274 129Xe 0.264
73Ge 0.078 130Xe 0.041
74Ge 0.365 131Xe 0.212
76Ge 0.078 132Xe 0.269

134Xe 0.104
136Xe 0.089

where the coefficient Nt in Eq. (5) is now replaced by
NAMdetector and a summation over isotopes i of the cross
section with the weights Xi/Mi . Here, Xi is the natural
abundance of isotope i, Mi is the mass of that isotope, NA

is Avogadro’s number, and Mdetector is the total mass of the
element (including all its isotopes) in the detector.

Since the form factor appears squared in the cross sec-
tion, the sum in Eq. (8) will have neutron terms, proton
terms, and terms that include both neutron and proton
moments [see Eq. (3)]. The definitions for the proton effective
moments will follow the same pattern as those for the
neutrons, so we will concentrate only on the neutrons at this
point.

Some algebra and the definitions of the cross section and
form factor allow us to write the sum in Eq. (8) as

∑
i

[
Xi

Mi

(
dσ

dT
(T ,E)

)
i

]
= G2

F

8π

[∑
i

(
XiN

2
i

) (
2 − 2T

E
+

(
T

E

)2
)

−
∑

i

(
XiN

2
i Mi

) (
T

E2

)

−
∑

i

(
XiN

2
i Mi

〈
R2

n

〉
i

) (
2 − 2T

E
+

(
T

E

)2
)

Q2

3〈M〉 +
∑

i

(
XiN

2
i M2

i

〈
R2

n

〉
i

) (
T

E2

)
Q2

3〈M〉

+
∑

i

(
XiN

2
i M2

i

〈
R2

n

〉2
i

) (
2 − 2T

E
+

(
T

E

)2
)

Q4

36〈M〉2
−

∑
i

(
XiN

2
i M3

i

〈
R2

n

〉2
i

) (
T

E2

)
Q4

36〈M〉2

+
∑

i
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2
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i

〈
R4

n

〉
i

) (
2 − 2T

E
+

(
T

E

)2
)

Q4

60〈M〉2
−

∑
i

(
XiN

2
i M3

i

〈
R4

n

〉
i

) (
T

E2

)
Q4

60〈M〉2

−
∑

i

(
XiN

2
i M3

i

〈
R2

n

〉
i

〈
R4

n

〉
i

) (
2 − 2T

E
+

(
T

E

)2
)

Q6

360〈M〉3

−
∑

i

(
XiN

2
i M4

i

〈
R2

n

〉
i

〈
R4

n

〉
i

) (
T

E2

)
Q6

360〈M〉3
+ · · ·

]
, (9)

where 〈M〉 = ∑
i XiMi and Q2 = 2E2T 〈M〉/(E2 − ET ).

In the above equation, we have kept all terms that have
〈R2

n〉, 〈R4
n〉, or both. (For xenon, we use all additional

terms that include 〈R6
n〉.) In this expression several effec-

tive (isotope-weighted) moments occur, two of each order.
The two effective second moments, after normalization,

are 〈
R2

n

〉
eff,1 =

∑
i XiN

2
i Mi

〈
R2

n

〉
i∑

i XiN
2
i Mi

, (10)

〈
R2

n

〉
eff,2 =

∑
i XiN

2
i M2

i

〈
R2

n

〉
i∑

i XiN2
i M2

i

, (11)

024612-4



NEUTRINO-NUCLEUS COHERENT SCATTERING AS A . . . PHYSICAL REVIEW C 86, 024612 (2012)

and the two effective fourth moments are

〈
R4

n

〉
eff,1 =

∑
i XiN

2
i M2

i

〈
R4

n

〉
i∑

i XiN
2
i M2

i

, (12)

〈
R4

n

〉
eff,2 =

∑
i XiN

2
i M3

i

〈
R4

n

〉
i∑

i XiN
2
i M3

i

. (13)

The differences between the values of the two moments
of each order is small, as can be seen for the Skyrme
functional SkM∗ in Table II. In fact, these differences are
smaller than the typical numerical uncertainties in DFT
calculations coming from the truncation of the basis or the
size of the mesh. We therefore make the approximation that
the two second moments are equal (calling them 〈R2

n〉eff)
and that the two fourth moments are equal (calling them
〈R4

n〉eff.) There are also terms in the cross section that involve
〈R2

n〉2, from which we can define (〈R2
n〉2)eff. Although math-

ematically (〈R2
n〉2)eff is not equal to (〈R2

n〉eff)2, numerically
they are very similar, as shown in Table II. After equating

TABLE II. Numerical values for the different effective moments
of germanium and xenon as well as the percent difference between
definitions. The definitions for the effective moments are given in
Eqs. (10)–(13). The values of (〈R2

n〉2)1/4
eff are compared to those of

〈R2
n〉1/2

eff,1.

Ge Xe

〈R2
n〉1/2

eff,1 (fm) 4.0495 4.8664

〈R2
n〉1/2

eff,2 (fm) 4.0505 4.8668

% Difference 0.02 0.009

〈R4
n〉1/4

eff,1 (fm) 4.3765 5.2064

〈R4
n〉1/4

eff,2 (fm) 4.3774 5.2068

% Difference 0.02 0.009

(〈R2
n〉2)1/4

eff (fm) 4.0509 4.8670

% Difference 0.001 0.01

them and making the similar approximations just described,
we can rewrite Eq. (9) in terms of effective moments as

∑
i

[
Xi

Mi

(
dσ

dT
(T ,E)

)
i

]
= G2

F
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+
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∑
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+
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+ · · ·

]
, (14)

The approximations leading to Eq. (14) from Eq. (9) cause
an error of 0.01% over the entire event curve.

We define effective moments for the protons in the same
way as for neutrons. The terms in the cross section that involve
both neutron moments and proton moments can be calculated
from these effective moments. Since the proton moments are
known quite accurately from electron scattering, we are finally
able to represent the recoil distribution in terms of just two
unknown parameters, 〈R2

n〉eff and 〈R4
n〉eff, or three for xenon.

D. Density functional theory calculations of moments

Our Monte Carlo simulations require the knowledge of the
radii and moments 〈Rk

n,p〉 of the neutron and proton distribu-
tions in both even-even and odd-even isotopes. In this work, we
compute these quantities in DFT with Skyrme functionals. We
use nine common parametrizations of the Skyrme functional

(SkM* [21], SkI3 [25], SLy4 [26], SLy5 [26], SkX [27],
HFB9 [28], SkO [29], UNEDF0 [2], and UNEDF1 [3]). These
functionals are characterized by relatively different nuclear
matter, surface, and deformation properties, and therefore
provide a good “statistical” sample of Skyrme functionals.

We model pairing correlations with a density-dependent
delta pairing force with mixed volume-surface characteristics
and the Lipkin-Nogami prescription to approximate particle
number projection. For each element, we fit the strength
of the pairing force to odd-even mass differences according
to the general procedure outlined in Ref. [2]: in 40Ar for
argon, 72Ge for germanium, and 130Xe for xenon. Only
parametrizations UNEDF0 and UNEDF1 are accompanied by
specific prescriptions for the pairing channel. We compute the
ground-state in odd-mass isotopes by performing systematic
blocking calculations: for a given odd-mass isotope, we
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consider all blocking configurations within 2 MeV of the
ground state of the neighboring even-even nucleus, and take
the ground state of the odd isotope to be the configuration
yielding the lowest energy with the correct spin.

We carry out all these calculations with the latest version
of the DFT solver HFBTHO [30]. The code solves the
Skyrme Hartree-Fock-Bogoliubov equations in a harmonic
oscillator basis with axial symmetry and, therefore, time-
reversal invariance. We perform all calculations in a full HO
basis of 20 shells with a basis frequency parameter defined
by h̄ω = 1.2 × 41/A1/3. In argon and germanium isotopes
the basis is spherical, while in xenon isotopes, the ground
states of which are weakly deformed, its deformation is
β2 = 0.3. Such characteristics ensure excellent convergence
of the results [31]. We do the blocking calculations in the
equal filling approximation [32], which agrees with the full
blocking prescription to within 100 keV or less [33].

III. RESULTS AND DISCUSSION

A. Monte Carlo simulations

We use a simple Monte Carlo simulation to give an idea
of how accurately the nuclear moments can be determined.
We assume that a detector, filled with either 40Ar, natural
germanium, or natural xenon, experiences a flux from the
decay of pions at rest of 3 × 107 neutrinos/(cm2 s) in each
flavor for one year. The neutrino production rate at the Spalla-
tion Neutron Source at Oak Ridge National Laboratory [16],
DAEδALUS [34,35] and the European Spallation Source [36]
ranges from 1 × 1015 neutrinos/s to 3.5 × 1015 neutrinos/s of
each flavor. A flux of 3 × 107 neutrinos/(cm2 s) corresponds
to detectors placed approximately 16 m from the source at
SNS, 18 m from the source at DAEδALUS, and 30 m from the
source at ESS.

We perform a Monte Carlo simulation that includes statisti-
cal error and uncertainty on the beam normalization. Another
significant source of systematic error is the uncertainty in
the detection efficiency. We discuss this in Sec. III B, and
for the purposes of the Monte Carlo assume 100% detection
efficiency. We also assume that leptons and photons produced
by charge-current and inelastic neutral-current scattering can
be detected and the corresponding events efficiently rejected
as background.

We calculate a recoil curve assuming that the true nuclear
density distributions are given by the Skyrme model SkM∗.
We place the events into bins based on energy, and then add
Gaussian-distributed statistical noise to each bin. We then take
the general form factor from Eq. (14) and use χ2 minimization
to find the optimal values of 〈R2

n〉, 〈R4
n〉, or the effective

moments, and the beam normalization. In the case of xenon,
we use the same procedure to find the optimal value of 〈R6

n〉.
Typical values of χ2 range from 0.5 to 10.

We do separate sets of runs, some assuming that the nor-
malization of the flux is determined by other means, and some
allowing for an uncertainty of ±10% in the normalization.
Because background is anticipated to be substantial at high and
low energies, we exclude the highest and lowest bins from the
χ2 minimization. The energy ranges included are 5–120 keV

for 40Ar, 5–70 keV for Ge, and 5–40 keV for Xe. All energy
bins are 10 keV wide except for the lowest, which is 5 keV
wide. Finally, we assign confidence levels to closed areas on
an 〈R2

n〉 vs. 〈R4
n〉 plot by running the Monte Carlo many times

and dividing the number of times the minimum-χ2 result falls
in that area by the total number of runs.

With this setup, we vary the size of the detector until the
〈R2

n〉1/2 or 〈R2
n〉1/2

eff inside the 91% confidence region vary
by only about ±5% from the best values. For that level of
precision, 3.5 tonnes of argon are necessary, 1.5 tonnes of
germanium, and 300 kg of xenon. The required detector mass
decreases with atomic size because the event rate increases
roughly as N2.

The sizes of current and proposed cryogenic detectors can
give an idea of the feasibility of this measurement. In the case
of argon, the existing ICARUS T600 detector contains 500 tons
of LAr [37], suggesting that a detector big enough to for
measure the form factor is feasible. For germanium, existing
dark-matter detectors such as CDMS II [38] consist of a few
kg of germanium. The TEXONO-CDEX program is currently
using a 1 kg high-purity germanium detector for neutrino
physics and dark matter searches [39]. The MAJORANA [40]
and GERDA [41] double-β decay experiments will soon
deploy about 40 kg of germanium enriched in 76Ge. One
proposed experiment, GEODM [19,38], would be made up
of 300 ∼5 kg Ge crystals, making a total mass of ∼1.5 tonnes.
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FIG. 3. (Color online) Confidence regions in the 〈R2
n〉1/2–〈R4

n〉1/4

plane for an argon detector of mass 3.5 tonnes. The curves enclose
confidence regions of 40%, 91%, and 97%. The colored (shaded)
vertical band shows the experimental result reported for the rms
radius, obtained from argon-carbon scattering, in Ref. [44], and the
black crosses are the predictions of some commonly used Skyrme
functionals, including the functional SkM∗ that we use to generate
the “data.” Numerical results are summarized in Tables III and IV.
(a) The neutrino flux is allowed to vary by ±10%. (b) The flux is
assumed to be known exactly.
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FIG. 4. (Color online) Same as Fig. 3, but for effective moments
in germanium, and without experimental result.

Existing xenon detectors, such as XENON100 [42] and LUX
[43], are made up of on the order of a few hundred kg of
xenon, approximately the amount required for a form factor
measurement. A proposed experiment, the LUX-ZEPLIN
project, will use 1.5 tonnes of Xe [43].

The results of the analysis appear in Figs. 3–5. The closed
curves correspond to 40% confidence, 91% confidence, and
97% confidence. As mentioned above, we considered two
cases: one in which the normalization of the flux is allowed to
vary (by ±10%), and a second in which the normalization is
kept constant. Panel (a) of each figure shows the results with
the flux unconstrained within that 10% range, and panel (b)
shows the same results with the assumption that the flux is
known perfectly. The colored vertical band in Fig. 3 shows
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FIG. 5. (Color online) Same as Fig. 4, but in xenon.

a model-dependent experimental result for the rms radius,
obtained from argon-carbon scattering in Ref. [44]. There is
a clear discrepancy between that result and the predictions of
the nine Skyrme functionals selected for this study, labeled
by small crosses in Fig. 3 (the outlier in Figs. 3 and 4
corresponds to the SkX functional of Ref. [27], which predicts
systematically smaller radii than other functionals). Those
functionals include SkM∗, the one we use to generate the
“data.” This discrepancy is mentioned by Ozawa et al., but
no explanation is offered. While we marginalize over 〈R6

n〉eff

for xenon, the quantity is poorly constrained and not included
in the plot in Fig. 5. Numerical results at the 91% confidence
level for the mean, minimum, and maximum of the (effective)
rms neutron radius and fourth moment, (and sixth moment in
xenon) appear in Tables III and IV.

TABLE III. Numerical results at the 91% confidence level for the 3.5 tonne 40Ar detector, the 1.5 tonnes Ge detector, and the 300 kg Xe
detector with Lν allowed to vary by ±10%. The first column contains the element, the second the moment or effective moment considered in
the corresponding row, the third the calculated values of the moments or effective moments for the Skyrme model SkM∗, the fourth the mean
values for the moments or effective moments, produced by the Monte Carlo, the fifth the percent difference between the mean values and the
SkM∗ values, the sixth the minimum values chosen by the Monte Carlo, and the seventh the percent difference between the minimum and
the mean value. The eighth column gives the maximum values chosen by the Monte Carlo, and the ninth column gives the percent difference
between the maximum and the mean values.

SkM∗ values Mean % Difference Min % Difference Max % Difference
(from SkM∗) (from mean) (from mean)

40Ar 〈R2
n〉1/2 (fm) 3.4168 3.4103 −0.2 3.2587 −4 3.5999 +6

〈R4
n〉1/4 (fm) 3.7233 3.6576 −2 2.8304 −23 4.3210 +18

Ge 〈R2
n〉1/2

eff (fm) 4.0495 4.0516 +0.05 3.8792 −4 4.2697 +5

〈R4
n〉1/4

eff (fm) 4.3765 4.3603 −0.4 3.7276 −15 5.0096 +15

Xe 〈R2
n〉1/2

eff (fm) 4.8664 4.8648 −0.001 4.6788 −4 5.0980 +5

〈R4
n〉1/4

eff (fm) 5.2064 5.1914 −0.3 4.7180 −10 5.5521 +7

〈R6
n〉1/6

eff (fm) 5.4887 5.3149 −3 0.5491 −90 10.433 +97
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TABLE IV. Same as Table III, except for Lν held constant.

SkM∗ values Mean % Difference Min % Difference Max % Difference
(from SkM∗) (from mean) (from mean)

40Ar 〈R2
n〉1/2 (fm) 3.4168 3.4154 −0.04 3.3483 −2 3.4933 +2

〈R4
n〉1/4 (fm) 3.7233 3.7018 −0.6 3.2826 −11 4.0865 +10

Ge 〈R2
n〉1/2

eff (fm) 4.0495 4.0491 −0.009 3.9857 −1.6 4.1175 +1.7

〈R4
n〉1/4

eff (fm) 4.3765 4.3679 −0.2 4.0826 −7 4.6546 +7

Xe 〈R2
n〉1/2

eff (fm) 4.8664 4.8654 −0.02 4.7958 −1.4 4.9323 +1.4

〈R4
n〉1/4

eff (fm) 5.2064 5.1990 −0.14 4.9265 −5 5.4478 +5

〈R6
n〉1/6

eff (fm) 5.4887 5.3877 −1.8 0.5491 −90 10.433 +94

B. Discussion

There are several noticeable differences among Figures 3–5.
The first is the dependence on 〈R4

n〉1/4
eff . For 40Ar, the range of

plausible values is large compared to the range of 〈R2
n〉1/2.

As the nuclei grow in size to germanium and then xenon, the
range of 〈R4

n〉1/4
eff gets smaller. In germanium and xenon, it is

comparable to the range of the effective rms neutron radius.
We can explain this difference by isolating the effects

of the (effective) fourth moment on the recoil distributions.
In 40Ar, a 10% change in the fourth moment results in
approximately 0.2% more events, as compared to the 1.2%
difference with a 10% change in the rms radius. In comparison,
the same change in 〈R4

n〉1/4
eff of 10% results in 1.3% and

3% more events for germanium and xenon, respectively, as
compared to 6% and 8% from a 10% change in 〈R2

n〉1/2
eff .

The nuclear recoil energy at which this difference is concen-
trated decreases and the importance of the fourth moment
relative to the rms radius increases as the nuclear mass
increases.

Our ability to learn about the nuclear quantities 〈R2
n〉1/2

eff

and 〈R4
n〉1/4

eff obviously improves if we can get an independent
handle on the beam normalization. This can be seen clearly by
comparing the top and bottom panels in Figs. 3–5. The range
in 〈R2

n〉1/2
eff in all three elements shrinks to ±2% at the 91%

level in the bottom panels, where the beam normalization is
known exactly. Likewise, the range in 〈R4

n〉1/4
eff decreases for

all three elements. The effect is most dramatic for 40Ar, where
the uncertainty decreases to ∼ ± 10%, but it exists in both
germanium and xenon as well.

As mentioned above, we consider the systematic error of
the uncertainty in detection efficiency. In order to study the
effect, we remove the statistical error and randomly distribute
systematic errors, proportional to the number of events in
the bin, at the level of 10%, 1%, and 0.1% in each bin
in an uncorrelated manner. At the 10% level, detectors of
the size considered here lose the ability to make any useful
measurement of the neutron radius. When we lower the
uncertainty in detection efficiency to 1%, measurements of
the neutron radius to ∼±5–7% are possible. At this level,
the range in the value of the fourth moment is ∼±20%. If
we lower the uncertainty in detector efficiency to 0.1%, the

neutron radius can be measured to better than ∼ ±1%, and the
fourth moment to ±2%.

IV. CONCLUSIONS

Neutron radii are not only of fundamental interest for
nuclear structure but are also needed to fully analyze
supernova-neutrino signals [15] and interpret measurements
of the Weinberg angle or of neutrino magnetic moments [16].
At present the distributions of neutrons in nuclei is not known
nearly as well as those of protons.

We have presented a model-independent method, involving
the Taylor expansion of the scattering form factor, for
extracting the rms radius and fourth moment of the neutron
density distribution in certain nuclei from the nuclear-recoil
distribution in a neutrino-scattering experiment. The radius
and fourth moment can also be be calculated theoretically, so
that our technique will provide a straightforward connection
between theory and experiment. To obtain a rough estimate
of the effectiveness of this approach, we considered a stopped
pion neutrino source of 3 × 107 neutrinos/(cm2 s) and liquid
Ar, Ge, and Xe detectors in the tonne range. We conclude that
it is possible to determine the neutron radius to a few percent
if the uncorrelated error on the efficiency is less than 1%.
The detailed analysis of the shape of the recoil spectrum in a
cryogenic detector, such as the one we have suggested here,
has not previously been considered. More detailed simulations
of realistic experimental setups are therefore required for
definitive feasibility studies.
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