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Meson production in high-energy electron-nucleus scattering

Göran Fäldt*
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Pseudoscalar mesons can be produced and studied in high-energy electron-nucleus scattering. We review and
extend our previous theoretical analysis of meson production in the nuclear Coulomb field. The P → γ γ decay
rates are most directly determined for mesons produced in the double-Coulomb region where both photons are
nearly real, and provided the hadronic-background contributions remain small. The larger the mass of the meson
the higher the electron energy needed to assure such favorable conditions.
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I. INTRODUCTION

Pseudoscalar mesons are produced in high-energy electron-
nucleus scattering through a two-photon-fusion process where
the two photons are radiated, one by the high-energy electron
and the other by the atomic nucleus. This possibility was
studied, in the Born approximation, by Hadjimichael and
Fallieros [1]. Recently, a Glauber-model [2] description of the
same process has been developed [3]. Theoretical studies of
the two-photon-fusion process are particularly valuable since
the PrimEx Collaboration [4] aims at measuring electromag-
netic properties of pseudoscalar mesons through this effect, in
11 GeV/c electron-nucleus scattering.

The kinematics of the electron-nucleus-meson-production
reaction is defined through

e−(k1) + A(p1) → e−(k2) + P (K) + A(p2), (1)

where P represents one of the mesons π0, η, or η′. Our
analysis is relevant for high electron and meson energies
and small transverse momenta. In addition, the momentum
transfers to meson and nucleus should preferentially be in
the double-Coulomb region, leading to further kinematic
restrictions. The mechanism dominating this region is, at
sufficiently high energies, described by the graph of Fig. 1. This
graph shows that pion-nucleus photoproduction is a subgraph
of the pion-nucleus electroproduction, but only in special
kinematic circumstances does the photoproduction amplitude
enter as a separate factor. Our treatment of the electropro-
duction amplitude is similar to our previous treatment of the
photoproduction amplitude [5].

The cross-section distribution is in the Coulomb region
mainly determined by the photon propagators, which lead to
structures like

k⊥
k2

⊥ + k2
‖/γ 2

, (2)

with k⊥ the variable photon transverse momentum, k‖ the fixed
photon longitudinal momentum, and γ the gamma factor of
the radiating charge. This behavior results in a cross-section
maximum at k⊥ = k‖/γ , the Primakoff peak. For the low-
energy photon radiated by the nucleus k‖/γ = m2

P /2K‖, where
mP is the mass of the meson and K‖ = K · k̂1 its longitudinal
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(or total) momentum. This expression is well known from
ordinary Coulomb production. For the high-energy photon
radiated by the high-energy electron the effective longitudinal
momentum is k‖/γ = me, with me the electron mass.

In the PrimEx experiment [4] typical energies are as
follows: for the incident electron E(k1) = 11 GeV, for the
scattered electron E(k2) = 300 MeV, and for the pseudoscalar
meson ω(K) = 10.7 GeV. Consequently, the energy of the
virtual photon radiated by the electron, and initiating the
meson production through fusion with a soft photon radiated
by the nucleus, is also 10.7 GeV. These numbers are only
for numerical illustration. The model we present is in itself a
general one.

The electron-coherent-nucleus-production amplitude is a
sum of two amplitudes: the two-photon-fusion amplitudeM2γ

of Fig. 1, and the electron-induced hadronic-photoproduction
amplitude Mγ of Fig. 2.

Normalizations are chosen such that in the Born
approximation the unpolarized cross-section distribution for
the two-photon-fusion contribution simplifies to

dσ

d2k2⊥d2K⊥dk2‖
= 1

πK‖

[
Zα2

mπ

gπγγ

q⊥
q2

⊥ + m2
e

· Q⊥
Q2

⊥ + Q2
‖

]2

,

(3)

with −Q‖ = m2
P /2K‖. The structure of the cross-section

distribution at small-transverse momenta is essentially
determined by the photon-exchange propagators. There are
two such propagators: one in the variable q⊥, and one in the
variable Q⊥. Each of them exhibits a Primakoff-peak structure.
We observe that the spin-averaged Born approximation does
not depend on the angle between the transverse momenta q⊥
and Q⊥.

The numerical illustrations in Ref. [3] erroneously employ
positive values for Q‖. However, this error is of no concern
since the quantities graphed are independent of the sign of Q‖.

II. CLASSICAL RADIATION BY
RELATIVISTIC ELECTRONS

The pseudoscalar-meson decay P → γ γ is governed by
the Hamiltonian density

H(x) = 1
2g E(x) · B(x)P (x), (4)
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FIG. 1. Graph describing pseudoscalar-meson production in the
Coulomb field of a nucleus in electron coherent-nucleus scattering.

with coupling constant g = e2gPγγ /mP . In our application
the electromagnetic fields are generated by the electron and
nuclear charges. It is therefore instructive first to review the
classical counterparts of these fields [6].

A point particle of charge e moves along the trajectory
r(t) = r0 + vt . The plane-wave decompositions of the associ-
ated electric and magnetic fields are

E(k, t) = ie
−k + (k · v)v
k2 − (k · v)2

e−ik·r(t), (5)

B(k, t) = ie
k × v

k2 − (k · v)2
e−ik·r(t). (6)

The denominators can be rewritten as

k2 − (k · v)2 = k2
⊥ + k2

‖/γ
2, (7)

with γ = E/m the relativistic gamma factor of the charged
particle. Transverse and parallel refer to directions orthogonal
and parallel to the velocity v of the charged particle. The
numerators, on the other hand, may be rewritten as

k − (k · v)v = (k⊥, k‖/γ 2), (8)

k × v = k⊥ × v. (9)
In the application to the PrimEx experiment two limits are

of interest. The nonrelativistic limit, v � 1, applies to the soft
radiation by the nucleus, when the denominators of Eqs. (5)
and (6) reduce to k2. The other limit applies to hard radiation
by the ultrarelativistic electron, where in the denominators the

Q ω
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FIG. 2. Graph describing the hadronic contribution to
pseudoscalar-meson production in electron coherent-nucleus
scattering. Dominant contribution from ω exchange.

longitudinal momentum k‖ is cut down by the Lorentz factor
1/γ .

In the PrimEx experiment there are kinematic restrictions.
The longitudinal momentum of the soft photon is fixed to be
m2

P /2K‖, with K‖ the meson momentum. The longitudinal
momentum of the hard photon is very nearly equal to
the momentum of the electron, so that k‖/γ ≈ me. Thus,
these two parameters act as cutoffs for the corresponding trans-
verse momentum distributions. The longitudinal component of
the electric field, Eq. (5), is for the hard photon cut down by
the factor 1/γ 2 and may be neglected.

III. THE COULOMB CONTRIBUTION

We shall now review the formulas for the Coulomb
contribution to electron-induced pion production, i.e., the two-
photon-fusion amplitude of Fig. 1. The corresponding cross-
section distribution has a double-peak-Primakoff structure. We
normalize so that the cross-section distribution takes the form

dσ

d2k2⊥d2K⊥dk2‖
= 1

πK‖
[u†(k2)M2γ u(k1)]2, (10)

where u(k1) and u(k2) are two-component spinors for incident
and scattered electrons. The two-photon amplitude is decom-
posed as

M2γ = iN2γ [G(q, Q) − H (q, Q) iσ · k̂1], (11)

N2γ = Z
α2gπγγ

mπ

. (12)

The amplitude G(q, Q) originates with the current part of the
electron-four-vector current, and H (q, Q) with the spin part
of the same current.

Taking into account multiple scattering of both electron and
meson the expressions for the amplitudes become

G(q, Q) =
∫

d3re

∫
d3rπ eiq·(re−rπ )e−iQ·rπ exp

[
iχC(be)

− 1

2
σ ′

πT (bπ , zπ )

]
[Ee(re − rπ ) × EA(rπ )] · k̂1,

(13)

H (q, Q) =
∫

d3re

∫
d3rπ eiq·(re−rπ )e−iQ·rπ exp

[
iχC(be)

− 1

2
σ ′

πT (bπ , zπ )

]
[Ee(re − rπ ) · EA(rπ )], (14)

where re and rπ are the electron and pion coordinates.
The nuclear EA(r) and electron Ee(r) electric fields are the
transverse parts of the corresponding fields. The distortion of
the electron-wave function is described by the Coulomb-phase
function χC(be), the distortion of the pion-wave function by
the nuclear-thickness function T (bπ , zπ ).

In the G(q, Q) amplitude of Eq. (13) we recognize EA(rπ )
as the radiated nucleus-electric field, and Ee(re − rπ ) × k̂1 as
the radiated electron-magnetic field, all in accordance with
Eq. (4). The H (q, Q) amplitude of Eq. (14) is associated with
the spin current, and its parity is therefore opposite to that of
the G(q, Q) amplitude. Hence, it is built on the scalar product
of the two electric fields.
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Next, we give the definitions of the various functions
entering the integrands of Eqs. (13) and (14). The transverse-
electric field of the electron is

Ee(r) = 1

4πi

γ b
[b2 + γ 2z2]3/2

. (15)

The γ dependence in this expression, which is in coordinate
space, is compatible with the γ dependence in momentum
space, Eq. (7). I apologize for the unconventional multiplica-
tive constant. The transverse-electric field of the nucleus is in
general associated with an extended-charge distribution ρ̂ch(r),
which we normalize to unity,

EA(r) = −Q(r)

4πi

b
[b2 + z2]3/2

, (16)

Q(r) = 4π

∫ r

0
dr ′r ′2ρ̂ch(r ′), (17)

and Q(∞) = 1. For a uniform-charge distribution with radius
Ru,

Q(r) =
{

1, r > Ru,

(r/Ru)3, r < Ru.
(18)

Note that the fields of Eqs. (15) and (16) are defined to have
opposite signs.

The expression for the Coulomb-phase function χC(b) in
Eqs. (13) and (14) has been given by Glauber [2,7]. We employ
the integral representation

χC(b) = −2
Zα

v

∫
d3r ′ρ̂ch(r ′)

[
ln

( |b − b′|
2a

)]
, (19)

where a is a cutoff parameter common to all amplitudes. For
a point-charge distribution

χpc(b) = −2
Zα

v
ln(b/2a). (20)

Additional information on the Coulomb-phase function can
be found in Ref. [7], in particular expressions pertinent to
uniform-charge distributions.

The pion distortion in Eqs. (13) and (14) is controlled by
the parameter σ ′

π = σπ (1 − iαπ ) with σπ the pion-nucleon-
total-cross section. The target-thickness function T (b, z) is
defined as the integral along the pion trajectory of the nuclear-
hadronic-matter density Aρ̂hd (r) as seen by the pion,

T (b, z) = A

∫ ∞

z

dz′ρ̂hd (b, z′), (21)

for a pion produced at (b, z). The density ρ̂hd (r) is normalized
to unity.

The amplitudes G(q, Q) and H (q, Q) can be written on
a more convenient form by making use of the operator
replacements, be → −i∇q and bπ → +i∇Q, as described in
Ref. [3]. This operation leads to the decomposition

G(q, Q) = K(q, Q) (q̂⊥ × Q̂⊥) · k̂1 + L(q, Q) q̂⊥ · Q̂⊥,

(22)

H (q, Q) = K(q, Q) q̂⊥ · Q̂⊥ − L(q, Q) (q̂⊥ × Q̂⊥) · k̂1,

(23)

with q̂⊥ = q⊥/|q⊥ and Q̂⊥ = Q⊥/|Q⊥.

The definitions of the scalar amplitudes K(q, Q) and
L(q, Q) are, with q‖/γ ≈ me,

K(q, Q)

= meQ‖
(2π )2

∫ ∞

0
bedbe K1(mebe)

∫ ∞

0
bπdbπ I (bπ ,Q‖)2π

×
∫ 2π

0
dφ J0(

√
X){cos φ} exp[iχC(Be], (24)

L(q, Q)

= meQ‖
(2π )2

∫ ∞

0
bedbe K1(mebe)

∫ ∞

0
bπdbπ I (bπ ,Q‖)2π

×
∫ 2π

0
dφ J0(

√
X){− sin φ} exp[iχC(Be], (25)

with X and Be as

X = (q⊥be)2 + (Q⊥bπ )2 − 2q⊥beQ⊥bπ cos φ, (26)

B2
e = b2

e + b2
π + 2bebπ cos(φ + φq − φQ). (27)

For general charge and matter distributions I (bπ ,Q‖) is
defined by the integral

I (bπ ,Q‖) = −2πi

Q‖

∫ ∞

−∞
dz[b̂π · EA(bπ , z)]

× exp

[
−izQ‖ − 1

2
σ ′

πT (bπ , z)

]
. (28)

For a point-charge distribution and neglect of meson rescatter-
ing it simplifies to

Ipc(bπ ,Q‖) = K1(Q‖bπ ), (29)

where for negative values of the argument K1(−x) = −K1(x).
In the Born approximation, i.e., for a nucleus point-charge

distribution and with neglect of electron and pion distortions,
the amplitudes K(q, Q) and L(q, Q) reduce to

KB(q, Q) = q⊥
q2

⊥ + m2
e

· Q⊥
Q2

⊥ + Q2
‖
, (30)

LB(q, Q) = 0, (31)

with −Q‖ = m2
π/2K‖. In this case the integrals factorize.

In fact, the functional dependence on the angles φq and φQ

factorizes except in the Coulomb-phase-shift function.

IV. HADRONIC PRODUCTION

The hadronic contribution represents hadronic interactions
between the high-energy photon and the nucleons in the
nucleus. Those interactions can be described as exchange
interactions where the exchanged particle, as in Fig. 2, is a ρ or
an ω meson. For ω exchange, proton and neutron contributions
add whereas for ρ exchange they subtract. In addition, the
ρ interaction is weaker and we shall therefore neglect it
altogether. The structure of the ω-exchange contribution is the
same as that of photon exchange, except for the replacement
of the Coulomb potential by the Yukawa potential. Hence, the
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nuclear-electric field EA(r) is replaced by the nuclear-ω field

Eω(r) = ∇b

1

4πi

∫
d3r ′ρ̂hd (r′)

e−mω|r−r′|

|r − r′| , (32)

where Aρ̂hd (r) is the hadronic-density distribution as seen by
the ω meson. The ω propagator can be displayed by rewriting
this expression as

Eω(r) = 1

i(2π )3
∇b

∫
d3qe−iq·r 1

q2 + m2
ω

S0(q) (33)

with S0(q) the nuclear form factor,

S0(q) =
∫

d3reiq·rρ̂hd (r). (34)

Unfortunately, high-energy photoproduction of pseu-
doscalar mesons by nucleons is not well described by the
meson exchanges. But Guidal et al. [8] have shown that by
Reggeizing those exchanges a good description of data can be
obtained. Reggeization means replacing the ω-pole factor

Pω = 1

t − m2
ω

(35)

with its Reggeized version, which is

Pω(s, t) =
(

s

s0

)αω(t)−1
πα′

ω

sin (παω(t))
1

�(αω(t))
−1 + e−iπαω(t)

2
.

(36)

The parametrization of the ω trajectory, αω(t), has
been determined through comparison with photoproduction
data [8].

For an ambitious calculation that aims at including the full
Regge structure the definition of the nuclear-ω field becomes

Eω(r) = 1

i(2π )3
∇b

∫
d3qe−iq·r 1

m2
ω

S0(q)P̂ω(q2)

= i

2π2m2
ω

b
∫

dq q4S0(q)P̂ω(q2)

[
j1(qr)

qr

]
, (37)

with

P̂ω(q2) = Pω(q2)/Pω(q2 = 0), (38)

and S0(q) the nuclear form factor of Eq. (34). There could
also be other form factors beside the Regge factor. The q2

dependence of the Regge factor is much weaker than that of
the nuclear factor. Neglecting it altogether leads to a simple
expression for the nuclear-ω field,

Eω(r) = 1

im2
ω

∇bρ̂hd (r). (39)

The ω-exchange amplitude is decomposed as follows:

Mω = −iNω [Gω(q, Q) − Hω(q, Q) iσ · k̂1], (40)

Nω = A
αgωπγ gωNN

4πmπ

m2
ωPω(0). (41)

Pure ω exchange corresponds to m2
ωPω(0) = −1. The func-

tions of Eq. (40) are defined in complete analogy with the
two-photon exchange amplitudes,

Gω(q, Q) =
∫

d3re

∫
d3rπ eiq·(re−rπ )e−iQ·rπ exp

[
iχC(be)

− 1

2
σ ′

πT (bπ , zπ )

]
[Ee(re − rπ ) × Eω(rπ )] · k̂1,

(42)

Hω(q, Q) =
∫

d3re

∫
d3rπ eiq·(re−rπ )e−iQ·rπ exp

[
iχC(be)

− 1

2
σ ′

πT (bπ , zπ )

]
[Ee(re − rπ ) · Eω(rπ )]. (43)

The definitions of Gω(q, Q) and Hω(q, Q) in Eqs. (42)
and (43) parallel the definitions of G(q, Q) and H (q, Q) in
Eqs. (13) and (14). To get from the latter to the former we
replace EA(rπ ) with Eω(rπ ). In exactly the same way we define
Kω(q, Q) and Lω(q, Q) to get the decomposition

Gω(q, Q) = Kω(q, Q) (q̂⊥ × Q̂⊥) · k̂1 + Lω(q, Q) q̂⊥ · Q̂⊥,

(44)

Hω(q, Q) = Kω(q, Q) q̂⊥ · Q̂⊥ − Lω(q, Q) (q̂⊥ × Q̂⊥) · k̂1.

(45)

However, the replacement of EA(rπ ) by Eω(rπ ) makes the
structure functions connected with ω exchange quite different
from those connected with photon exchange. In general,
Lω(q, Q) is small and may be neglected.

V. FACTORIZATION

The formulas given so far apply to arbitrary nuclei and
arbitrary momentum transfers Q⊥ and q⊥, as long as they
remain much smaller than the longitudinal momenta k1 and
K . The tricky point in their evaluation is that the integrations
over re and rπ are intertwined, as the electron interacts with
both nucleus and meson. However, in some circumstances the
integrations factorize.

Consider production of η mesons at 11 GeV, and start with
the Coulomb terms K(q, Q) and L(q, Q) of Eqs. (24) and
(25). The cutoff in the be integration is set by the inverse
of the electron mass 1/me ≈ 390 fm, and the cutoff in the
bη integration by the inverse of the longitudinal momentum
transfer 2K‖/m2

η ≈ 14 fm. The only coupling between the
be and bη dependencies is in the argument, Eq. (27), of
the Coulomb-phase function. In view of the small overlap
region, we may here neglect the dependence on bη. As a
result, the integrands of Eqs. (24) and (25) factorize, and the
function L(q, Q) vanishes after integration over the φ variable.
These arguments are weakened when we consider momentum
transfers q⊥ so large that there are strong oscillations in the be

integrand. Then the main contributions to the Coulomb integral
come from regions much closer to the nucleus.

In the factorized approximation

L(q, Q) = 0, (46)

K(q, Q) = FC(q)FA(Q), (47)
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with the functions FC(q) and FA(Q) defined by

FC(q) =
∫

d3re ei[q·re+χC (be)] q̂⊥ · Ee(re), (48)

FA(Q) =
∫

d3rη e−iQ·rη Q̂⊥ · EA(rη) exp

[
− 1

2
σ ′

ηT (bη, zη)

]
.

(49)

The function FC(q) describes Coulomb scattering by the
electron, and for a nuclear-point-charge distribution it can be
integrated exactly, Refs. [3,9]. The FA(Q) is the Coulomb
contribution (one-photon exchange) to η-nucleus photopro-
duction.

In the hadronic contribution the integration over bη is
limited to the nuclear region. Thus, in this case the integrals
always factorize, so that Lω(q, Q) = 0 and

Kω(q, Q) = FC(q)Fω(Q), (50)

Fω(Q) =
∫

d3rη e−iQ·rη Q̂⊥ · Eω(rη) exp

[
−1

2
σ ′

ηT (bη, zη)

]
.

(51)
The sum of Coulomb and hadronic contributions can be

written as

G(q, Q) + Gω(q, Q)

=
∑

λ

[q̂⊥ · eλ FC(q)]{(Q̂⊥ × k̂1) · eλ[FA(Q) + Fω(Q)]},

(52)

where the sum runs over the two photon-polarization vectors
orthogonal to k̂1, or q̂. For the sum H (q, Q) + Hω(q, Q)
the expression is the same but with q̂⊥ · eλ replaced
by (q̂⊥ × k̂1) · eλ.

The two terms in the last bracket of Eq. (52) repre-
sent the η-nucleus photoproduction amplitude initiated by
photons of polarization eλ. The first term FA(Q) is the
Coulomb-photoproduction amplitude, the second term Fω(Q)
the hadronic-photoproduction amplitude. It is also important
to note that the photons radiated by the electron are transverse
photons, not Coulomb photons.

In pion-electroproduction the hadronic amplitudes factor-
ize, but the Coulomb amplitudes do not. Hence, the pion-
electroproduction amplitude will not have a decomposition as
in Eq. (52).

VI. SHADOWING

The hadronic contribution is modified by shadowing, a
multiple scattering contribution where the initial photon is
first converted into a ρ meson, which in a subsequent collision
with another nucleon creates the pion. This phenomenon is
described in detail in Ref. [10].

In the hadronic term the high-energy photon produces
the final-state pion through ω-meson exchange with a single
nucleon. The corresponding amplitude is proportional to
fω(γN → πN ). In the shadowing term the high-energy
photon first creates a ρ meson by diffractive production on
a nucleon. This step is proportional to fP (γN → ρN ). In

the second step the ρ meson collides with another nucleon
creating a π meson through ω-meson exchange. This step
is proportional to the amplitude fω(ρN → πN ). Now, if the
hadronic interactions of photons proceed via the ρ meson, we
expect the relation

fP (γN → ρN )fω(ρN → πN )

= fP (ρN → ρN )fω(γN → πN ), (53)

where fP (ρN → ρN ) is the diffractive ρ-nucleon-scattering
amplitude. We remark that the ρ meson is off its mass shell in
two of the amplitudes, one on each side. It is assumed that the
off-shell factors cancel out.

The amplitude relation (53) leads to a replacement of the ω

field, Eq. (39), by

Eω(r) = 1

im2
ω

∇bρ̂hd (r)

{
1 − 1

2
σ ′

ρ

∫ z

−∞
dz′n(b, z′)eiρ (z′−z)

× exp

[
−1

2
σ ′

ρ

∫ z

z′
dz′′n(b, z′′)

]}
, (54)

with n(r) = Aρ̂hd (r). The second term inside the brackets is
the shadowing term. The intermediate ρ meson is produced
at z′ and the final-state pion at z. Between these two points,
the distortion of the wave is due to ρ-meson scattering. The
longitudinal momentum transfer in the γN → ρN reaction
at z′ is ρ = m2

ρ/2K‖. The longitudinal momentum transfer
in the ρN → πN reaction at z is π = (m2

π − m2
ρ)/2K‖ =

−ρ − Q‖. In the direct hadronic term the longitudinal
momentum transfer to the pion is −Q‖ = m2

π/2K‖. This phase
factor is outside the ω field Eω(r). So is the pion distortion,
Eqs. (44) and (45).

VII. NUCLEAR ω-EXCHANGE AMPLITUDE

Our previous article [3] presented analytic and numerical
details of the pure-Coulomb amplitudes. What remains to
complete the picture is a numerical study of the ω-exchange
amplitude.

The structure of the nuclear-density distribution tells us that
the ω field Eω(r) of Eq. (39) is concentrated at the rim of the
nucleus. In fact, for a uniform-nuclear-density distribution of
radius Ru

Eω(r) = i

m2
ω

3

4πR3
u

b
r

δ(r − Ru). (55)

This expression corresponds to inserting a uniform-density-
form factor

Su(q) = 3j1(qRu)

qRu

(56)

into Eq. (37), ignoring the Regge factor. With a uniform-
density distribution alone, the integral of Eq. (37) is not
properly convergent. However, a nuclear density with realistic
surface-density distribution does give a properly convergent
integral. Adding the Regge-form factor further improves the
convergence.

The investigation of the structure of the ω field conveniently
starts with the associated function V (r), obtained after angular
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FIG. 3. Graph describing the radial distribution of |V (r)| of
Eq. (57) for lead nuclei, in units of inverse fm; dashed curve
corresponds to nucleus-form factor, solid curve to nucleus- plus
Regge-form factors.

integration of Eq. (37),

V (r) = 1

π

∫ ∞

0
dq(qr)3S(q)j1(qr), (57)

where r is the radial parameter and where the form factor S(q)
may or may not contain the Regge factor. The relation to the
ω field is

Eω(r) = i

2πm2
ω

b
r4

V (r). (58)

In Fig. 3 the absolute value of V (r) is graphed for two
cases: nucleus-form factor alone and nucleus- plus Regge-form
factors, the latter as in Eq. (37). We see that the values of
V (r) are restricted to the surface region of the nucleus, r ≈
Ru = 6.5 fm, as for the uniform-nucleus-density distribution,
Eq. (55). The distribution involving the nucleus-form factor
alone (dashed line) is slightly higher and narrower than the
one with the added Regge-form factor (solid line). Moreover,
the integral of V (r) over the radial parameter r is the same in
both cases, ∫ ∞

0
drV (r) = 3

2
S(0) = 3

2
, (59)

and indeed, the same as for the uniform-density distribution.
We refer to the Appendix for a proof of this identity.

Next, we turn to the ω-exchange amplitude of Eq. (51). It
can be rewritten as

Fω(Q) = Q⊥
m2

ω

∫ ∞

0
dr W (Q, r)V (r), (60)

with V (r) defined as in Eq. (57) and with

W (Q, r) =
∫ 1

−1
du(1 − u2)

J1(Q⊥r
√

1 − u2)

Q⊥r
√

1 − u2

× exp

[
−iQ‖ru − 1

2
σ ′T (r

√
1 − u2, ru)

]
. (61)

Furthermore, the target thickness function T (b, z) is the
integral of the hadronic density along the pion trajectory,
Eq. (21), and the meson-production point in the nucleus is
at (b, z).

In order to illustrate the meaning of the above expressions,
consider a simplified case. Ignoring meson distortion, integra-
tion of Eq. (61) gives

W (Q, r) = 2j1(Qr)

Qr
, (62)

and choosing, in addition, a uniform-density distribution

Vu(r) = 3
2δ(r − Ru) (63)

results in a nuclear ω-exchange amplitude

Fω(Q) = Q⊥
m2

ω

3j1(Qr)

Qr
= Q⊥

m2
ω

Su(Qr), (64)

an expression that should, by now, be familiar.
The ω-exchange amplitude of Eq. (60) is obtained by

averaging the function W (Q, r) over a function V (r) which
is concentrated at the surface region, where W (Q, r) itself is
rapidly varying. This is demonstrated by the solid curve in
Fig. 4(a), where W (Q, r) is plotted for η-meson production at
momentum transfer Q⊥ = 2Q‖. The dashed curve represents
the no-distortion case of Eq. (62). As is obvious, distortion
severely cuts down the contribution from the interior of the
nucleus leading to a strong variation in the surface region, i.e.,
in the neighborhood of r = 6.5 fm.

In Fig. 4(b) the amplitude m2
ω|Fω(Q)|/Q⊥ is graphed

as a function of Q⊥, with Q⊥ measured in units of the
fixed-longitudinal-momentum transfer Q‖. The solid curve
is the result of the full calculation and the dotted curve,
almost indistinguishable from the solid one, represents a
calculation where the Regge amplitude is evaluated in the
forward direction. We conclude that in applications to heavy
nuclei, this approximation of the Regge amplitude is excellent,
as anticipated in Ref. [3]. The dashed curve refers to vanishing
distortion and consequently represents the form factor of the
nucleus. The position of the minimum around 9Q‖ is related
to the zero in the form factor.

In the application to pion production the longitudinal-
momentum transfer to the pion, Q‖(mπ ), is much smaller than
the one for η production, Q‖(mη). Therefore, the structure
of |W (Q, r)| in Fig. 4(a) becomes independent of Q⊥ and
Q‖, and the no-absorption curve is a straight line. The curves
of Fig. 4(b) are also virtually straight lines with minima far
outside the figure.

In the application to η′ production, on the other hand, the
longitudinal-momentum transfer to the η′ meson, Q‖(mη′), is
much larger than the one for η production, Q‖(mη). The effect
is to produce a minimum in |W (Q, r)| around r ≈ 10 fm and
a suppression of the maximum. The momentum distribution
of Fig. 4(b) has a first minimum already at r ≈ 3Q‖ and three
more up to r ≈ 10Q‖.
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FIG. 4. Graphs describing (a) the radial distribution of |W (Q, r)| of Eq. (61) for Q⊥ = 2Q‖, and (b) the Q⊥ momentum-transfer distribution
of the ω-exchange amplitude m2

ω|Fω(Q)|/Q⊥ of Eq. (60). Dashed curves refer to vanishing absorption, Eqs. (62) and (64). This is all for η-meson
production on lead.

VIII. CROSS-SECTION DISTRIBUTIONS

The unpolarized-cross-section distribution as derived in
Ref. [3] reads

dσ

d2k2⊥d2K⊥dk2‖

= 1

πK‖

(
Zα2gπγγ

mπ

)2

[|K(q, Q) + RKω(q, Q)|2

+ |L(q, Q) + RLω(q, Q)|2], (65)

with the coupling constant gπγγ determined by the radiative
decay width of the pion

�(π0 → γ γ ) = 1
4πα2g2

πγ γ mπ, (66)

and with R the ratio of the coupling constants of Eqs. (12) and
(41),

R = −Nω/N2γ . (67)

The parameter R depends only weakly on atomic number
so we do not gain relative strength for the Coulomb term
by going to heavier nuclei. The advantage is instead that the
cross-section values themselves grow as Z2. An interesting
feature of Eq. (65) is that in the unpolarized cross-section
distributions K and L amplitudes do not interfere. The sign of
R must be determined by experiment.

The transverse momenta in Eq. (65) are restricted to the
regions q⊥,Q⊥ � k1, k2,K . For cross-section distributions
such that Q⊥Ru ≈ 1, nuclear structure becomes important and
numerical evaluation necessary. We have also stressed that
depending on the value of q⊥/me, integrals may or may not
factorize. The complicated functional dependencies make a
general overview difficult. For this reason we concentrate on
production of pions and η mesons in the Coulomb region,
which is of special importance to the PrimEx experiment.

π -meson production. Pion electroproduction at 11 GeV/c

was investigated in Ref. [3], with emphasis on the double-
Coulomb region, where Q⊥ ≈ |Q‖| = 0.85 MeV/c and
q⊥ ≈ me = 0.52 MeV/c. In this particular case there is,
in the Coulomb amplitude, a strong overlap between the

impact-parameter domains of pion and electron. As a con-
sequence the electroproduction amplitude does not factor-
ize and the predictions differ considerably from the Born
approximation. Non-factorization means that the pion-
nucleus-photoproduction cross section is not a factor of the
pion-nucleus-electroproduction cross section.

However, non-factorization does not mean we cannot
determine the pion-decay constant gπγγ . We can, as long as
we have a reliable theory for the cross-section distribution and
as long as the hadronic contribution is much smaller than the
Coulomb contribution.

In Ref. [3] the relative size of Coulomb and hadronic
amplitudes was estimated. Here, we first assume pure ω

exchange and neglect electron and pion distortions. Then, at
the double peak, the ratio of Coulomb to hadronic amplitude
strengths becomes

Rπ =
[
Zα2gπγγ

mπ

1

2Q2
‖

]/[
Aαgωπγ gωNN

4πmπ

1

m2
ω

]
= 110.

(68)

The numerical value refers to lead nuclei. Taking Regge
exchange instead of ω exchange implies dividing by
|Pω(0)m2

ω| = 0.102, which is the strength of Regge relative
to pure ω exchange. The new ratio Rπ = 1080 is so large that
it should be easy to isolate the Coulomb contribution from
the hadronic background, making a determination of gπγγ

realistic.
Photoproduction of pseudoscalar mesons by protons, in-

cluding the Coulomb term, was investigated in Ref. [11], and
photoproduction by nuclei most recently in Refs. [12,13].

η-meson production. Production of η mesons is at 11 GeV/c

simpler to calculate than production of π mesons. The
double-Coulomb region is now the region where Q⊥ ≈ |Q‖| =
14 MeV/c, and q⊥ ≈ me = 0.52 MeV/c. Consequently, over-
lap between the integration domains of the η- and electron-
impact-parameter variables is small. The factorization
discussed in Sec. V applies and the cross-section distribution
contains the factor

|FC(q)|2|FA(Q) + Fω(Q)|2. (69)
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The first factor in Eq. (69) is the squared Coulomb ampli-
tude of the electron. Its analytic form is given in Refs. [3,9]. It is
not the usual Coulomb-scattering amplitude since it describes
exchange of transverse photons, not Coulomb photons. In
the Coulomb factor FC(q) the longitudinal momentum q‖
enters in the combination q‖/γ ≈ me. This factor exhibits a
Primakoff-peak structure in the variable q⊥ with a peak value
at q⊥ ≈ me.

The second factor in Eq. (69) is the squared η-nucleus-
photoproduction amplitude. This amplitude has two parts:
the Coulomb amplitude FA(Q) and the hadronic amplitude
Fω(Q). Assuming ω exchange and neglecting electron and pion
rescattering the ratio Rη of Coulomb to hadronic amplitudes
is algebraically the same as the ratio for pions, Eq. (68),
but with all π indices replaced by η indices. For lead
nuclei Rη = 1.8 with ω exchange and Rη = 18 with Regge
exchange. The Coulomb amplitude dominates but only weakly.
For an accurate determination of gηγγ higher energies are
needed.

η′-meson production. At 11 GeV/c the double-Coulomb
region in η′ production is the region where Q⊥ ≈ |Q‖| =
43 MeV/c, and q⊥ ≈ me = 0.52 MeV/c. As for η-meson
production the factorization discussed in Sec. V applies as
well as Eq. (69). The second factor in Eq. (69) is now the
squared η′-nucleus-photoproduction amplitude. Assuming ω

exchange and neglecting electron and pion rescattering the
ratio Rη′ of Coulomb to hadronic amplitudes is algebraically
the same as the ratio for pions, Eq. (68), but with all π indices
replaced by η′ indices. For lead nuclei Rη′ = 0.30 with ω

exchange and Rη′ = 2.9 with Regge exchange. Consequently,
a determination of gη′γ γ is not possible at this energy.
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APPENDIX

In the Hankel integral formula Eq. (59) the crucial integral
is

1

π

∫ ∞

0
dr(qr)3j1(qr)

= q3(−∂q)
1

q

1

2π

∫ ∞

−∞
drr sin(qr) = q3∂q

1

q
∂qδ(q)

= −qδ′(q) + q2δ′′(q) = 3δ(q). (A1)

The last step is valid only when the operators are averaged
over functions which are finite at q = 0. The q integration
of Eq. (59) starts at q = 0. In order to avoid an endpoint
singularity we must, before evaluating the integral, rewrite
it as an integral from minus infinity to plus infinity. The
above integral identity can be extended to Bessel functions
of arbitrary order, as

1

2π

∫ ∞

−∞
dr(qr)n+2jn(qr) = q2n+2

[
− q

∂

∂q

]n+1

δ(q) (A2)

= (−1)n+1(2n + 1)!! δ(q). (A3)

We end with an alternative method for deriving Eqs. (22)
and (23). Decompose the unit vector b̂e along the unit vector
q̂, which here stands for the impact-plane component q⊥ of q,
i.e., q̂ = q⊥/|q⊥|,

b̂e = [b̂e · q̂] q̂ + [b̂e · (k̂ × q̂)] k̂ × q̂

= cos(ϕe) q̂ + sin(ϕe) k̂ × q̂. (A4)

We perform the same decomposition for b̂π but along Q̂ and
with angle ϕπ . This gives

b̂e · b̂π = cos ϕ q̂ · Q̂ + sin ϕ (q̂ × Q̂) · k̂, (A5)

(b̂e × b̂π ) · k̂ = − sin ϕ q̂ · Q̂ + cos ϕ (q̂ × Q̂) · k̂, (A6)

with ϕ = ϕe − ϕπ .
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