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Single-particle dissipation in a time-dependent Hartree-Fock approach studied
from a phase-space perspective
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We study dissipation and relaxation processes within the time-dependent Hartree-Fock approach using the
Wigner distribution function. On the technical side we present a geometrically unrestricted framework which
allows us to calculate the full six-dimensional Wigner distribution function. With the removal of geometrical
constraints, we are now able to extend our previous phase-space analysis of heavy-ion collisions in the reaction
plane to unrestricted mean-field simulations of nuclear matter on a three-dimensional Cartesian lattice. From
the physical point of view we provide a quantitative analysis on the stopping power in TDHF. This is linked
to the effect of transparency. For the medium-heavy 40Ca + 40Ca system we examine the impact of different
parametrizations of the Skyrme force, energy-dependence, and the significance of extra time-odd terms in the
Skyrme functional.
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I. INTRODUCTION

Time-dependent Hartree-Fock (TDHF) theory provides a
fully self-consistent mean-field approach to nuclear dynamics.
First employed in the late 1970s [1–4] the applicability of
TDHF was constrained by the limited computational power.
Therefore, early applications treated the problem in only one
spatial dimension, utilizing a very simplified parametrization
of the nuclear interaction. Owing to the increase in compu-
tational power, state-of-the-art TDHF calculations are now
feasible in three-dimensional coordinate space, without any
symmetry restrictions and using the full Skyrme interaction
[5–10].

In this work the Wigner distribution function [11] is
calculated as an analysis tool to probe the phase space behavior
in TDHF evolution of nuclear dynamics. In comparison to
previous work [12], where the Wigner analysis was performed
in one and two dimensions, we are now able to carry out
both the TDHF simulation and the phase-space analysis in
three dimensions. Transformation from coordinate-space rep-
resentation to phase-space representation, that is, calculating
the Wigner distribution from the density matrix, still remains
a computationally challenging problem. Here, we present a
fully three-dimensional analysis which allows the study of
relaxation processes simultaneously in all directions in k space.
An early one-dimensional study of the Wigner function for
TDHF can be found in [13].

The paper is outlined as follows. In Sec. II we introduce
the Wigner distribution function and discuss the numerical
framework used in this work. We then introduce the principal
observables summarizing the local or global momentum-space
properties of the Wigner function. First is the quadrupole
operator in momentum space which gives rise to the usual de-
formation parameters β and γ to probe relaxation processes in
dynamical calculations. In addition, we define an estimate for
the occupied phase-space volume to obtain a relation between
the fragment separation in momentum and coordinate space.

Section III provides a detailed discussion of the central
40Ca + 40Ca collision, paying particular attention to the effect
of transparency. We discuss the impact of different Skyrme
parametrizations on the relaxation behavior, as well as the
dependence on the center-of-mass energy for a fixed Skyrme
interaction. We also examine the influence of extra time-odd
terms in the Skyrme functional.

II. OUTLINE OF FORMALISM

A. Solution of the TDHF equations

The TDHF equations are solved on a three-dimensional
Cartesian lattice with a typical mesh spacing of 1 fm. The initial
setup of a dynamic calculation needs a static Hartree-Fock
run, whereby the stationary ground states of the two fragments
are computed with the damped-gradient iteration algorithm
[14,15]. The TDHF runs are initialized with energies above
the Coulomb barrier at some large but finite separation. The
two ions are boosted with velocities obtained by assuming that
the two nuclei arrive at this initial separation on a Coulomb tra-
jectory. The time propagation is managed by utilizing a Taylor-
series expansion of the time-evolution operator [16] up to sixth
order with a time step of t = 0.2f m/c. The spatial derivatives
are calculated using the fast Fourier transforms (FFT).

B. Computing the Wigner function

The Wigner distribution function is obtained by a partial
Fourier transform of the density matrix ρ(r− s

2 , r+ s
2 , t), with

respect to the relative coordinate s = r − r′,

f
(3)
W (r, k, t) =

∫
d3s

(2π )3
e−ik·sρ

(
r− s

2
, r + s

2
, t

)
, (1)

ρ(r, r′, t) =
∑

l

�
†
l (r, t)�l(r′, t). (2)
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Because fW is not positive definite, it is misleading to consider
the Wigner function as a phase-space probability distribution.
We refer to the appearance of negative values for fW in Sec. III.

Evaluating the Wigner function in six-dimensional phase
space is still a computational challenge and only possible em-
ploying full Open Multi-Processing (OpenMP) parallelization
and extensive use of FFT’s. The determing factor is the grid
size. The number of steps to provide the Wigner transform in
full space is proportional to

N2
x log2 (Nx) � N2

y log2 (Ny) � N2
z log2 (Nz), (3)

where Nx,Ny,Nz are the grid points in each direction. Storing
the Wigner function reduced to the reaction plane, that is,
f

(3)
W (x, y = 0, z, k), at one time step will consume ∼140 Mb

of disk space for the applications presented in Sec. III. Going
to larger grid sizes, needed for heavier systems, and/or storing
the full three-dimensional Wigner function will clearly result
in entering the Gb regime.

C. Observables

In this section we discuss some of the observables used
in our analysis. To avoid any misunderstandings we label all
observables evaluated in momentum space with a subscript k,
and all observables in coordinate space with a subscript r .

1. Quadrupole in momentum space

As an observable to probe relaxation in phase-space quan-
titatively, we evaluate the quadrupole operator in momentum
space. The local deviation of the momentum distribution from
a spherical shape is a direct measure for equilibration. The
local quadrupole tensor in k space is given by

Q
ij

k (r, t) =
∫

d3k[3〈ki(r, t)〉〈kj (r, t)〉 − 〈k2(r, t)〉δij ], (4)

using the mth moment from the local momentum distribution

〈k(m)(r, t)〉 =
∫

d3k(k − 〈k(r, t)〉)mf
(3)
W (r, k, t)∫

d3kf
(3)
W (r, k, t)

, (5)

with 〈k(r, t)〉 denoting the average local flow,

〈k(r, t)〉 =
∫

d3kkf
(3)
W (r, k, t)∫

d3kf
(3)
W (r, k, t)

. (6)

The spherical quadrupole moments Q20
k (r, t) and Q22

k (r, t) are
computed by diagonalization of Q

ij

k (r, t)

Q20
k (r, t) =

√
5

16π
λ3, (7)

Q22
k (r, t) =

√
5

96π
(λ2 − λ1), (8)

with λ3 > λ2 > λ1 labeling the eigenvalues of Q
ij

k (r, t).
Switching to polar notation the observables

βk(r, t) =
√

β2
20(r, t) + 2β2

22(r, t), (9)

γk(r, t) =
∣∣∣∣ arctan

√
2β22(r, t)
β20(r, t)

180◦

π

∣∣∣∣, (10)

are obtained via the dimensionless quantities

β20
k (r, t) = 4πQ20

5r2
k ρ(r, t)

, (11)

β22
k (r, t) = 4πQ22

5r2
k ρ(r, t)

, (12)

where

rk(r, t) =
√

〈k(r, t)〉2/ρ(r, t), (13)

accounts for the local rms radius in k space. The norm is
defined such that

ρ(r, t) =
∫

d3kf
(3)
W (r, k, t). (14)

In the presented formalism it is straightforward to define global
observables. The global quadrupole tensor is calculated by
spatial integration

Q
ij

k (t) =
∫

d3rρ(r, t)Qij

k (r, t). (15)

Applying the same diagonalization as in the local case (7)
we end up with a global definition for β20

k (t) and β22
k (t). For

the following results we exclusively use the global definition
because it is more compact and allows the simultaneous
visualization of multiple time-dependent observables.

2. Quadrupole in coordinate space

To illustrate the global development of a reaction, we also
use the expectation value Q20

r ≡ 〈Q̂20
r 〉 of the quadrupole

operator in coordinate space.

3. Occupied phase-space volume

To give a rough measure for the phase-space volume
occupied by the fragments during a heavy-ion collision we
assume a spherical shape of the local momentum distribution.
Adding up the k spheres,

Vk(r, t) = 4π

3
〈k2(r, t)〉3/2, (16)

leads to the total occupied phase-space volume

Vk(t) =
∫

d3rVk(r, t). (17)

III. RESULTS AND DISCUSSION

It is the aim of this work to provide a quantitative analysis
of the magnitude of relaxation processes occurring in TDHF.
Therefore, we vary a single reaction parameter, while all the
other parameters are fixed. The 40Ca + 40Ca system provides
a suitable test case. This particular choice is motivated by
Ref. [17], where the applicability of TDHF was demonstrated
up to very high energies. All calculations in this section were
done for central collisions (impact parameter b = 0). The
numerical grid was set up with 36 × 242 grid points.
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A. Variation of the Skyrme force

In the first set of calculations we vary the Skyrme
parametrization. Figure 1 shows the results of a central
40Ca + 40Ca collision with the Skyrme parametrizations SLy4,
SLy6 [18], SkMs [19], SkI3, and SkI4 [20]. While SkMs was
chosen as an example for an outdated interaction, the SLy(X)
set of forces was originally developed to study isotopic trends
in neutron-rich nuclei and neutron matter with applications
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FIG. 1. Global observables βk(t) (a), γk(t) (b), Vk(t) (c), and
Q20

r (t) (d) are shown for a central 40Ca + 40Ca collision with a
center-of-mass energy Ec.m. = 160 MeV. Each curve corresponds to
a different Skyrme force as indicated in the legend.

in astrophysics. The SkI(X) forces take the freedom of an
isovector spin-orbit force into account. This results in an
improved description of isotopic shifts of rms radii in neutron-
rich Pb isotopes.

The global development of the reaction is visualized
in panel (d). The time-dependent expectation value Q20

r (t)
shows the five trajectories initially in good agreement but
finally fanning out. A similar splitting behavior depending
on the employed Skyrme parametrization was already found
in Ref. [21]. While the two Sk(X) forces show a full separation
of the two fragments, there is a slight remaining contact
between the fragments for the case of SLy6, which will
result in complete separation in a longer calculation. However,
the trajectories for SLy4 and SkMs show a merged system
in the final state, which was found to persist in long-time
simulations.

We now consider the relationship between the observed
characteristics in coordinate space with the dynamics in phase
space. Panel (a) shows the βk value, measuring the global
deviation of the momentum distribution from a sphere. The
initial βk peak is strongly damped for all five Skyrme forces.
While the time development for all parametrizations remain
in phase up to the second peak, later it starts to vary and
continue with damped oscillations. For a better visualization
the first peak is magnified in panel (e). The taller the βk peak,
the longer the fragments will stick together in coordinate
space. The effect appears to depend on the effective mass
m∗/m. Smaller effective masses give rise to a smaller βk

deformation. Table I summarizes the m∗/m values associated
with the maximal deformations βmax

k for all the Skyrme
forces used in this work. It seems logical that the m∗/m

dependence is visible in the phase-space analysis because it
is directly linked to the nucleons’ kinetic motion. It is harder
to randomize the directed motion of a nucleon with a higher
effective mass than it is for a nucleon with a smaller m∗/m

dependence.
Panel (b) shows the γk value which indicates, whether

a deformation is prolate, oblate, or triaxial [22]. For the
present scenario of a central collision the γk value jumps
between prolate and oblate configurations, indicating that
the momentum distribution oscillates between being aligned
primarily in the beam direction or transverse to it. For the
sake of completeness we additionally present the occupied
phase-space volume (c), which will prove more useful for the
next reaction parameter to be discussed: the center-of-mass
energy.

TABLE I. Effective masses of Skyrme parametrizations used in
this work are listed in connection with the maximal βk values from
the panels (a) and (e) in Fig. 1.

Skyrme force m∗/m βmax
k

SkM 0.79 0.0116
SLy4 0.70 0.0111
SLy6 0.69 0.0106
SkI4 0.65 0.0102
SkI3 0.57 0.0095
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FIG. 2. (Color online) A still frame from a video of two-
dimensional z-kz slice from the full six-dimensional Wigner distri-
bution f

(3)
W (r, k) for a central 40Ca + 40Ca collision with a center-of-

mass energy of Ec.m. = 160 MeV [23].

B. Variation with the center-of-mass energy

As a second reaction parameter the center-of-mass energy,
Ec.m., is varied. Results are presented for energies ranging from
Ec.m. = 2 MeV/nucleon up to Ec.m. = 3 MeV/nucleon. The
Skyrme interaction now is fixed to be SkI4. For the case of
the lowest (highest) energy Fig. 2 [23] (Fig. 3 [23]) provides a
still frame from a video visualizing the reaction in phase. The
calculation done with the lowest energy Ec.m. = 160 MeV
shows two fully separated fragments in the exit channel. In
contrast, the case with the highest energy (as well as the one
at an intermediate energy) results in a merged system. The
global observables are plotted in Fig. 4. It may not be obvious
at first why the fragments should split for lower energies and
merge for higher ones. However, the estimate for the occupied
phase-space volume Vk(t) presented in panel (c) indicates that
V increases with energy. Therefore, the fragments’ average
distance in phase space is larger, while in compensation they
can come closer to each other in coordinate space. However,
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FIG. 3. (Color online) Same as Fig. 2 with a center-of-mass
energy of Ec.m. = 240 MeV [23].
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FIG. 4. Global observables βk(t) (a), γk(t) (b), Vk(t) (c), and
Q20

r (t) (d) are shown for a central 40Ca + 40Ca collision with fixed
Skyrme interaction SkI4. Each curve corresponds to a different
center-of-mass energy.

this behavior is also dependent on the particular Skyrme force
used and the presence of time-odd terms, which is discussed
in the next section.
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FIG. 5. Global observables βk(t) (a), and Q20
r (t) (b) are shown for

a central 40Ca + 40Ca collision with fixed Skyrme interaction SLy4.

C. Influence of time-odd terms

Skyrme energy-density functionals are calibrated to
ground-state properties of even-even nuclei [18–20]. This
leaves the choice of the time-odd terms in the functional
(current j2, spin-density s2, spin kinetic energy density T, and
the spin-current pseudotensor ←→

J ) largely unspecified [24].
Galilean invariance requires at least some of these terms
to be present depending on the presence of the associated
time-even term, for example, j2 for the (ρτ − j2) combination.
In our calculations we always include the time-odd part
of the spin-orbit interaction. To investigate the effects of
the remaining time-odd terms, we have compared different
choices by using a single Skyrme parametrization and the
same test case. We choose the force SLy4 and start with the
minimum number of time-odd terms which is needed to ensure
Galilean invariance [25]. In the next stage, we include also the
spin-density terms proportional to s2. Finally, we also add
the combination which includes the tensor spin-current term
(s · T − ←→

J 2). A comprehensive notation of the full Skyrme
functional can be found, for example, in Ref. [26]. As shown
in Fig. 5, at least for the quantities βk and Q20

r , varying these

time-odd terms has very little effect in the initial contact phase
and the dynamical behavior becomes somewhat different only
in later stages of the collision. However, small differences
near the threshold energy (the highest collision energy for
a head-on collision that results in a composite system; at
higher energies the nuclei go through each other) can have
large long-term effects on the outcome of the collision. For
example, a small difference in dissipation may be enough
to influence the decision between reseperation or forming a
composite system. We have also checked a broader range of
collision energies from the fusion regime up to deep inelastic
collisions. The interesting quantity is the loss of fragment
kinetic energy between the entrance and exit channels. It was
found that the spin terms contribute small changes to this loss
which can go in both directions, less dissipation near fusion
threshold and more dissipation above. Panel (b) of Fig. 5 shows
the effects near the Coulomb barrier where spin terms reduce
dissipation.

IV. SUMMARY

We have presented a geometrically unrestricted framework
to study nuclear dynamics within TDHF in the full six-
dimensional phase space. The impact of different reaction
parameters on the outcome of a heavy-ion collision was
studied in detail for the 40Ca + 40Ca system. We find that
the occurrence of transparency is clearly reflected in the
global asymmetry of the Wigner momentum distribution. The
surprising result that in some cases the system merges at higher
energies and shows transparency at lower ones can be related
to the interplay between momentum- and configuration-space
volumes, which is a reflection of the Pauli principle. It is also
interesting that the two distributions in phase-space never truly
combine to form a single distribution. This clearly indicates
that two-body collisions will be necessary to achieve true
equilibrium as the reaction proceeds to longer contact times.
The detailed degree of relaxation found depends on energy
and also the properties of the Skyrme force, where especially
the effective mass seems to be important. The presence of
additional time-odd terms in the Skyrme functional appears
to have a complex impact on the outcome of a collision as
well. In this paper only one noncentral collision was studied.
A systematic investigation of impact parameter and energy
dependence (fusion, deep-inelastic reactions) as well as even
heavier systems would be highly interesting but is beyond
computational feasibility at the moment.
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